
Our Goals

Describe a new method, building upon previous research on Julia sets, to
contruct Laplacians on a self-similar set X using a Peano curve from the
circle onto X .

Unique approach because in our method the Peano curves exhibit
self-intersections which will play a vital role in constructing the graph
approximations to the fractal.
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Introduction

Peano Curve: If X is a compact topological space, we use the term
Peano curve for any continuous mapping γ from the unit circle
(parameterized by t ∈ [0, 1] such that 0 ≡ 1) onto X .

Key Points:

Such a mapping, γ, can never be one-to-one, thus there must exist points
t1, t2 ∈ [0, 1] such that γ(t1) = γ(t2) ∈ X . We will say that t1 ≡ t2 and
call these points ”identified points”

If we consider all possible identifications we can obtain a model of X as a
circle with appropriately identified points.
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Introduction

Graph Laplacian: Given a finite set of identifications on the circle, we
have a natural graph structure where the points are the vertices, and the
edges join the consecutive points around the circle. We assign positive
weights µ(tj) to the points and think of these as a discrete measure on the
set of vertices. We assign non-negative weight c(tj , tj+1) to the edges.

Discrete Laplacian:

−4u(x) =
1

µ(x)

∑
c(x , y)(u(x)− u(y)) (0.1)
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The Self-Similar sets X (Fractal Examples)

The Pentagasket (PG)

Attributes: Postcritically-finite (PCF) self-similar set, fully symmetric
self-similar Laplacian with well-known properties, does not satisfy
spectral-decimation.

The Octagasket (OG)

Attributes: Non-PCF fractal, only experimental evidence of self-similar
Laplacian, interesting locations in the spectrum for spectral gaps.

The Magic Carpet (MC)

Attributes: Non-PCF fractal, constucted by modifying the Sierpinksi
carpet, only eperimental evidence for self-similar Laplacian.
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The Self-Similar sets X (Non-Fractal Examples)

Equilateral Triangle(T )

Attributes: Non-fractal, Neumann boundary conditions, acts as a control
as widely studied spectrum

The Square Torus (T0)

Attributes: Non-fractal, acts as a control

Nadia Ott & Denali Molitor (Cornell REU) Peano Curves and Fractals June 13, 2014 5 / 66



Constructing the Peano Curves

Main Ideas:

The Peano curves are all constructed using piecewise linear maps, γm,
where the passage from γm to γm+1 is given by a set of substitution rules.

The line segments will be the edges of X and the end points of γm will
give forth the vertices of X . These edges and vertices are then associated
with points and edges on the circle.

When passing to the limit γm will give rise to X .
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The Pentagasket
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Substitution rule for PG

a. b. c.

The dotted line shows the replaced line segment from the previous level of
the graph approximation. The other substitutions at the same level are
obtained by rotating through angles of 2πk

5 .
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Identifications at Level 1
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Identifications at Level 2
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The Octagasket
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Substitution Rule for OG

The dotted arrow shows the line from the previous level of the graph
approximation that is to be replaced. Note that the two substitutions
differ in direction and are reflections of one another. There are eight total
substitutions which are just rotations of these. Each rotation corresponds
to a different possible edge of the OG graph approximation.
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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The path of γ0
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The path of γ1
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Intersections of γ on OG

a. b.

In the case of OG, γ intersects in sets of two and four. We call the
equivalence class consisting of two points outer points (a.) while the
equivalence classes consisting of four points are called inner points (b.)
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The Magic Carpet

The Magic Carpet is obtained by modifying the construction of the
Sierpinksi Carpet by immediately sewing up all cuts that are made.

a. b.
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Sierpinksi Carpet Reference
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The path γ1 for MC

a. b.

The path γ1 for MC. In a. we show the actual path with the points
2,3,7,8,11 and 14 identified. In b., the dashed arrows show the symbolic
description, while the solid arrow illustrates a jump between identified
points.
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The path of γ2 on MC
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The Equilateral Triangle(T )
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Substitution Rule for the Triangle

As before the dotted line represents the line segment belonging to γm−1.
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The path of γ0,γ1 and γ2 on T

Nadia Ott & Denali Molitor (Cornell REU) Peano Curves and Fractals June 13, 2014 38 / 66



The interesections of γ

Characterization of points:

Corner Points: No identifications

Outer Points: The other points along the boundary are identified in groups
of three

Interior Points: Identified in groups of six
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Identifications of γ2
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Graph Energies

We define graph energy as

EG (u) =
∑
x∼y

(u(x)− u(y))2 (0.2)

where u is a continuous function on the circle that respects all
identifications made by γ.

Let V ⊆ V ′ such that u
∣∣
V

. We want to extend our function u
∣∣
V

to u′
∣∣
v ′ .

We aim to find ũ such that ũ minimizes EV ′(ũ). We call such a function ũ
a harmonic extension.
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Renormalization factor

Eγ1(u) = rEγ0(u) (0.3)

where 0 < r < 1.

We call r the renormalization factor.

Renormalized Energy:

E(u) = r−mE (u) (0.4)
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Self-similar measure µ

We call µ a regular probability measure.
µ assigns weights to the vertices of X . In our case, µ depends on the size
of the equivalence classes of the vertices.
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PG Conductance c(x , y) and renormalization factor r

To calculate 4u(x) we must first designate a conductance along the edges
of PG as well as calculate r .

c(x , y) =

{
1 if [x , y ] has length 1

5m+1

b if [x , y ] has length 3
5m+1

, (0.5)

where b = 1+
√
161

10 was determined using basic principles of electric
network theory, applied to pieces of the graphs.

Using aforementioned process, we found r =
√
161−9
8
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PG Reference
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PG Laplacian 4um(x)

Weights assigned:

µ(x) =

{
1

5m+1 if k ≡ 0 mod 5
2

5m+1 if k ≡ 1 or 4 mod 5
(0.6)

Where µ(x) is the sum of the weights of all points in the equivalence class.
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PG Eigenvalues

Level 1 Level 2 Level 3 Level 4

# Mult Eigenvalue # Mult Eigenvalue # Mult Eigenvalue # Mult Eigenvalue

1 1 0 1 1 0 1 1 0 1 1 0

2 2 28.6410 2 2 12.5186 2 2 12.6700 2 2 12.6832

4 2 28.9251 4 2 30.6109 4 2 31.3706 4 2 31.4492

6 2 119.5409 6 5 143.2049 6 5 135.7523 6 5 137.4025

8 2 132.5555 11 1 168.8936 11 1 164.5714 11 1 166.9378

10 1 135.5536 12 2 182.4264 12 2 182.3916 12 2 185.2678

14 2 215.2990 14 2 239.2249 14 2 244.1480

16 5 415.7326 16 5 331.9515 16 5 340.1929

21 2 430.6319 21 2 435.5986 21 2 453.4902

23 2 454.5580 23 2 562.4423 23 2 596.8892

25 1 463.5525 25 1 629.634 25 1 677.4916

26 5 597.7066 26 20 1552.9561 26 20 1472.1417
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Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Function: ρ(x) = #{λj ≤ x}

Weyl Ratio: WR(x) = ρ(x)
xβ

where β is the slope of the best line of ρ(x).

β values:

PG( β ≈ 0.675 )

OG(β ≈ 0.7213 )

MC (β ≈ 1.2)
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Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Function

Level 2 Level 3 Level 4

Weyl Ratios

Level 2 Level 3 Level 4
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PG Eigenfunctions

Eigenfunction # 2 & 3 Eigenfunction # 4 & 5

Eigenfunction # 11
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PG Eigenfunctions

Eigenfunction # 2 & 3 Eigenfunction # 4 & 5

Eigenfunction #6 Eigenfunction #11

Eigenfunction # 16 Eigenfunction # 51
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OG 4u(x)

Assigned weights:

µ(x) =

{
1

8m+1 if outer point
2

8m+1 if inner point
(0.7)

−∆mu(x) = 4(u(x)− Ave(u(y))) (0.8)

The ratios of corresponding eigenvalues let us estimate r ≈ 0.537.

And so we have,

−∆u = lim
m→∞

(
8

r
)m4mu (0.9)
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Eigenvalues of the Octagasket

Level 1 Level 2 Level 3 Ratio

# Mult Eigenvalue # Mult Eigenvalue # Mult Eigenvalue λ1
λ2

λ2
λ3

1 1 0 1 1 0 1 1 0

2 2 0.111 2 2 0.0074 2 2 0.0005 14.802 14.938

4 2 0.396 4 2 0.0282 4 2 0.0018 14.027 14.908

6 2 0.770 6 2 0.0570 6 2 0.0038 13.495 14.897

8 3 1.171 8 1 0.0784 8 1 0.0052 14.960

11 2 1.276 9 2 0.1108 9 2 0.0074 14.794

13 2 1.500 11 2 0.1157 11 2 0.0077 14.852

15 2 1.506 13 2 0.1251 13 2 0.0083 14.941

17 2 3.109 15 2 0.1263 15 2 0.0084 14.971

19 2 3.299 17 2 0.2291 17 2 0.0154 14.803

21 2 3.465 19 1 0.2362 19 1 0.0157 15.034

23 4 4.000 20 2 0.2412 20 2 0.0165 14.590

27 2 4.534 22 2 0.2771 22 2 0.0189 14.605

29 2 4.700 24 1 0.3021 24 1 0.0205 14.691

31 2 4.890 25 2 0.3961 25 2 0.0282 14.027

33 2 6.493 27 2 0.4237 27 2 0.0300 14.120

35 2 6.499 29 2 0.4261 29 2 0.0301 14.136
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OG Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Functions

Level 1 Level 2 Level 3

Weyl Ratios

Level 1 Level 2 Level 3
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Spectral Gaps of the Octagasket

k 16k λ16k+1

λ16k

1 16 1.8350

2 32 1.3236

7 112 1.554

15 240 1.168

54 864 1.768
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OG Eigenfunctions

Eigenfunction # 2 & 3 Eigenfunction # 4 & 5

Eigenfunction # 6 & 7
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OG Eigenfunctions

Eigenfunction # 2 & 3 Eigenfunction # 4 & 5

Eigenfunction # 6 & 7 Eigenfunction # 8

Eigenfunction # 9 & 10 Eigenfunction # 24

Eigenfunction # 25 & 26
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OG Miniaturization

Miniaturization of Eigenfunctions: Each eigenvalue of −∆m is also an
eigenvalue of −∆m+1 with the same multiplicity. The corresponding
eigenfunction of −∆m is miniaturized to create the eigenfunctions of
−∆m+1.

The rule for miniaturization depends of the dihedral-8 symmetry group of
the corresponding eigenspace.
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OG Miniaturization
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MC 4u(x)

Analagous to OG, we have

−4mu(x) = 12(u(x)− Ave(u(y))) (0.10)

Some points, x , will have neighbors that are identified with it thus we
have,

−∆m(x) =


12u(x)− 3

∑
y∼x u(y) if x has 2 identifications

12u(x)−
∑

y∼x u(y) if x has 6 identifications and 12 distinct neighbors

8u(x)−
∑

y∼x u(y) if x has 6 identifications and 8 distinct neighbors

(0.11)
We also have r ≈ 1.25. This is interesting because it means that rm will
blow up.

Nadia Ott & Denali Molitor (Cornell REU) Peano Curves and Fractals June 13, 2014 60 / 66



MC Eigenvalues

Level 1 Level 2 Level 3 Level 4 Ratio

# Mult Eiv # Mult Eiv # Mult Eiv # Mult Eiv λ2
λ3

λ3
λ4

1 1 0 1 1 0 1 1 0 1 1 0

2 1 9.000 2 1 1.726 2 1 0.274 2 1 0.0429 6.281 6.406

3 1 10.228 3 2 2.674 3 2 0.441 3 2 0.068 6.069 6.442

4 2 15.000 5 1 2.697 5 1 0.458 5 1 0.072 5.885 6.365

6 1 18.772 6 1 5.000 6 1 0.869 6 1 0.138 5.752 6.294

7 2 5.515 7 2 0.923 7 2 0.146 5.586 6.296

9 1 5.917 9 1 0.987 9 1 0.154 5.993 6.402

10 1 6.580 10 1 1.112 10 1 0.173 5.915 6.423

11 1 7.102 11 1 1.304 11 1 0.207 5.444 6.290

12 2 7.808 12 2 1.431 12 2 0.223 5.455 6.412

14 3 9.000 14 2 1.610 14 2 0.232 6.386

17 2 9.475 16 1 1.620 16 1 0.257 6.305

19 1 10.147 17 1 1.709 17 1 0.272 6.277

20 1 10.228 18 1 1.726 18 1 0.274 6.281

21 1 11.261 19 1 2.044 19 1 0.331 6.168

22 1 11.347 20 1 2.321 20 1 0.375 6.177

23 2 11.796 21 2 2.354 21 2 0.379 6.193

25 1 12.000 23 1 2.501 23 1 0.411 6.084

26 1 13.893 24 2 2.594 24 2 0.423 6.131
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MC Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Function

Level 2 Level 3 Level 4

Weyl Ratios

Level 2 Level 3 Level 4
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MC Eigenfunctions

Eigenfunction # 2 Eigenfunction # 3 & 4

Eigenfunction # 5 Eigenfunction # 6

Eigenfunction # 18 Eigenfunction #27 & 28
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Triangle Eigenfunctions

Eigenfunction # 2 & 3 Eigenfunction # 4

Eigenfunction # 9 & 10 Eigenfunction #11

Eigenfunction # 14 & 15
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