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UNIFORM SPANNING TREE IN TWO DIMENSIONS

Let ⇤n := [�n, n]2\Z2, U(n): spanning tree over ⇤n (i.e. vertices
⇤n, no cycle) - selected uniformly at random from all possibilities

U: UST on Z2, which is the local limit of U(n).
NB. Wired/free boundary conditions unimportant.
Almost-surely, U is a spanning tree of Z2.
[Aldous, Benjamini, Broder, Häggström, Lyons, Pemantle, Peres, Schramm. . . ]



WILSON’S ALGORITHM ON Z2

Z2 = {x0 = 0, x1, x2, . . . }, U(0) = {x0}.
Given U(k�1), k � 1, define U(k) as a union of U(k�1) and the
loop-erased random walk (LERW) path run from xk to U(k�1).
UST U is the a local limit of U(k).

x0 x0 x0 x0

x1 x1 x1
x2

LERW ! SLE(2), UST Peano curve ! SLE(8)
[Schramm ’00, Lawler-Schramm-Werner ’04].

Mn = |LERW (0, BE(0, n))|: length of a LERW from 0 to BE(0, n)c.

) limn!1 logE0Mn
logn = 5/4 [Kenyon ’00], E0Mn ⇣ n5/4 [Lawler ’13]



RW on random graphs: General theory.

Let G(!) be a random graph on (⌦, P). Assume 90 2 G(!).

Let D � 1. For � � 1, we sat that B(0, R) in G(!) is �-good if

��1RD  |B(0, R)|  �RD,

��1R  Re↵(0, B(0, R)c)  R + 1.

�-good is a nice control of the volume and resistance for B(0, R).



Theorem. [Barlow/Jarai/K/Slade 2008, K/Misumi 2008]

Suppose 9p > 0 such that

P({! : B(0, R) is �-good.}) � 1� ��p 8R � R0,8� � �0.

Then 9↵1,↵2 > 0 and N(!), R(!) 2 N s.t. the following holds
for P-a.e. !:

(logn)�↵1n�
D

D+1  p!2n(0,0)  (logn)↵1n�
D

D+1, 8n � N(!),

(logR)�↵2RD+1  E0
!⌧B(0,R)  (logR)↵2RD+1, 8R � R(!).

In particular,

ds(G) := lim
n!1

log p!2n(0,0)

logn
=

2D

D + 1
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Saint-Flour XL–2010. Springer, New York (2014).



VOLUME AND RESISTANCE ESTIMATES
[BARLOW/MASSON 2010,2011]

With high probability,

BE(x,��1R) ✓ BU(x, R5/4) ✓ BE(x,�R),

as R !1 then �!1.

It follows that with high probability,

µU (BU(x, R)) ⇣ R2/(5/4) = R8/5.

Also with high probability,

Resistance(x, BU(x, R)c) ⇣ R.

) Exit time for intrinsic ball radius R is R13/5,
HK bounds pU2n(0,0) ⇣ n�8/13. (D = 8/5, ds = 16/13)

(Q) How about scaling limit for UST?



UST SCALING [SCHRAMM 2000]

U =
n
(a, b,⇡ab) : a, b 2 Z2

o
: ⇡ab is a path from a to b

Scaling limit T satisfies the following a.s.:
• Each pair a, b 2 Ṙ2 (cpt) are connected by the following path.
• a 6= b ! simple path, a = b ! one point or a simple loop.
• Trunk, [T⇡ab\{a, b} is a dense tree, the degree is at most 3.

cf. [Aizenman-Burchard-Newman-Wilson ’99].

Problem : No info. on intrinsic distance, volume, resistance.

We thus consider the (generalized) Gromov-Hausdor↵ topology.



Let T be the collection of measured, rooted, spatial trees, i.e.

(T , dT , µT ,�T , ⇢T ),

• (T , dT ): loc. cpt real tree • µT : Borel measure on (T , dT )
• �T : (T , dT )! R2 cont. map • ⇢T : distinguished vertex on T

�c: distance on Tc (compact trees only) defined as follows

inf
Z, , 0,C,

(⇢T ,⇢0T )2C

8<
:dZ

P (µT �  �1, µ0T �  0�1)+ sup
(x,x0)2C

⇣
dZ( (x), 0(x0)) +

����T (x)� �0T (x0)
���⌘
9=
;.

Theorem. [Tightness] P�：law of the following spatial tree⇣
U , �5/4dU , �2µU (·) , ��U ,0

⌘
Then, under P, (P�)�2(0,1) is tight on M1(T).

(Proof) Strengthening estimates of Barlow-Masson.

Comparison of Euclidean and intrinsic distance along paths.



UST LIMIT PROPERTIES

If P̃ is a subsequential limit of (P�)�2(0,1), then for P̃-a.e.
(T , dT , µT ,�T , ⇢T ) it holds that:
(i) µT is non-atomic, supported on the leaves of T ,
i.e. µT (T o) = 0, where T o := T \{x 2 T : degT (x) = 1};
(ii) for any R > 0,

lim inf
r!0

infx2BT (⇢T ,R) µT (BT (x, r))

r8/5(log r�1)�c
> 0,

(iii) �T is a homeo. between T o and �T (T o) (dense in R2);
(iv) maxx2T degT (x) = 3;
(v) µT = L � �T .



To prove this, we need ’uniform controls’ in a ball that requires
more detailed estimates than those of Barlow/Masson.

) As a by-product of the detailed estimates, we can sharpen
some HK estimates.

Proposition. For each q > 0, there exist cq, Cq > 0 such that
the following holds

cqn
5q/13  E (dU(0, Xn)q)  Cqn

5q/13 8n � 1.

NB. Marlow/Masson’s estimates include (logn)±c.



LIMITING PROCESS FOR SRW ON UST

Suppose (P�i)i�1, the laws of
✓
U , �

5/4
i dU , �2i µU , �i�U ,0

◆
,

form a convergent sequence with limit P̃.

Let (T , dT , µT ,�T , ⇢T ) ⇠ P̃.

It is then the case that P�i, the annealed laws of
 
�iX

U
�
�13/4
i t

!
t�0

,

converge to P̃, the annealed law of⇣
�T (XT

t )
⌘
t�0

,

as probability measures on C(R+, R2).



HEAT KERNEL ESTIMATES FOR SRW LIMIT

Let R > 0. For P̃-a.e. realisation of (T , dT , µT ,�T , ⇢T ), there
exist random constants c1, c2, c3, c4, t0 2 (0,1) and determin-
istic constants ✓1, ✓2, ✓3, ✓4 2 (0,1) such that the heat kernel
associated with the process XT satisfies:

pTt (x, y)  c1t�8/13`(t�1)✓1 exp

8><
>:�c2

 
dT (x, y)13/5

t

!5/8

`(dT (x, y)/t)�✓2

9>=
>;,

pTt (x, y) � c3t�8/13`(t�1)�✓3 exp

8><
>:�c4

 
dT (x, y)13/5

t

!5/8

`(dT (x, y)/t)✓4

9>=
>; ,

for all x, y 2 BT (⇢T , R), t 2 (0, t0), where `(x) := 1 _ logx.


