Some Spectral Properties of Pseudo-Differential Operators on the Sierpiński Gasket

Marius Ionescu Joint with Kasso Okoudjou and Luke G. Rogers

U.S. Naval Academy

5th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals

The classical Szegö Theorem

Theorem

If P_n is projection onto the span of $\{e^{im\theta}, 0 \leq m \leq n\}$ in $L^2(\mathbb{T})$ and [f] is multiplication by a positive $C^{1+\alpha}$ function for $\alpha>0$ then

$$\lim_{n\to\infty}\frac{\log\det P_n[f]P_n}{n+1}=\int_0^{2\pi}\log f(\theta)\,d\theta/2\pi.$$

Equivalently, $(n+1)^{-1} \operatorname{Tr} \log P_n[f] P_n$ has the same limit.

Set up and notation

- X is the Sierpiński gasket.
- ullet μ is the standard measure
- Δ is the Dirichlet Laplacian on X defined by the the symmetric self-similar resistance on X.

Set up and notation

- X is the Sierpiński gasket.
- ullet μ is the standard measure
- Δ is the Dirichlet Laplacian on X defined by the the symmetric self-similar resistance on X.
- For $\lambda \in \operatorname{sp}(-\Delta)$, let E_{λ} be its eigenspace, $d_{\lambda} = \dim E_{\lambda}$, and P_{λ} the projection onto E_{λ} .
- For $\Lambda > 0$, let E_{Λ} be the span of all eigenfunctions corresponding to $\lambda \leq \Lambda$ and let P_{Λ} be the projection onto E_{Λ} .

The Szegö Theorem for the Sierpiński Gasket

Theorem (Okoudjou, Rogers, Strichartz, 2010)

Let f > 0 be a continuous function on X. Then

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \log \det P_{\Lambda}[f] P_{\Lambda} = \int_X \log f(x) d\mu(x).$$

Main Theorem

Theorem (I., Okoudjou, Rogers, 2014)

Let $p: X \times (0,\infty) \to \mathbb{R}$ be a bounded measurable function such that $p(\cdot,\lambda_n)$ is continuous for all $n \in \mathbb{N}$. Assume that $\lim_{n\to\infty} p(x,\lambda_n) = q(x)$ is uniform in x. Then, for any continuous function F supported on [A,B], we have that

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F(P_{\Lambda} p(x, -\Delta) P_{\Lambda}) = \int_{X} F(q(x)) d\mu(x).$$

Spectrum of the Laplacian

- The spectrum decomposes naturally into three sets called the 2-series, 5-series and 6-series eigenvalues.
- Each eigenvalue has a generation of birth j.
- 2-series eigenfunctions have j=1 and multiplicity 1.
- Each $j \in \mathbb{N}$ occurs in the 5-series and the corresponding eigenspace has multiplicity $(3^{j-1} + 3)/2$.
- Each $j \ge 2$ occurs in the 6-series with multiplicity $(3^j 3)/2$.
- There are 5 and 6-series eigenfunctions that are localized.

Pseudo-differential operators on the Sierpiński Gasket

Pseudo-differential operators on the Sierpiński Gasket

Definition

• If $p:(0,\infty)\to\mathbb{C}$ is measurable then

$$p(-\Delta)u = \sum_{n} p(\lambda_n)\langle u, \varphi_n \rangle \varphi_n$$

for $u \in D$ gives a densely defined operator on $L^2(\mu)$ called a constant coefficient pseudo-differential operator.

Pseudo-differential operators on the Sierpiński Gasket

Definition

• If $p:(0,\infty)\to\mathbb{C}$ is measurable then

$$p(-\Delta)u = \sum_{n} p(\lambda_n)\langle u, \varphi_n \rangle \varphi_n$$

for $u \in D$ gives a densely defined operator on $L^2(\mu)$ called a constant coefficient pseudo-differential operator.

• If $p: X \times (0, \infty) \to \mathbb{C}$ is measurable we define a variable coefficient pseudo-differential operator $p(x, -\Delta)$ via

$$p(x,-\Delta)u(x) = \sum_{n} \int_{X} p(x,\lambda_n) P_{\lambda_n}(x,y) u(y) d\mu(y).$$

Assumptions

Fact

We assume that $p: X imes (0, \infty) o \mathbb{R}$ is measurable and that

- $p(\cdot, \lambda)$ is continuous for all $\lambda \in \operatorname{sp}(-\Delta)$ and
- $\lim_{\lambda \in \operatorname{sp}(-\Delta), \lambda \to \infty} p(x, \lambda) = q(x)$ uniformly in x.

Some key lemmas

Theorem

The eigenvalues of $P_{\Lambda}p(x, -\Delta)P_{\Lambda}$ are contained in a bounded interval [A, B] for all $\Lambda > 0$.

Some key lemmas

Theorem

The eigenvalues of $P_{\Lambda}p(x, -\Delta)P_{\Lambda}$ are contained in a bounded interval [A, B] for all $\Lambda > 0$.

Theorem

Let $\Lambda > 0$. Then the map on C[A, B] defined by

$$F\mapsto \frac{1}{d_{\Lambda}}\operatorname{Tr} F(P_{\Lambda}p(x,-\Delta)P_{\Lambda})$$

is a continuous non-negative functional.

Single Eigenspace

Fact

If $\lambda \in \operatorname{sp}(-\Delta)$ then $\Gamma_{\lambda} := P_{\lambda}p(x, -\Delta)P_{\lambda}$ is a $d_{\lambda} \times d_{\lambda}$ matrix with entries

$$\gamma_{\lambda}(i,j) = \int p(x,\lambda)u_i(x)u_j(x)d\mu(x).$$

Single Eigenspace

Theorem

Let $\{\lambda_j\}$ be an increasing sequence of 6- or 5-series eigenvalues where λ_j has generation of birth j. Let $N\geq 1$ be fixed, and suppose $f=\sum_{i=1}^{3^N}a_i\chi_{C_i}$ is a simple function. Then for all $k\geq 0$

$$\lim_{j\to\infty}\frac{\operatorname{Tr}(P_j[f]P_j)^k}{d_j}=\int f(x)^kd\mu(x).$$

Sketch of the proof.

The matrix $P_j[f]P_j$ has the following structure with respect to the basis $\{u_m\}_{m=1}^{d_j}$:

$$\left[\begin{array}{cc} R_j & 0 \\ 0 & N_j \end{array}\right].$$

Sketch of the proof.

The matrix $P_j[f]P_j$ has the following structure with respect to the basis $\{u_m\}_{m=1}^{d_j}$:

$$\left[\begin{array}{cc} R_j & 0 \\ 0 & N_j \end{array}\right].$$

Moreover

$$\operatorname{Tr}(R_j)^k = \sum_{i=1}^{3^N} m_j^N a_i^k = d_j^N \sum_{i=1}^{3^N} \frac{a_i^k}{3^N} = d_j^N \int f(x)^k d\mu(x)$$

and

$$|\operatorname{Tr}(N_j)^k| \leq (\alpha^N)^k ||f||_{\infty}^k.$$

Single Eigenspace

Theorem

Let $\{\lambda_j\}$ be an increasing sequence of 6- or 5-series eigenvalues where λ_i has generation of birth j. Then

$$\lim_{j\to\infty}\frac{1}{d_j}\operatorname{Tr} F(P_jp(x,-\Delta)P_j)=\int_X F(q(x))d\mu(x)$$

for any continuous F supported on [A, B].

Sketch of the proof.

It suffices to prove

$$\lim_{j\to\infty}\frac{1}{d_j}\operatorname{Tr}(P_jp(x,-\Delta)P_j)^k=\int_Xq(x)^kd\mu(x).$$

Sketch of the proof.

It suffices to prove

$$\lim_{j\to\infty}\frac{1}{d_j}\operatorname{Tr}(P_jp(x,-\Delta)P_j)^k=\int_Xq(x)^kd\mu(x).$$

It suffices to assume that $p(x,\lambda) \ge C > 0$ for all (x,λ) .

Sketch of the proof.

It suffices to prove

$$\lim_{j\to\infty}\frac{1}{d_j}\operatorname{Tr}(P_jp(x,-\Delta)P_j)^k=\int_Xq(x)^kd\mu(x).$$

It suffices to assume that $p(x, \lambda) \ge C > 0$ for all (x, λ) . Approximate $p(x, \lambda)$ with a simple function f_N such that

$$0 \leq P_j[f_N - \delta]P_j \leq P_j p(x, -\Delta)P_j \leq P_j[f_N + \delta]P_j.$$

Then

$$\left|\frac{1}{d_j}\operatorname{Tr}(P_jp(x,-\Delta)P_j)^k-\frac{1}{d_j}\operatorname{Tr}(P_j[f_N]P_j)^k\right|<\varepsilon.$$

Main Theorem

Theorem

Let $p: X \times (0,\infty) \to \mathbb{R}$ be a bounded measurable function such that $p(\cdot,\lambda_n)$ is continuous for all $n \in \mathbb{N}$. Assume that $\lim_{n\to\infty} p(x,\lambda_n) = q(x)$ is uniform in x. Then, for any continuous function F supported on [A,B], we have that

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F(P_{\Lambda} p(x, -\Delta) P_{\Lambda}) = \int_{X} F(q(x)) d\mu(x).$$

Sketch of the proof.

$$\left| \frac{\operatorname{Tr}(P_{\Lambda}p(x, -\Delta)P_{\Lambda})^{k}}{d_{\Lambda}} - \int q(x)^{k} d\mu(x) \right|$$

$$\leq \frac{\sum_{\lambda \in \widetilde{\Gamma}_{J}(\Lambda)} |\operatorname{Tr}(P_{\lambda}p(x, -\Delta)P_{\lambda})^{k} - d_{\lambda} \int q(x)^{k} d\mu(x)|}{d_{\Lambda}}$$

$$+ \frac{\sum_{\lambda \in \Gamma_{J}(\Lambda)} |\operatorname{Tr}(P_{\lambda}p(x, -\Delta)P_{\lambda})^{k} - d_{\lambda} \int q(x)^{k} d\mu(x)|}{d_{\Lambda}}.$$

Examples

Examples

Examples

• If $p:(0,\infty)\to\mathbb{R}$ is a bounded measurable map such that $\lim_{j\to\infty}p(\lambda_j)=q$, then for any continuous F supported on $[-\|p(-\Delta)\|,\|p(-\Delta)\|]$ we have

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F(P_{\Lambda} p(-\Delta) P_{\Lambda}) = F(q).$$

Examples

Examples

• If $p:(0,\infty)\to\mathbb{R}$ is a bounded measurable map such that $\lim_{j\to\infty}p(\lambda_j)=q$, then for any continuous F supported on $[-\|p(-\Delta)\|,\|p(-\Delta)\|]$ we have

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F(P_{\Lambda} p(-\Delta) P_{\Lambda}) = F(q).$$

2 Riesz and Bessel Potentials: If $p(\lambda) = 1 + \lambda^{-\beta}$ or $p(\lambda) = 1 + (1 + \lambda)^{-\beta}$, $\lambda > 0$, $\beta > 0$, then

$$\lim_{\Lambda \to \infty} \frac{\operatorname{Tr} F(P_{\Lambda} p(-\Delta) P_{\Lambda})}{d_{\Lambda}} = F(1).$$

Example

Example

Examples

• If p is a 0-symbol, then for any continuous F supported on $[-\|p(x,-\Delta)\|,\|p(x,-\Delta)\|]$ we have

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F(P_{\Lambda} p(x, -\Delta) P_{\Lambda}) = \int_{X} F(q(x)) d\mu(x).$$

Example

Examples

• If p is a 0-symbol, then for any continuous F supported on $[-\|p(x,-\Delta)\|,\|p(x,-\Delta)\|]$ we have

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F(P_{\Lambda} p(x, -\Delta) P_{\Lambda}) = \int_{X} F(q(x)) d\mu(x).$$

② If $p(x, \lambda) = f(x)$, then for any continuous F supported on $[-\|[f]\|, \|[f]\|]$ we have

$$\lim_{\Lambda \to \infty} \frac{1}{d_{\Lambda}} \operatorname{Tr} F \big(P_{\Lambda}[f] P_{\Lambda} \big) = \int_{X} F \big(f(x) \big) d \mu(x).$$

Example: General Schrödinger operators

Definition

Let $p:(0,\infty)\to\mathbb{R}$ be a measurable function and let χ be a real-valued bounded measurable function on X. We call the operator $H=p(-\Delta)+[\chi]$ a generalized Schrödinger operator with potential χ .

General Schrödinger operators

Example

Assume that $\lim_{\lambda\to\infty} p(\lambda)=I$ exists and χ is a continuous function on X. Let F be a continuous function supported on $[-\|H\|,\|H\|]$. Then, if $\{\lambda_j\}_{j\geq 1}$ is an increasing sequence of 6-series or, respectively, 5-series eigenvalues, we have that

$$\lim_{j\to\infty}\frac{\operatorname{Tr} F(P_jHP_j)}{d_j}=\int F(l+\chi(x))d\mu(x).$$

General Schrödinger operators

Example

Assume that $\lim_{\lambda\to\infty} p(\lambda)=I$ exists and χ is a continuous function on X. Let F be a continuous function supported on $[-\|H\|,\|H\|]$. Then, if $\{\lambda_j\}_{j\geq 1}$ is an increasing sequence of 6-series or, respectively, 5-series eigenvalues, we have that

$$\lim_{j\to\infty}\frac{\operatorname{Tr} F(P_jHP_j)}{d_j}=\int F(l+\chi(x))d\mu(x).$$

Hence

$$\lim_{\Lambda \to \infty} \frac{\operatorname{Tr} F(P_{\Lambda} H P_{\Lambda})}{d_{\Lambda}} = \int F(I + \chi(x)) d\mu(x).$$

Non-uniform limit

Theorem

Let $\{\lambda_j\}_{j\in\mathbb{N}}$ be an increasing sequence of 6- or 5-series eigenvalues such that λ_j has generation of birth j, for all $j\geq 1$. Assume that

$$\lim_{j \to \infty} p(x, \lambda_j) = q(x)$$
 for all $x \in X$.

Suppose that $p(\cdot, \lambda_j) \in \text{Dom}(\Delta)$ for all $j \in \mathbb{N}$ and that both $p(\cdot, \lambda_j)$ and $\Delta_{\times} p(\cdot, \lambda_j)$ are bounded uniformly in j. Then there is a subsequence $\{\lambda_{k_j}\}$ of $\{\lambda_j\}$ such that

$$\lim_{j\to\infty}\frac{1}{d_{k_j}}F(P_{k_j}p(x,-\Delta)P_{k_j})=\int_XF(q(x))d\mu(x).$$

Application: Asymptotics of eigenvalue clusters for general Schrödinger operators

• Let $H = p(-\Delta) + [\chi]$ be a Schrödinger operator, where $p: (0, \infty) \to \mathbb{R}$ is a continuous function, such that there is $\overline{\lambda} > 0$ so that p is increasing on $[\overline{\lambda}, \infty)$ and

$$|p(\lambda) - p(\lambda')| \ge c|\lambda - \lambda'|^{\beta}$$

for all $\lambda, \lambda' \geq \overline{\lambda}$, and χ is a continuous function on X.

Application: Asymptotics of eigenvalue clusters for general Schrödinger operators

• Let $H = p(-\Delta) + [\chi]$ be a Schrödinger operator, where $p: (0, \infty) \to \mathbb{R}$ is a continuous function, such that there is $\overline{\lambda} > 0$ so that p is increasing on $[\overline{\lambda}, \infty)$ and

$$|p(\lambda) - p(\lambda')| \ge c|\lambda - \lambda'|^{\beta}$$

for all $\lambda, \lambda' \geq \overline{\lambda}$, and χ is a continuous function on X.

• Let $\{\lambda_j\}$ be a sequence of 6-series eigenvalues of $-\Delta$ such that the separation between λ_j and the next higher and lower eigenvalues of $-\Delta$ grows exponentially in j.

Fact

• Let $\tilde{\Lambda}_j$ be the portion of the spectrum of H lying in $[p(\lambda_j) + \min \chi, p(\lambda_j) + \max \chi]$.

- Let $\tilde{\Lambda}_j$ be the portion of the spectrum of H lying in $[p(\lambda_j) + \min \chi, p(\lambda_j) + \max \chi]$.
- For large j, $\tilde{\Lambda}_j$ contains exactly d_j eigenvalues $\{\nu_i^j\}_{i=1}^{d_j}$.

- Let $\tilde{\Lambda}_j$ be the portion of the spectrum of H lying in $[p(\lambda_j) + \min \chi, p(\lambda_j) + \max \chi]$.
- For large j, $\tilde{\Lambda}_j$ contains exactly d_j eigenvalues $\{v_i^j\}_{i=1}^{d_j}$.
- We call this the $p(\lambda_i)$ cluster of the eigenvalues of H.

- Let $\tilde{\Lambda}_j$ be the portion of the spectrum of H lying in $[p(\lambda_j) + \min \chi, p(\lambda_j) + \max \chi]$.
- For large j, $\tilde{\Lambda}_j$ contains exactly d_j eigenvalues $\{v_i^j\}_{i=1}^{d_j}$.
- We call this the $p(\lambda_i)$ cluster of the eigenvalues of H.
- The characteristic measure of the $p(\lambda_j)$ cluster of H is

$$\Psi_j(\lambda) = \frac{1}{d_j} \sum_{i=1}^{d_j} \delta(\lambda - (\nu_i^j - p(\lambda_j)).$$

Theorem

The sequence $\{\Psi_j\}_{j\geq 1}$ converges weakly to the pullback of the measure μ under χ defined for all continuous functions f supported on $[\min\chi, \max\chi]$ by

$$\langle \Psi_0, f \rangle = \int_X f(\chi(x)) d\mu(x).$$

Sketch of the Proof: some lemmas

<u>Th</u>eorem

If $p:(0,\infty)\to\mathbb{C}$ is continuous then sp $p(-\Delta)=\overline{p(\operatorname{sp}(-\Delta))}$.

Sketch of the Proof: some lemmas

Theorem

If $p:(0,\infty) \to \mathbb{C}$ is continuous then sp $p(-\Delta) = \overline{p(\operatorname{sp}(-\Delta))}$.

Theorem

Let $p:(0,\infty)\to\mathbb{R}$ be a continuous function such that there is $A\in\mathbb{R}$ with $p(\lambda)\geq A$ for all $\lambda\geq\lambda_1$, where λ_1 is the smallest positive eigenvalue of $-\Delta$. For i=1,2, let χ_i be real-valued bounded measurable functions on X. Let $H_i=p(-\Delta)+[\chi_i]$ denote the corresponding generalized Schrödinger operators. For $n\geq 1$, the nth eigenvalues ν_n^i of H_i , i=1,2, satisfy the following inequality:

$$|\nu_n^1 - \nu_n^2| \le ||\chi_1 - \chi_2||_{L^{\infty}}.$$

Another lemma

Theorem

Assume that N>0 and that $\chi_N=\sum_{i=1}^N a_i\chi_{C_i}$ is a simple function. Let $H_N=p(-\Delta)+[\chi_N]$ be the corresponding generalized Schrödinger operator, $\tilde{\Lambda}_j^N$ the $p(\lambda_j)$ cluster of H_N , and let \overline{P}_j^N be the spectral projection for H_N associated with the $p(\lambda_j)$ cluster. Then

$$\lim_{j \to \infty} \frac{\operatorname{Tr}(\overline{P}_{j}^{N}(\rho(-\Delta) + [\chi_{N}] - \rho(\lambda_{j}))\overline{P}_{j}^{N})^{k}}{d_{j}} = \lim_{j \to \infty} \frac{\operatorname{Tr}(P_{j}[\chi_{N}]P_{j})^{k}}{d_{j}}$$
$$= \int_{X} \chi_{N}(x)^{k} d\mu(x),$$

for all k > 0.

