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The classical Szegö Theorem

Theorem

If Pn is projection onto the span of {e imθ, 0 ≤ m ≤ n} in L2(T) and

[f ] is multiplication by a positive C 1+α function for α > 0 then

lim
n→∞

log detPn[f ]Pn
n + 1

=

ˆ 2π

0

log f (θ) dθ/2π.

Equivalently, (n + 1)−1 Tr logPn[f ]Pn has the same limit.
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Set up and notation

X is the Sierpi«ski gasket.

µ is the standard measure

∆ is the Dirichlet Laplacian on X de�ned by the the

symmetric self-similar resistance on X .

For λ ∈ sp(−∆), let Eλ be its eigenspace, dλ = dimEλ, and

Pλ the projection onto Eλ.

For Λ > 0, let EΛ be the span of all eigenfunctions

corresponding to λ ≤ Λ and let PΛ be the projection onto EΛ.
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The Szegö Theorem for the Sierpi«ski Gasket

Theorem (Okoudjou, Rogers, Strichartz, 2010)

Let f > 0 be a continuous function on X . Then

lim
Λ→∞

1

dΛ
log detPΛ[f ]PΛ =

ˆ
X

log f (x)dµ(x).
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Main Theorem

Theorem (I., Okoudjou, Rogers, 2014)

Let p : X × (0,∞)→R be a bounded measurable function such

that p(·, λn) is continuous for all n ∈ N. Assume that

limn→∞ p(x , λn) = q(x) is uniform in x. Then, for any continuous

function F supported on [A,B], we have that

lim
Λ→∞

1

dΛ
Tr F (PΛp(x ,−∆)PΛ) =

ˆ
X

F (q(x))dµ(x).
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Spectrum of the Laplacian

Fact

The spectrum decomposes naturally into three sets called the

2-series, 5-series and 6-series eigenvalues.

Each eigenvalue has a generation of birth j .

2-series eigenfunctions have j = 1 and multiplicity 1.

Each j ∈ N occurs in the 5-series and the corresponding

eigenspace has multiplicity (3j−1 + 3)/2.

Each j ≥ 2 occurs in the 6-series with multiplicity (3j − 3)/2.

There are 5 and 6-series eigenfunctions that are localized.
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Pseudo-di�erential operators on the Sierpi«ski Gasket

De�nition

If p : (0,∞)→ C is measurable then

p(−∆)u =
∑
n

p(λn)〈u, ϕn〉ϕn

for u ∈ D gives a densely de�ned operator on L2(µ) called a

constant coe�cient pseudo-di�erential operator.

If p : X × (0,∞)→ C is measurable we de�ne a variable

coe�cient pseudo-di�erential operator p(x ,−∆) via

p(x ,−∆)u(x) =
∑
n

ˆ
X

p(x , λn)Pλn(x , y)u(y)dµ(y).
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Assumptions

Fact

We assume that p : X × (0,∞)→ R is measurable and that

p(·, λ) is continuous for all λ ∈ sp(−∆) and

limλ∈sp(−∆),λ→∞ p(x , λ) = q(x) uniformly in x.
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Some key lemmas

Theorem

The eigenvalues of PΛp(x ,−∆)PΛ are contained in a bounded

interval [A,B] for all Λ > 0.

Theorem

Let Λ > 0. Then the map on C [A,B] de�ned by

F 7→ 1

dΛ
Tr F (PΛp(x ,−∆)PΛ)

is a continuous non-negative functional.
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Single Eigenspace

Fact

If λ ∈ sp(−∆) then Γλ := Pλp(x ,−∆)Pλ is a dλ × dλ matrix with

entries

γλ(i , j) =

ˆ
p(x , λ)ui (x)uj(x)dµ(x).
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Single Eigenspace

Theorem

Let {λj} be an increasing sequence of 6- or 5-series eigenvalues

where λj has generation of birth j . Let N ≥ 1 be �xed, and

suppose f =
∑3N

i=1 aiχCi
is a simple function. Then for all k ≥ 0

lim
j→∞

Tr(Pj [f ]Pj)
k

dj
=

ˆ
f (x)kdµ(x).
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Sketch of the Proof

Sketch of the proof.

The matrix Pj [f ]Pj has the following structure with respect to the

basis {um}
dj
m=1: [

Rj 0

0 Nj

]
.

Moreover

Tr(Rj)
k =

3N∑
i=1

mN
j a

k
i = dNj

3N∑
i=1

aki
3N

= dNj

ˆ
f (x)kdµ(x)

and

|Tr(Nj)
k | ≤ (αN)k‖f ‖k∞.
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Single Eigenspace

Theorem

Let {λj} be an increasing sequence of 6- or 5-series eigenvalues

where λj has generation of birth j . Then

lim
j→∞

1

dj
Tr F (Pjp(x ,−∆)Pj) =

ˆ
X

F (q(x))dµ(x)

for any continuous F supported on [A,B].
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Sketch of the Proof

Sketch of the proof.

It su�ces to prove

lim
j→∞

1

dj
Tr(Pjp(x ,−∆)Pj)

k =

ˆ
X

q(x)kdµ(x).

It su�ces to assume that p(x , λ) ≥ C > 0 for all (x , λ).
Approximate p(x , λ) with a simple function fN such that

0 ≤ Pj [fN − δ]Pj ≤ Pjp(x ,−∆)Pj ≤ Pj [fN + δ]Pj .

Then ∣∣∣∣ 1dj Tr(Pjp(x ,−∆)Pj)
k − 1

dj
Tr(Pj [fN ]Pj)

k

∣∣∣∣ < ε.
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Sketch of the Proof

Sketch of the proof.

∣∣∣∣Tr(PΛp(x ,−∆)PΛ)k

dΛ
−
ˆ

q(x)kdµ(x)

∣∣∣∣
≤
∑

λ∈Γ̃J(Λ) |Tr(Pλp(x ,−∆)Pλ)k − dλ
´
q(x)kdµ(x)|

dΛ

+

∑
λ∈ΓJ(Λ) |Tr(Pλp(x ,−∆)Pλ)k − dλ

´
q(x)kdµ(x)|

dΛ
.
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Examples

Examples

1 If p : (0,∞)→ R is a bounded measurable map such that

limj→∞ p(λj) = q, then for any continuous F supported on

[−‖p(−∆)‖, ‖p(−∆)‖] we have

lim
Λ→∞

1

dΛ
Tr F (PΛp(−∆)PΛ) = F (q).

2 Riesz and Bessel Potentials: If p(λ) = 1 + λ−β or

p(λ) = 1 + (1 + λ)−β , λ > 0, β > 0, then

lim
Λ→∞

Tr F (PΛp(−∆)PΛ)

dΛ
= F (1).
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Examples
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Example: General Schrödinger operators

De�nition

Let p : (0,∞)→ R be a measurable function and let χ be a

real-valued bounded measurable function on X . We call the

operator H = p(−∆) + [χ] a generalized Schrödinger operator with

potential χ.
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General Schrödinger operators

Example

Assume that that limλ→∞ p(λ) = l exists and χ is a continuous

function on X . Let F be a continuous function supported on

[−‖H‖, ‖H‖]. Then, if {λj}j≥1 is an increasing sequence of 6-series

or, respectively, 5-series eigenvalues, we have that

lim
j→∞

Tr F (PjHPj)

dj
=

ˆ
F (l + χ(x))dµ(x).

Hence

lim
Λ→∞

Tr F (PΛHPΛ)

dΛ
=

ˆ
F (l + χ(x))dµ(x).
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Non-uniform limit

Theorem

Let {λj}j∈N be an increasing sequence of 6- or 5-series eigenvalues

such that λj has generation of birth j , for all j ≥ 1. Assume that

lim
j→∞

p(x , λj) = q(x) for all x ∈ X .

Suppose that p(·, λj) ∈ Dom(∆) for all j ∈ N and that both

p(·, λj) and ∆xp(·, λj) are bounded uniformly in j . Then there is a

subsequence {λkj} of {λj} such that

lim
j→∞

1

dkj
F (Pkjp(x ,−∆)Pkj ) =

ˆ
X

F (q(x))dµ(x).
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Application: Asymptotics of eigenvalue clusters for general
Schrödinger operators

Let H = p(−∆) + [χ] be a Schrödinger operator, where

p : (0,∞)→ R is a continuous function, such that there is

λ > 0 so that p is increasing on [λ,∞) and

|p(λ)− p(λ′)| ≥ c |λ− λ′|β

for all λ, λ′ ≥ λ, and χ is a continuous function on X .

Let {λj} be a sequence of 6-series eigenvalues of −∆ such

that the separation between λj and the next higher and lower

eigenvalues of −∆ grows exponentially in j .
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Schrödinger operators (cont'd)

Fact

Let Λ̃j be the portion of the spectrum of H lying in

[p(λj) + minχ, p(λj) + maxχ].

For large j , Λ̃j contains exactly dj eigenvalues {ν ji }
dj
i=1.

We call this the p(λj) cluster of the eigenvalues of H.

The characteristic measure of the p(λj) cluster of H is

Ψj(λ) =
1

dj

dj∑
i=1

δ(λ− (ν ji − p(λj)).
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Schrödinger operators (cont'd)

Theorem

The sequence {Ψj}j≥1 converges weakly to the pullback of the

measure µ under χ de�ned for all continuous functions f supported

on [minχ,maxχ] by

〈Ψ0, f 〉 =

ˆ
X

f (χ(x))dµ(x).
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Sketch of the Proof: some lemmas

Theorem

If p : (0,∞)→ C is continuous then sp p(−∆) = p(sp(−∆)).

Theorem

Let p : (0,∞)→ R be a continuous function such that there is

A ∈ R with p(λ) ≥ A for all λ ≥ λ1, where λ1 is the smallest

positive eigenvalue of −∆. For i = 1, 2, let χi be real-valued

bounded measurable functions on X . Let Hi = p(−∆) + [χi ]
denote the corresponding generalized Schrödinger operators. For

n ≥ 1, the nth eigenvalues ν in of Hi , i = 1, 2, satisfy the following

inequality:

|ν1n − ν2n | ≤ ‖χ1 − χ2‖L∞ .
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Another lemma

Theorem

Assume that N > 0 and that χN =
∑N

i=1 aiχCi
is a simple

function. Let HN = p(−∆) + [χN ] be the corresponding

generalized Schrödinger operator, Λ̃N
j the p(λj) cluster of HN , and

let P
N

j be the spectral projection for HN associated with the p(λj)
cluster. Then

lim
j→∞

Tr
(
P
N

j (p(−∆) + [χN ]− p(λj))P
N

j

)k
dj

= lim
j→∞

Tr(Pj [χN ]Pj)
k

dj

=

ˆ
X

χN(x)kdµ(x),

for all k ≥ 0.
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