Generalized q-dimension of measures on Heisenberg self-affine sets in Heisenberg group

Jun Jie Miao

East China Normal University

5th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals

Cornell, 11th-15th June 2014

Heisenberg group

The Heisenberg group \mathbb{H} is the unique analytic, nilpotent Lie group of dimension 3 whose background manifold is \mathbb{R}^3 and whose Lie algebra \mathfrak{h} satisfies the following properties:

- $\mathfrak{h} = V_1 \oplus V_2$ where V_1 has dimension 2 and V_2 has dimension 1.
- $\bullet \ [V_1,V_1]=V_2 \text{, } [V_1,V_2]=0 \ \text{and} \ [V_2,V_2]=0.$

Explicitly, let $x=(x_1,x_2)\in\mathbb{R}^2$, and the mapping $J:\mathbb{R}^2\to\mathbb{R}^2$ be given by

$$J(x_1, x_2) = (-x_2, x_1).$$

The group law on $\mathbb{H}\cong\mathbb{R}^3$ is defined by

$$\mathbf{x} * \mathbf{y} = (x + y, t + s + 2\langle x, Jy \rangle), \tag{1}$$

for all $\mathbf{x}=(x,t)$, $\mathbf{y}=(y,s)\in\mathbb{H}$, where $x,y\in\mathbb{R}^2$, $t,s\in\mathbb{R}$ and $\langle\cdot,\cdot\rangle$ is the standard inner product in \mathbb{R}^2 .

Let d_H be the *Heisenberg metric* given by

$$d_H(\mathbf{x}, \mathbf{y}) = \|\mathbf{x}^{-1} * \mathbf{y}\|_H, \text{ for } \mathbf{x}, \mathbf{y} \in \mathbb{H},$$

where * denotes the group law defined in (1), and $\|\cdot\|_H$ denotes the Heisenberg norm given by

$$||(x,t)||_H = (|x|^4 + t^2)^{1/4}.$$

Note that the Heisenberg group (\mathbb{H}, d_H) equipped with the non-Euclidean metric is a complete metric space. Note that the Heisenberg metric d_H is left-invariant on \mathbb{H} .

horizontal lift

Given a mapping $s: \mathbb{R}^2 \to \mathbb{R}^2$. Let $\pi: \mathbb{H} \to \mathbb{R}^2$ be given by $\pi(\mathbf{x}) = x$, where $\mathbf{x} = (x,t) \in \mathbb{H}$.

We call $S: \mathbb{H} \to \mathbb{H}$ a horizontal lift of s if

$$\pi \circ S = s \circ \pi$$
.

Let $s:\mathbb{R}^2 \to \mathbb{R}^2$ be an affine transformation, ie.

$$s(x) = Tx + a,$$

where T is a real 2×2 matrix and a is a vector in \mathbb{R}^2 . Let $S: \mathbb{R}^3 \to \mathbb{R}^3$ be an affine mapping of the form

$$S(x,t) = \begin{pmatrix} T & b \\ d & c \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} + \begin{pmatrix} a \\ \eta \end{pmatrix}, \tag{2}$$

where $a, b, d \in \mathbb{R}^2$ and $c, \eta \in \mathbb{R}$.

The horizontal lift S is *Lipschitz* with respect to the metric d_H if and only if we have that

$$b=0, \quad d=-2T'Ja \text{ and } \quad c=\det T.$$

Thus, we write a Lipschitz affine map $S:\mathbb{H}\to\mathbb{H}$ as

$$S(\mathbf{x}) = \widetilde{T}_a \mathbf{x} + \widetilde{a},\tag{3}$$

where for some real constant η ,

$$\widetilde{T}_a = \begin{pmatrix} T & 0 \\ -2(Ja)'T & \det T \end{pmatrix}, \quad \widetilde{a} = \begin{pmatrix} a \\ \eta \end{pmatrix}.$$
 (4)

Iterated function system in Heisenberg group

Given a self-affine IFS $\{s_i(x)=T_ix+a_i\}_{i=1}^M$. We write $\mathcal{F}(\mathbf{a})$ for the attractor of $\{s_i(x)\}_{i=1}^M$, that is,

$$\mathcal{F}(\mathbf{a}) = \bigcup_{i=1}^{M} S_i(\mathcal{F}(\mathbf{a})).$$
 (5)

Applying the horizontal lift onto $\{s_i(x)\}_{i=1}^M$, we obtain a class of contractions $\{S_1,\cdots,S_M\}$, called a *self-affine IFS on Heisenberg group*, where the mappings S_i are given by

$$S_i(\mathbf{x}) = \widetilde{T}_{i,a_i}\mathbf{x} + \widetilde{a}_i, \qquad i = 1, \dots, M,$$
 (6)

and \widetilde{T}_{i,a_i} and \widetilde{a}_i are as in (4). We write $\widetilde{\mathbf{a}}=(\widetilde{a}_1,\cdots,\widetilde{a}_M)\in\mathbb{R}^{3M}$. Similarly, We call $\mathcal{F}_H(\widetilde{\mathbf{a}})$ the Heisenberg self-affine set for $\{S_i(\mathbf{x})\}_{i=1}^M$,

$$\mathcal{F}_H(\widetilde{\mathbf{a}}) = \bigcup_{i=1}^M S_i(\mathcal{F}_H(\widetilde{\mathbf{a}})).$$
 (7)

Sequence space

For each $k=0,1,2,\cdots$, let $\mathbf{J}_k=\{(i_1,\cdots,i_k):1\leq i_j\leq M\}$ be the set of sequences of length k.

Let $\mathbf{J} = \bigcup_{k=0}^{\infty} \mathbf{J}_k$ be the set of all finite sequences.

Let $J_{\infty} = \{(i_1, i_2, \cdots) : 1 \leq i_j \leq N\}$ be the corresponding set of infinite sequences.

We abbreviate members of \mathbf{J} or \mathbf{J}_{∞} as $\mathbf{i}=(i_1,\cdots,i_k)$, etc., and denote the number of terms in each word $\mathbf{i}\in\mathbf{J}$ by $|\mathbf{i}|$.

If $i, j \in J$ or if $i \in J$ and $j \in J_{\infty}$, we denote by ij the sequence obtained by concatenation of the words i and j.

We write $\mathbf{j}|_k \in \mathbf{J}_k$ for the initial k-term sequence of $\mathbf{j} \in \mathbf{J}_{\infty}$ and define the cylinders $C_{\mathbf{i}} = \{\mathbf{j} \in \mathbf{J}_{\infty} : \mathbf{j}|_k = \mathbf{i}\}.$

Let \mathbf{I} be a finite subset of \mathbf{J} , we say \mathbf{I} is a *cut set* of \mathbf{J} if for every $\mathbf{i} \in \mathbf{J}_{\infty}$ there is a unique integer k such that $\mathbf{i}|k \in \mathbf{I}$. For such a cut-set \mathbf{I} we write $k(\mathbf{I}) = \min\{|\mathbf{i}| : \mathbf{i} \in \mathbf{I}\}.$

singular-value functions

Let T be a nonsingular real 2×2 matrix. The singular values α_1,α_2 are the positive square roots of the eigenvalues of TT', where T' is the transpose of T.

We adopt the convention that $1 > \alpha_1 \ge \alpha_2 > 0$.

The Heisenberg singular value function $\psi^s(T)$ in the Heisenberg group is defined to be

$$\psi^{s}(T) = \begin{cases} \alpha_{1}^{s} & \text{if } 0 \leq s \leq 1, \\ \alpha_{1}^{(s+1)/2} \alpha_{2}^{(s-1)/2} & \text{if } 1 < s \leq 3, \\ \alpha_{1}^{2} \alpha_{2}^{s-2} & \text{if } 3 < s \leq 4, \end{cases}$$
 (8)

with the convention that $\psi_s(T) = \alpha_1^{s/2} \alpha_2^{s/2}$ if $s \ge 4$.

Generalized q-dimension in Heisenberg group

Given 0 < r < 1, let

$$\mathcal{M}_r = \left\{ C_H(\gamma, r) : \gamma \in \Gamma_r \right\}, \quad \Gamma_r = \left\{ (2ru, v) \in \mathbb{H} : u \in \mathbb{Z}^2, \frac{v}{2r^2} \in \mathbb{Z} \right\}.$$

Let τ be a finite Borel measure with bounded support denoted by $spt\tau<\infty$. Then, for $q\in\mathbb{R}$, the moment sum $M_r(q)$ is defined to be

$$M_r(q) = \sum_{C \in \mathcal{M}_r} \tau(C)^q,$$

where the sum is over all r-mesh cubes C such that $C \cap spt\tau \neq \emptyset$. For $q \neq 1$, we define the lower and upper generalized q-dimensions of τ by setting

$$\underline{D}_q^H(\tau) = \liminf_{r \to 0} \frac{\log M_r(q)}{(q-1)\log r}, \qquad \overline{D}_q^H(\tau) = \limsup_{r \to 0} \frac{\log M_r(q)}{(q-1)\log r}.$$

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q (*)

If the quantities \underline{D}_q^H and \overline{D}_q^H are identical, we write it as D_q^H the quantities \underline{D}_q^H and \overline{D}_q^H can also be defined in terms of integrals when $q \neq 1$.

$$\underline{D}_q^H(\tau) = \liminf_{r \to 0} \frac{\log M_r(q)}{(q-1)\log r} = \liminf_{r \to 0} \frac{\log \int \tau(B_H(\mathbf{x}, r))^{q-1} d\tau(\mathbf{x})}{(q-1)\log r},$$

$$\overline{D}_q^H(\tau) = \limsup_{r \to 0} \frac{\log M_r(q)}{(q-1)\log r} = \limsup_{r \to 0} \frac{\log \int \tau(B_H(\mathbf{x}, r))^{q-1} d\tau(\mathbf{x})}{(q-1)\log r}.$$

Self-affine measure on Heisenberg group

We may define a Borel measure μ on \mathbf{J}_{∞} by setting

$$\mu(\mathcal{C}_{\mathbf{i}}) = p_{i_1} p_{i_2} \cdots p_{i_k}, \tag{9}$$

with probability vector (p_1, \cdots, p_M) on the cylinders C_i . Let $\mu^{\tilde{\mathbf{a}}}$ on \mathbb{H} be a self-affine measure, ie.

$$\mu^{\widetilde{\mathbf{a}}}(B) = \sum_{i=1}^{M} p_i \mu^{\widetilde{\mathbf{a}}}(F_i^{-1}(B)).$$

For all $q\geq 0,\ q\neq 1$ there exists a unique positive number $l_q\equiv l_q(T_1,\cdots,T_M;\mu)$ such that

$$\lim_{k \to \infty} \left(\sum_{\mathbf{i} \in \mathbf{J}_k} \psi^{l_q}(T_{\mathbf{i}})^{1-q} \mu(\mathcal{C}_{\mathbf{i}})^q \right)^{\frac{1}{k}} = 1.$$
 (10)

Generalised q-dimension of Self-affine measure on Heisenberg group

Theorem (with Wu)

Let (S_1,\cdots,S_M) be an affine Heisenberg IFS, let (p_1,\cdots,p_M) be probabilities with μ the measure on \mathbf{J}_{∞} defined by (9) and let $l_q=l_q(S_1,\cdots,S_M;\mu)$ be given by (10). For each $\widetilde{\mathbf{a}}\in\mathbb{R}^{3M}$ we define $\mu^{\widetilde{\mathbf{a}}}$ to be a self-affine measure.

- (a) If $q \geq 0$, $q \neq 1$, then $\overline{D}_q^H(\mu^{\widetilde{\mathbf{a}}}) \leq \min\{l_q, 4\}$ for all $\widetilde{\mathbf{a}} \in \mathbb{R}^{3M}$.
- (b) If $1 < q \le 2$ and $||S_j|| < \frac{1}{2}$ for all $j = 1, \dots, M$, then $D_q^H(\mu^{\widetilde{\mathbf{a}}}) = \min\{l_q, 4\}$ for \mathcal{L}^{3M} -almost all $\widetilde{\mathbf{a}} \in \mathbb{R}^{3M}$.