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Julia Sets

Given a complex polynomial f , the associated filled-in Julia
set is the set of points z such that the sequence
z , f (z), f (f (z)), ..., f ◦n(z), ... does not diverge to infinity.

The Julia set is the boundary of the filled-in Julia set.

A Julia set is called quadratic or cubic if its corresponding
polynomial is quadratic or cubic.
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The standard approach to defining Laplacians

Define a sequence of finite graphs Xm approximating the
fractal.

Define a graph energy on each graph by

Em(u) =
∑

edges (x ,y) in Xm

cx ,y (u(x)− u(y))2

Hope for a choice of conductances such that
Em+1(ũ) = Em(u) for all m, u.

Define the energy E = limm→∞Em
Use the energy to obtain a Laplacian ∆u by the weak
formulation: E (u, v) = −

∫
(∆u)v for any v .
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External Ray Parameterization

For quadratic (cubic) Julia sets, there is a map from the circle to
the Julia set intertwining doubling (tripling) on the circle with the
action of P on the Julia set.
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Julia Set as Circle with Identifications

We use this to represent the Julia Set as a circle modulo
identifications.
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The Algorithm for Identifications

For each Julia set, there is a choice of a partition of the circle
into three equally-sized regions A,B,C

Each point on the circle has a kneading sequence with respect
to A,B and C, recording the point’s orbit.

We identify points that have the same kneading sequence*
*and some other conditions.
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The Graph Approximation

For any finite set of points on the circle (mod identifications),
form a graph by adding an edge between neighboring points.

Start with an initial set X0

Let Xm+1 := {x : 3x ∈ Xm}
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Subdivision Rules

For each Julia set, we express the fractal structure of the Julia set
by finding subdivision rules:

We classify the intervals into finitely many “types”

For each type, we describe how it subdivides in the next level
in terms of the other types
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Energy on Julia Sets

Let n be the number of types involved in the subdivision rules.
.

Define E
(k)
m (u) =

∑
i :(ti ,ti+1) is of type k

(u(ti+1)−u(ti ))2
|u(ti+1)−u(ti )| .

Define Em(u) =
∑n

k=1 bkE
(k)
m (u) for some choice of constants

b1, . . . , bn, for all m.

Look for bk such that there exists an r with
Em+1(ũ) = rEm(u) for all m, u.

Define E = limm→∞r−mEm.

E is self-similar: E(u ◦ P) = 9
r E(u)
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Energy on Julia Sets

The problem of solving for the bk and r can be viewed either
as an eigenvector-eigenvalue problem or as a system of
resistance problems.

If all subdivisions are internal or in pairs, solving for the bk
and r is simple.
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Example 1

A = ( 1
24 ,

9
24 ],B = (1324 ,

21
24 ],C = the rest.

P(z) = z3 + 3√
2
z
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Example 1

Using X0 = {18 ,
3
8 ,

5
8 ,

7
8}, the subdivision rules are:
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Example 1

Weak pairs are bad. No solution to resistance problem unless we
add an extra edge.
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Example 1

Solution: Procrastination. ”Why do today what you could leave till
tomorrow?”

All ways of procrastinating yield the same energy, and the energy is
self-similar.
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Example 2

A = ( 6
24 ,

14
24 ],B = (1724 ,

1
24 ],C = the rest.

Using X0 = {28 ,
5
8 ,

6
8 ,

7
8}, we are unable to classify subdivision

rules using finitely many types
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Example 2

Yehonatan Sella Differential Equations on Cubic Julia Sets



Example 2
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Example 2

Solution: the Julia set is begging you to add more points to X0:
the limit identifications.
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General Julia Sets

We hope that, in general, any “bad” subdivision data can be
turned into “good” subdivision data by using either of these two
fixes: procrastination and adding limit identifications to X0.
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More Serious Problems

Even when the above methods work, sometimes the only
solutions to the conductances bk are negative.

And sometimes the system of resistance problems is
inconsistent, with no solutions
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Laplacian

Use the weak formulation, using the standard Lebesgue
measure on the circle

Using finite element method/ finite difference method, we can
compute eigenfunctions and eigenvalues of the Laplacian
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Eigenfunctions for Example 1
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