N
Our Goals

Describe a new method, building upon previous research on Julia sets, to
contruct Laplacians on a self-similar set X using a Peano curve from the
circle onto X.

Unique approach because in our method the Peano curves exhibit
self-intersections which will play a vital role in constructing the graph
approximations to the fractal.
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Introduction

Peano Curve: If X is a compact topological space, we use the term
Peano curve for any continuous mapping ~ from the unit circle
(parameterized by t € [0, 1] such that 0 = 1) onto X.

Key Points:

Such a mapping, ~, can never be one-to-one, thus there must exist points
t1, tp € [0,1] such that y(t1) = v(t2) € X. We will say that t; = t, and
call these points " identified points’

If we consider all possible identifications we can obtain a model of X as a
circle with appropriately identified points.
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Introduction

Graph Laplacian: Given a finite set of identifications on the circle, we
have a natural graph structure where the points are the vertices, and the
edges join the consecutive points around the circle. We assign positive
weights /i(t;) to the points and think of these as a discrete measure on the
set of vertices. We assign non-negative weight c(tj, tj;1) to the edges.

Discrete Laplacian:

—Au(x) =

3 3 el )ul) — u(y)) (0.1)
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|
The Self-Similar sets X(Fractal Examples)

The Pentagasket (PG)

Attributes: Postcritically-finite (PCF) self-similar set, fully symmetric
self-similar Laplacian with well-known properties, does not satisfy
spectral-decimation.

The Octagasket (OG)

Attributes: Non-PCF fractal, only experimental evidence of self-similar
Laplacian, interesting locations in the spectrum for spectral gaps.

The Magic Carpet (MC)

Attributes: Non-PCF fractal, constucted by modifying the Sierpinksi
carpet, only eperimental evidence for self-similar Laplacian.
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|
The Self-Similar sets X(Non-Fractal Examples)

Equilateral Triangle(T)

Attributes: Non-fractal, Neumann boundary conditions, acts as a control
as widely studied spectrum

The Square Torus (7o)

Attributes: Non-fractal, acts as a control
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Constructing the Peano Curves

Main Ideas:

The Peano curves are all constructed using piecewise linear maps, v,
where the passage from 7, to yYm+1 is given by a set of substitution rules.

The line segments will be the edges of X and the end points of ~y,, will
give forth the vertices of X. These edges and vertices are then associated

with points and edges on the circle.

When passing to the limit v, will give rise to X.
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-
The Pentagasket
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N
Substitution rule for PG

The dotted line shows the replaced line segment from the previous level of
the graph approximation. The other substitutions at the same level are
obtained by rotating through angles of %
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Identifications at Level 1
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Identifications at Level 2
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-
The Octagasket
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N
Substitution Rule for OG

The dotted arrow shows the line from the previous level of the graph
approximation that is to be replaced. Note that the two substitutions
differ in direction and are reflections of one another. There are eight total
substitutions which are just rotations of these. Each rotation corresponds
to a different possible edge of the OG graph approximation.
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-
Octagasket
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-
Octagasket
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-
Octagasket
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Octagasket
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Octagasket
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Octagasket
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Octagasket
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-
Octagasket
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-
Octagasket
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-
Octagasket
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-
Octagasket
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-
Octagasket
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-
Octagasket
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-
The path of ~

10 13

11 12
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-
The path of v,
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Intersections of v on OG

e U I
13

a. b.

In the case of OG, « intersects in sets of two and four. We call the
equivalence class consisting of two points outer points (a.) while the
equivalence classes consisting of four points are called inner points (b.)
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-
The Magic Carpet

The Magic Carpet is obtained by modifying the construction of the
Sierpinksi Carpet by immediately sewing up all cuts that are made.
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Sierpinksi Carpet Reference
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The path v, for MC
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The path ;1 for MC. In a. we show the actual path with the points
2,3,7,8,11 and 14 identified. In b., the dashed arrows show the symbolic
description, while the solid arrow illustrates a jump between identified

points.
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The path of 75, on MC
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The Equilateral Triangle(T)
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Substitution Rule for the Triangle

or or or

<
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The path of 49,71 and 7, on T
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The interesections of ~

Characterization of points:
Corner Points: No identifications

Outer Points: The other points along the boundary are identified in groups
of three

Interior Points: ldentified in groups of six
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|dentifications of v,




-
Graph Energies

We define graph energy as

Ec(u) =) (u(x) = u(y))? (0.2)

X~y

where u is a continuous function on the circle that respects all
identifications made by ~.

Let V C V/ such that u - We want to extend our function u}v to u y
We aim to find & such that & minimizes Ey/(d). We call such a function i
a harmonic extension.
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Renormalization factor

Eyy(u) = rEy(u) (03)
where 0 < r < 1.

We call r the renormalization factor.

Renormalized Energy:

E(u) =r""E(u) (0.4)
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Self-similar measure 1

We call u a regular probability measure.

14 assigns weights to the vertices of X. In our case, i1 depends on the size
of the equivalence classes of the vertices.

Nadia Ott & Denali Molitor (Cornell REU) Peano Curves and Fractals

June 13, 2014 43 / 66



PG Conductance c(x, y) and renormalization factor r

To calculate Au(x) we must first designate a conductance along the edges
of PG as well as calculate r.

1if has length =%+
o ,)/)—{ if [x,y] has leng Em+T

, 05
b if [x, y] has length =2 (0.5)

5m+1

where b = 1+17 V0161 was determined using basic principles of electric

network theory, applied to pieces of the graphs.

Using aforementioned process, we found r = 7”68179
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N
PG Reference
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|
PG Laplacian Aup(x)

Weights assigned:

L _ifk=0 mod 5
u(x) = 5T me (0.6)
W |f k = ]. or 4 mod 5

Where p(x) is the sum of the weights of all points in the equivalence class.
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PG Eigenvalues

Level 1 Level 2 Level 3 Level 4

# | Mult | Eigenvalue | # | Mult | Eigenvalue | # | Mult | Eigenvalue | # | Mult | Eigenvalue
1] 1 0 1] 1 0 1] 1 0 1] 1 0

[2] 2 ][ 286410 [ 2] 2 [ 125186 [ 2 [ 2 | 126700 [2 ] 2 | 12.6832 |
[4] 2 [ 289251 [4] 2 | 306109 [4] 2 [ 313706 |4 2 | 314492 |
[ 6] 2 [1105409 [ 6 [ 5 | 1432040 [ 6 | 5 [ 1357523 [ 6 | 5 | 137.4025 |
[8] 2 [ 1325555 [11] 1 | 168.8936 [11| 1 | 1645714 [11| 1 | 166.9378 |
[10] 1 [ 1355536 [12] 2 [ 1824264 [12] 2 | 1823016 [12] 2 | 1852678 |
[ \ [14] 2 [ 2152990 [14] 2 [ 239.2249 [14] 2 | 244.1480 |
[ \ [16] 5 [ 4157326 [16] 5 | 331.9515 [16] 5 | 340.1029 |
] | [21] 2 ] 4306319 [21] 2 | 4355986 [21| 2 [ 453.4902 |
] | [23] 2 ] 4545580 [23] 2 | 562.4423 [23] 2 [ 596.8892 |
] \ [25] 1 ] 463.5525 [25] 1 | 629.634 [25] 1 | 677.4916 |
[ \ [26] 5 [ 597.7066 |26 | 20 | 1552.9561 |26 | 20 | 1472.1417 |
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Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Function: p(x) = #{\; < x}

Weyl Ratio: WR(x) = p(x) where [ is the slope of the best line of p(x).

[ values:
PG( 8~ 0.675 )
OG(p ~ 0.7213)

MC (8 ~ 1.2)
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Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Function

Level 2 Level 3 Level 4
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PG Eigenfunctions

Elgenfunctlon #2& 3

Eigenfunction # 4 & 5

E|genfunct|on # 11
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-
PG Eigenfunctions

Elgenfunctlon #2&3 Eigenfunction # 4 & 5

Eigenfunction # 51

A wu
IHH H H
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|
0G Au(x)

Assigned weights:

() = {Siﬂ if ?uter pofnt (0.7)
gmer if inner point
—Apu(x) = 4(u(x) — Ave(u(y)) (08)
The ratios of corresponding eigenvalues let us estimate r &~ 0.537.
And so we have, o
—Au= lim (=)"Anu (0.9)

m—oo  f
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-
Eigenvalues of the Octagasket

Level 1 Level 2 Level 3 Ratio

# | Mult | Eigenvalue | # | Mult | Eigenvalue | # | Mult | Eigenvalue vy 2

1] 1 0 1]1 0 1] 1 0
[2] 2 ] o1t [2] 2 ] 00074 [2] 2 | 0.0005 [[14.802]14.938 ]
[4] 2 ] 03%6 [4] 2 [ 0022 [4] 2 [ 00018 []14.027]14.908 ]
[6] 2 ] 0770 [6] 2 [ 00570 [6] 2 | 0.0038 [[13.495]14.897 |
[8] 3 | 1171 [8] 1 | 00784 [8] 1 [ 00052 [ | 14.960 |
[11] 2 | 1276 [9] 2 | 01108 [ 9] 2 [ 00074 [ [14.794
[13] 2 | 1500 [11[ 2 [ 01157 [11] 2 | 0.0077 ] | 14.852
[15] 2 | 1506 [13] 2 [ 01251 [13] 2 | 0.0083 [] [14.941
[17] 2 | 3109 [15] 2 [ 01263 [15] 2 | o0.0084 [] [ 14.971
[19] 2 | 3209 [17] 2 [ 02201 [17] 2 [ 0.0154 [] [14.803 |
[21] 2 | 3465 [19] 1 [ 02362 [19] 1 [ 0.0157 [] [15.034 |
[23] 4 | 4000 [20] 2 [ 02412 [20] 2 | 00165 [] | 14.590 |
[27] 2 | 453 [22] 2 [ 02771 [22] 2 | 0.0189 ] | 14.605 |
[29] 2 [ 4700 [24] 1 [ 03021 [24] 1 [ 0.0205 [ 14.601 |
[31] 2 | 4890 [25] 2 | 03961 [25] 2 [ 0.0282 [] [ 14.027 |
[33] 2 | 6493 [27] 2 | 04237 [27] 2 [ 0.0300 | 14.120 |
[35] 2 | 6499 [20] 2 | 04261 [29] 2 [ 0.0301 | 14.136 |
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OG Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Functions
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|
Spectral Gaps of the Octagasket
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OG Eigenfunctions

Eigenfunction # 2 & 3

Eigenfunction # 4 & 5
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-
OG Eigenfunctions

Eigenfunction # 25 & 26
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OG Miniaturization

Miniaturization of Eigenfunctions: Each eigenvalue of —A,, is also an
eigenvalue of —Ap, 1 with the same multiplicity. The corresponding
eigenfunction of —A, is miniaturized to create the eigenfunctions of

_Aerl-

The rule for miniaturization depends of the dihedral-8 symmetry group of
the corresponding eigenspace.
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|
MC Au(x)

Analagous to OG, we have

—Apu(x) = 12(u(x) — Ave(u(y))) (0.10)

Some points, x, will have neighbors that are identified with it thus we
have,

12u(x) =33, u(y) if x has 2 identifications

fAm(X) = {12u(x) = > ., uly) if x has 6 identifications and 12 distinct neighbors
Bu(x) — >, uly) if x has 6 identifications and 8 distinct neighbors
(0.11)

We also have r =~ 1.25. This is interesting because it means that r'” will
blow up.
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MC Eigenvalues

Level 1 Level 2 Level 3 Level 4 Ratio
# | Mult | Eiv # | Mult Eiv # | Mult | Eiv | # | Mult Eiv 2 v
1] 1 0o 1] 1 0o 1] 1 0o 1] 1 0
[2] 1 Joooo[2] 1 J1726[2] 1 J0.274] 2] 1 [0.0429 [ 6.281 [ 6.406 |
[3] 1 J10228[3] 2 [2674[3] 2 J0441]3 ] 2 ]0.068 [ 6.069]6.442 ]
[4] 2 [15000][ 5] 1 [2697 [5] 1 [0458] 5[ 1 [ 0.072 [[5.885]6.365 ]
[6] 1 [18772] 6] 1 [5000 [ 6] 1 [0.869] 6 [ 1 [ 0.138 [[5.752]6.294 ]
[ ] [ [7] 2 [5515 [ 7] 2 [0923[ 7] 2 [0.146 []5.586 | 6.296 |
[ ] [ [9] 1 [5017 [9] 1 [0987][ 9] 1 [0.154 [[5.993]6.402 |
[ ] \ [10] 1 [6580 [10] 1 [1.112[10][ 1 [ 0.173 [[5.915]6.423 ]
[ ] \ [11] 1 [7102 [11] 1 [1304[11] 1 [ 0.207 []5.444]6.290 |
[ ] [ [12] 2 [7808 [12] 2 [1431[12] 2 [ 0.223 [[5.455[6.412 ]
[ ] [ [14] 3 [9.000 [14] 2 [1610][14] 2 [ 0232 ] [ 6.386 |
[ ] [ [17] 2 9475 [16] 1 [1620]16] 1 [ 0.257 ] [ 6.305 |
[ ] \ [19] 1 [10147]17] 1 [1709]17] 1 [ 0.272 ] [6.277 |
[ ] \ [20] 1 [10.228[18] 1 [1.726]18] 1 [ 0.274 || [ 6.281 |
[ ] [ [21] 1 [11.261][19] 1 [2.044][19] 1 [ 0331 ] [ 6.168 |
[ ] [ [22] 1 [11.347]20] 1 [2321]20] 1 [ 0375 ] [6.177 ]
[ ] \ [23] 2 [11.796]21] 2 [2354]21] 2 [ 0379 [ [6.193 ]
[ ] [ [25] 1 [12.000]23] 1 [2501[23] 1 [ 0.411 ] [ 6.084 |
[ ] \ [26] 1 [13.803[24] 2 [2594[24] 2 [ 0.423 || [6.131 |
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MC Eigenvalue Counting Function and Weyl Ratio

Eigenvalue Counting Function
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MC Eigenfunctions

Eigenfunction # 2 Eigenfunction # 3 & 4
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Triangle Eigenfunctions

Eigenfunction # 2 & 3 Eigenfunction # 4
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