Differential Equations on Cubic Julia Sets

Yehonatan Sella

University of California Los Angeles

June 16, 2014

Julia Sets

- Given a complex polynomial f, the associated filled-in Julia set is the set of points z such that the sequence $z, f(z), f(f(z)), ..., f^{\circ n}(z), ...$ does not diverge to infinity.
- The Julia set is the boundary of the filled-in Julia set.
- A Julia set is called quadratic or cubic if its corresponding polynomial is quadratic or cubic.

Julia Sets

Julia Sets

The standard approach to defining Laplacians

- Define a sequence of finite graphs X_m approximating the fractal.
- Define a graph energy on each graph by

$$\mathcal{E}_m(u) = \sum_{\text{edges } (x,y) \text{ in } X_m} c_{x,y} (u(x) - u(y))^2$$

- Hope for a choice of conductances such that $\mathcal{E}_{m+1}(\tilde{u}) = \mathcal{E}_m(u)$ for all m, u.
- ullet Define the energy $\mathcal{E} = lim_{m o \infty} \mathcal{E}_m$
- Use the energy to obtain a Laplacian Δu by the weak formulation: $E(u, v) = -\int (\Delta u)v$ for any v.

External Ray Parameterization

For quadratic (cubic) Julia sets, there is a map from the circle to the Julia set intertwining doubling (tripling) on the circle with the action of P on the Julia set.

We use this to represent the Julia Set as a circle modulo identifications.

The Algorithm for Identifications

- For each Julia set, there is a choice of a partition of the circle into three equally-sized regions A,B,C
- Each point on the circle has a kneading sequence with respect to A,B and C, recording the point's orbit.
- We identify points that have the same kneading sequence*
 *and some other conditions.

The Graph Approximation

- For any finite set of points on the circle (mod identifications), form a graph by adding an edge between neighboring points.
- Start with an initial set X_0
- Let $X_{m+1} := \{x : 3x \in X_m\}$

Subdivision Rules

For each Julia set, we express the fractal structure of the Julia set by finding subdivision rules:

- We classify the intervals into finitely many "types"
- For each type, we describe how it subdivides in the next level in terms of the other types

Energy on Julia Sets

ullet Let n be the number of types involved in the subdivision rules.

• Define $E_m^{(k)}(u) = \sum_{i:(t_i,t_{i+1}) \text{ is of type } k} \frac{(u(t_{i+1}) - u(t_i))^2}{|u(t_{i+1}) - u(t_i)|}$.

- Define $E_m(u) = \sum_{k=1}^n b_k E_m^{(k)}(u)$ for some choice of constants b_1, \ldots, b_n , for all m.
- Look for b_k such that there exists an r with $E_{m+1}(\tilde{u}) = rE_m(u)$ for all m, u.
- Define $\mathcal{E} = \lim_{m \to \infty} r^{-m} E_m$.
- \mathcal{E} is self-similar: $\mathcal{E}(u \circ P) = \frac{9}{r}\mathcal{E}(u)$

Energy on Julia Sets

- The problem of solving for the b_k and r can be viewed either as an eigenvector-eigenvalue problem or as a system of resistance problems.
- If all subdivisions are internal or in pairs, solving for the b_k and r is simple.

- $A = (\frac{1}{24}, \frac{9}{24}], B = (\frac{13}{24}, \frac{21}{24}], C =$ the rest.
- $P(z) = z^3 + \frac{3}{\sqrt{2}}z$

Using $X_0 = \{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\}$, the subdivision rules are:

Weak pairs are bad. No solution to resistance problem unless we add an extra edge.

Solution: Procrastination. "Why do today what you could leave till tomorrow?"

All ways of procrastinating yield the same energy, and the energy is self-similar.

- $A = (\frac{6}{24}, \frac{14}{24}], B = (\frac{17}{24}, \frac{1}{24}], C =$ the rest.
- Using $X_0 = \{\frac{2}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8}\}$, we are unable to classify subdivision rules using finitely many types

Solution: the Julia set is begging you to add more points to X_0 : the limit identifications.

General Julia Sets

We hope that, in general, any "bad" subdivision data can be turned into "good" subdivision data by using either of these two fixes: procrastination and adding limit identifications to X_0 .

More Serious Problems

- Even when the above methods work, sometimes the only solutions to the conductances b_k are negative.
- And sometimes the system of resistance problems is inconsistent, with no solutions

Laplacian

- Use the weak formulation, using the standard Lebesgue measure on the circle
- Using finite element method/ finite difference method, we can compute eigenfunctions and eigenvalues of the Laplacian

Some References

- Aougab, Dong, Strichartz, Laplacians on a family of Julia sets II, Communications on pure and applied analysis, 12 (2013), 1-58
- Spicer, Strichartz, Totari, Laplacians on Julia sets III: cubic Julia sets and formal matings, Contemporary Mathematics 600 (2013), 327-348
- Poirier, On Post Critically Finite Polynomials Part One: Critical Portraits, Fund. Math. 203 (2009) #2, 107-163