Geometry and ∞ -Poincaré inequality.

Nages Shanmugalingam

University of Cincinnati

Based on joint work with Estibalitz

Durand-Cartagena, Jesus Jaramillo, and

Alex Williams.

Poincaré inequalities give control of the variance of a function on a ball in terms of its energy on that ball:

$$\int_{B} |u - u_{B}| d\mu \le C \operatorname{rad}(B) \left(\int_{\tau B} |\nabla u|^{p} d\mu \right)^{1/p}.$$

Weakest of all:

$$\int_{B} |u - u_{B}| d\mu \le C \operatorname{rad}(B) \operatorname{ess sup}_{\tau B} |\nabla u|.$$

Setting:

- (X, d, μ) complete metric measure space.
- \bullet μ Borel regular, supported on X.
- $\mu(B(x,2r)) \leq C \mu(B(x,r))$ all $x \in X$, r > 0.
- X complete.

Upper gradient g of $f:X\to\mathbb{R}$ is a Borel measurable non-negative function on X with

$$|f(y) - f(x)| \le \int_{\gamma} g \, ds$$

when γ rectifiable curve in X; here x,y denote end points of γ .

Given $f:B\to\mathbb{R}$,

$$\|\nabla f\|_{L^p(B)}^p := \inf_g \left(\int_B g^p \, d\mu \right)^{1/p}.$$

X supports p-Poincaré inequality if \forall balls B and $f: \tau B \to \mathbb{R}$,

$$\int_{B} |f - f_B| d\mu \le C \frac{\operatorname{rad}(B)}{\mu(B)^{1/p}} \|\nabla f\|_{L^p(\lambda B)}.$$

Consequences of *p*-Poincaré inequality:

- Spaces that have p-Poincaré ineq., p > 1, support $(p \epsilon)$ -Poincaré for some $\epsilon > 0$.
- Functions with an upper gradient in $L^q(X)$ for some sufficiently large q are Hölder continuous.
- There is a weak link between Hausdorff measures and sets of capacity zero.
- X is quasiconvex.
- *p*-Poincaré inequality persists under Hausdorff limits.

A is **quasiconvex** if for all $x, y \in A$ can find γ_{xy} in A with $\ell(\gamma_{xy}) \leq C |x - y|$.

Geometric characterizations when μ is Ahlfors Q-regular:

• p=1: equivalent to a relative isoperimetric inequality:

$$\min\{\mu(E \cap B), \mu(B \setminus E)\} \leq C \operatorname{rad}(B) \operatorname{Per}(E, \tau B).$$

- p = Q, with Q a natural dimension of X: equivalent to Loewner condition: the Q-modulus of the collection of curves joining two continua has a lower bound expressed in terms of the relative separation of the two continua.
- $ullet p>Q\colon \exists C\geq 1 ext{ s.t. } orall x,y\in X,$ $\mathsf{Mod}_p(\Gamma(x,y,C))pprox rac{1}{d(x,y)^{1-Q/p}}.$

Here, $\Gamma(x, y, C)$ collection of all rectifiable curves in X connecting x to y with length $\leq C d(x, y)$.

.

$$\mathsf{Mod}_p(\Gamma) = \inf_{g \in \mathcal{A}(\Gamma)} \int_X g^p \, d\mu.$$

Here $\mathcal{A}(\Gamma)$: collection of all non-negative Borel g satisfying $\int_{\gamma} g \, ds \geq 1$ for all $\gamma \in \Gamma$.

measures the smallest possible p-dimensional "volume" obtainable by perturbing the distance function using densities g that see each $\gamma \in \Gamma$ as of length ≥ 1 .

Weakest of all the Poincaré inequalities is the ∞ -Poincaré inequality:

$$\int_{B} |f - f_B| \, d\mu \le C \operatorname{rad}(B) \inf_{g} \|g\|_{L^{\infty}}(\tau B).$$

What can we infer about the geometry of X if it has ∞ -Poincaré inequality?

$$\operatorname{Mod}_{\infty}(\Gamma) = \inf_{g \in \mathcal{A}(\Gamma)} \|g\|_{L^{\infty}(X)} d\mu.$$

[Durand-Cartagena, Jaramillo, Sh.—2008/2014]: TFAE:

- Every $f: 2\tau B \to \mathbb{R}$ with an upper gradient in $L^{\infty}(2\tau B)$ is Lipschitz continuous on B.
- ∞-Poincaré inequality holds.
- ullet $\exists C \geq 1 ext{ s.t. } orall x, y \in X,$ $\mathsf{Mod}_\infty(\Gamma(C, x, y)) > 0.$
- ullet $\exists C \geq 1 ext{ s.t. } orall x,y \in X,$ $\operatorname{\mathsf{Mod}}_\infty(\Gamma(C,x,y)) pprox rac{1}{d(x,y)}.$
- X is ∞ -thickly quasiconvex.

Thick quasiconvexity means: for $1/2 > \epsilon > 0$, $x,y \in X$, the curves connecting $E \cap B(x,r)$ and $F \cap B(y,r)$ with length $C \cdot d(x,y)$ has **positive** ∞ -modulus, when $0 < r < \epsilon d(x,y)$,

$$\mu(E \cap B(x,r))\mu(F \cap B(y,r)) > 0.$$

However,

[Durand-Cartagena, Williams, Sh.—2009]:

- ∞ -Poincaré does not imply p-Poincaré for $p < \infty$.
- There are doubling weights on \mathbb{R}^n with no p-Poincaré for $p < \infty$.
- ∞-Poincaré inequality may not persist under Hausdorff limits.