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The classical Szegd Theorem

Theorem

If P, is projection onto the span of {&™ 0 < m < n} in L3(T) and
[f] is multiplication by a positive C1* function for a > 0 then

. logdet P[P, /%

Equivalently, (n + 1)~ Trlog P,[f]P, has the same limit.
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Set up and notation

@ X is the Sierpinski gasket.
@ v is the standard measure

@ A is the Dirichlet Laplacian on X defined by the the
symmetric self-similar resistance on X.
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Set up and notation

X is the Sierpinski gasket.

1 is the standard measure

@ A is the Dirichlet Laplacian on X defined by the the
symmetric self-similar resistance on X.

For A\ € sp(—A), let Ey be its eigenspace, d\ = dim E,, and
P, the projection onto Ej.

For A > 0, let Ep be the span of all eigenfunctions
corresponding to A < A and let Pp be the projection onto Ep.
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The Szegd Theorem for the Sierpinski Gasket

Theorem (Okoudjou, Rogers, Strichartz, 2010)

Let f > 0 be a continuous function on X. Then

lim 1|ogdetP/\[f]P/\:/ log f(x)dp(x).
N—roc0 d/\ X
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Main Theorem

Theorem (I., Okoudjou, Rogers, 2014)

Let p: X x (0,00)—R be a bounded measurable function such
that p(-, A\n) is continuous for all n € N. Assume that

limp—oo P(X, An) = q(x) is uniform in x. Then, for any continuous
function F supported on [A, B], we have that

AIi_}moodlATrF(P,\p(x,—A)P/\) _ /X i)
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Spectrum of the Laplacian

@ The spectrum decomposes naturally into three sets called the
2-series, 5-series and 6-series eigenvalues.

@ Each eigenvalue has a generation of birth j.

@ 2-series eigenfunctions have j = 1 and multiplicity 1.

@ Each j € N occurs in the 5-series and the corresponding
eigenspace has multiplicity (31 + 3)/2.

@ Each j > 2 occurs in the 6-series with multiplicity (3 — 3)/2.

@ There are 5 and 6-series eigenfunctions that are localized.
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Pseudo-differential operators on the Sierpinski Gasket
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Pseudo-differential operators on the Sierpinski Gasket

@ If p:(0,00) — C is measurable then

p(=A)u =" p(An)(u, @n)en

for u € D gives a densely defined operator on L?(y) called a
constant coefficient pseudo-differential operator.
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Pseudo-differential operators on the Sierpinski Gasket

e If p:(0,00) — C is measurable then

p(—A)u = Z P(An){u, ©n)en

for u € D gives a densely defined operator on L?(y) called a
constant coefficient pseudo-differential operator.

@ If p: X x (0,00) — C is measurable we define a variable
coefficient pseudo-differential operator p(x, —A) via

p(x,—A)u(x) =Y /X P(%, An) P, (. )y )d(y):
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We assume that p : X x (0,00) — R is measurable and that

@ p(-,A) is continuous for all \ € sp(—A) and

© limyesp(—n),r—00 P(X; A) = q(x) uniformly in x.
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Some key lemmas

The eigenvalues of Pyp(x, —A)Pp are contained in a bounded
interval [A, B] for all A > 0.
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Some key lemmas

The eigenvalues of Pyp(x, —A)Pp are contained in a bounded
interval [A, B] for all A > 0.

Let N > 0. Then the map on C[A, B] defined by

1
F— a Tr F(Pap(x, —A)Pp)
N

is a continuous non-negative functional.
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Single Eigenspace

If X € sp(—A) then Ty := Pxp(x, —A)Py is a dy x d\ matrix with
entries

alinf) = / p(%, \) () (x)dpa(x).
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Single Eigenspace

Theorem

Let {)\;} be an increasing sequence of 6- or 5-series eigenvalues
where \; has generation of birth j. Let N > 1 be fixed, and

suppose f = Z?ill ajxc; is a simple function. Then for all k > 0

lim P[f]P /f kdpu(x
Jj—ro0
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Sketch of the Proof

Sketch of the proof.

The matrix Pj[f]P; has the following structure with respect to the

basis {um}g’;:l:
R, 0O
0 N |
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Sketch of the Proof

Sketch of the proof

The matrix Pj[f]P; has the following structure with respect to the

basis {um}iz1
R, 0
0 N |-
Moreover

3V
al
Tr(R;)* Z m; djN Z 3—’,\/ = djN / f(x)*dpu(x)
i=1

and
| Te(N)K] < (@M)¥|1F] ..

O
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Single Eigenspace

Theorem

Let {\;} be an increasing sequence of 6- or 5-series eigenvalues
where \; has generation of birth j. Then

.1
lim —

Jim 2T F(Pip(x~)P) = [ F(a(0)di()

for any continuous F supported on [A, B].
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Sketch of the Proof

Sketch of the proof.

It suffices to prove

im 2 Te(P(x,~A)P) = [ a)*dt).

Jj—o0 lj
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Sketch of the Proof

Sketch of the proof.

It suffices to prove

im 2 Te(P(x,~A)P) = [ a)*dt).

Jj—o0 lj

It suffices to assume that p(x,A) > C > 0 for all (x, \).
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Sketch of the Proof

Sketch of the proof.

It suffices to prove

im 2 Te(P(x,~A)P) = [ a)*dt).

Jj—o0 lj

It suffices to assume that p(x,A) > C > 0 for all (x, \).
Approximate p(x, \) with a simple function fy such that

0< Pj[fN — (S]PJ < Pjp(X, —A)Pj < Pj[fN + 5]Pj.
Then

1
dj

koL

Tr(Pip(x, —A)P;)) 7
i

Tr(Pi[fW]P)¥| < e.

Ol
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Main Theorem

Theorem

Let p: X x (0,00)—=R be a bounded measurable function such
that p(-, \p) is continuous for all n € N. Assume that

limp—o0 P(X, An) = q(x) is uniform in x. Then, for any continuous
function F supported on [A, B|, we have that

AILmOOC;/\TrF(PAp(x,A)PA) _ /X F(q(x))dp(x).
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Sketch of the Proof

Sketch of the proof.

r X, — s
T (P/\p( C;A A)'D/\) _ /q(x)kd,u(x)
_ Soret, oy | Tr(Pap(x, =R)PA)* — dy [ q(x)*dpu(x)|
< dn
Z,\erj(/\) | Tr(Pap(x, —A)Py)* — dy / q(x)*dpu(x)|
+ dr .
Ol
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EMES

SEES
v
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EMES

Q If p:(0,00) — R is a bounded measurable map such that

limj— o0 p(A\j) = g, then for any continuous F supported on
[~ ), Ip(—A)[] we have

lim di Tr F(PAp(—A)PA) = F(q).

N—o0 dp
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EMES

Q If p:(0,00) — R is a bounded measurable map such that
limj 0 p(A\j) = g, then for any continuous F supported on

[=llp(=2)I[; [lp(=A)]]] we have

1
lim — Tr F(Pap(—A)Pp) = F(q).
N—o0 d/\
@ Riesz and Bessel Potentials: If p(\) =1+ A" or
p(A) =1+ (1 +A)? A>0, 8>0, then

t Tr F(PAP(*A)P/\)
m
A—oc0 d/\

= F(1).
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Example
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Example

© If pis a 0-symbol, then for any continuous F supported on
[=llp(x, =), [lp(x, =A)||] we have

i =T F(Paplx, ~8)Pn) = | F(a()dn(x)

N—oo dp
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Example

Q If pis a 0-symbol, then for any continuous F supported on
[=[lp(x, =), [lp(x, —=A)|[] we have

jim diTrF(PAp(x —A)P,\):/XF(q(x))d,u(x).

N—oo dp

Q If p(x,\) = f(x), then for any continuous F supported on
[—IL£11], [[[F1I]] we have

N—o0

lim diTrF(PA[f]PA) /X F(F(x))dp(x).
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Example: General Schrédinger operators

Definition

Let p: (0,00) — R be a measurable function and let x be a
real-valued bounded measurable function on X. We call the
operator H = p(—A) + [x] a generalized Schrédinger operator with
potential .
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General Schrodinger operators

SENPE
Assume that that limy_,o, p(A) = [ exists and y is a continuous
function on X. Let F be a continuous function supported on
[—[[H|l, [[H]|]. Then, if {\;};>1 is an increasing sequence of 6-series
or, respectively, 5-series eigenvalues, we have that
Tr F(P;HP;
jim 1 (PiHF) :/F(H—x(x))du(x).
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General Schrodinger operators

SENPE

Assume that that limy_,o, p(A) = [ exists and y is a continuous
function on X. Let F be a continuous function supported on
[—[[H|l, [[H]|]. Then, if {\;};>1 is an increasing sequence of 6-series
or, respectively, 5-series eigenvalues, we have that

_ TrF(PjHP})
Jim S = [ E( () ()
Flence Tr F(P\HP
A'Lmoow _ /F(/+x(x))du(x).

M. lonescu Spectral Properties of PSDO



Non-uniform limit

Theorem

Let {\j}jen be an increasing sequence of 6- or b-series eigenvalues
such that \; has generation of birth j, for all j > 1. Assume that

lim p(x, ;) = q(x) forall x € X.
j—o0

Suppose that p(-, \j) € Dom(A) for all j € N and that both
p(-,Aj) and Axp(-, \j) are bounded uniformly in j. Then there is a
subsequence { Ay} of {\;} such that

Jim g F(Pyple—8)Py) = [ Flal)dn(o)
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Application: Asymptotics of eigenvalue clusters for general

Schrédinger operators

@ Let H= p(—A)+ [x] be a Schrédinger operator, where
p:(0,00) — R is a continuous function, such that there is
A > 0 so that p is increasing on [\, o0) and

Ip(A\) — p(N)| = c|A = X|°

for all A, ' > X\, and x is a continuous function on X.
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Application: Asymptotics of eigenvalue clusters for general

Schrédinger operators

o Let H= p(—A)+ [x] be a Schrédinger operator, where
p:(0,00) — R is a continuous function, such that there is
A > 0 so that p is increasing on [\, c0) and

pP(A) = p(\)] = c[A = X|°

for all A, \’ > X, and x is a continuous function on X.

@ Let {)\;} be a sequence of 6-series eigenvalues of —A such
that the separation between ); and the next higher and lower
eigenvalues of —A grows exponentially in j.
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Schrédinger operators (cont'd)

M. lonescu Spectral Properties of PSDO



Schrédinger operators (cont'd)

o Let 7\j be the portion of the spectrum of H lying in
[p(Xj) + min x, p(};) + maxx].
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Schrédinger operators (cont'd)

o Let 7\j be the portion of the spectrum of H lying in
[p(Xj) + min x, p(};) + maxx].

@ For large |, /N\J- contains exactly d; eigenvalues {V,’}fj’zl
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Schrédinger operators (cont'd)

o Let 7\j be the portion of the spectrum of H lying in
[p(Xj) + min x, p(};) + maxx].

e For large |, 7\j contains exactly d; eigenvalues {V,’}fjle

o We call this the p()\;) cluster of the eigenvalues of H.
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Schrédinger operators (cont'd)

o Let 7\ be the portion of the spectrum of H lying in
[p(A ) + min x, p(A\j) + max x].

e For large |, /\j contains exactly d; eigenvalues {V,’}fjle

o We call this the p(\;) cluster of the eigenvalues of H.

@ The characteristic measure of the p(\;) cluster of H is

d;
Z P(A}))-

& \
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Schrédinger operators (cont'd)

Theorem

The sequence {V;};>1 converges weakly to the pullback of the
measure | under x defined for all continuous functions f supported
on [min x, max x| by

(W, f) /fx(x )dp(x
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Sketch of the Proof: some lemmas

If p:(0,00) — C is continuous then sp p(—A) = p(sp(—A)).
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Sketch of the Proof: some lemmas

If p:(0,00) — C is continuous then sp p(—A) = p(sp(—A)).

Let p: (0,00) — R be a continuous function such that there is

A € R with p(\) > A for all A\ > )1, where \1 is the smallest
positive eigenvalue of —A. For i =1,2, let x; be real-valued
bounded measurable functions on X. Let H; = p(—A) + [xi]
denote the corresponding generalized Schrédinger operators. For
n > 1, the nth eigenvalues 1/,’; of H;, i = 1,2, satisfy the following
inequality:

lvr —v2l < lxa — xellee-
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Another lemma

Theorem

Assume that N > 0 and that xy = Z,N 13iXc; Is a simple
function. Let Hy = p(—A) + [xn]| be the corresponding
genera/lzed Schrédinger operator, /\N the p()\;) cluster of Hy, and

let P i be the spectral projection for Hy associated with the p();)
cluster. Then

TP (=) + bl = PP TR P
_ / xn(x)*du(x),
X
for all k > 0.
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