Parabolic SPDE in metric measure spaces - regularity of the solution

Martina Zähle

(Institute of Mathematics, Friedrich Schiller University University Jena)

5th Cornell Conference on Analysis, Probability and Mathematical Physics on Fractals

Ithaca, June 11-15, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Main references (joint work):

Potential theoretic background: Jiaxin Hu, M.Z. : Studia Math. 2005, Potential Anal. 2009 Existence and uniqueness problems in fractional Sobolev-type spaces: Michael Hinz, M.Z.: Semigroups, potential spaces and applications to (S)PDE, Potential Anal. 2012 Hölder regularity: Elena Issoglio, M.Z.: Regularity of the solution to SPDE in metric measure spaces (Preprint)

Related literature:

Elliptic and some parabolic PDE on self-similar sets with respect to fractal Laplace operators (without noise terms): Falconer, Grigoryan, Hu, Khoshnevisan, Strichartz, ...

Abstract parabolic problems with Brownian and fractional Brownian noise: DaPrato/Zabzcyk, Dalang, Grecksch/Anh, Maslowski/Nualart, Tindel/Tudor/Viens, Prévot/Röckner, Röckner/Wang, ... more general noise, Young integrals, local solution: Gubinelli/Lejay/Tindel

Euclidean versions of the results below (Hinz/Z., JFA 2009):

formal Cauchy problem on bounded smooth domains in \mathbb{R}^n

$$\frac{\partial u}{\partial t}(t,x) = -Au(t,x) + F(u(t,x)) + < G(u(t,x)), \\ \frac{\partial}{\partial t} \nabla Z(t,x) >, \ t \in (0,t_0],$$

A an elliptic operator, $\frac{\partial}{\partial t}\nabla Z$ fractional space-time noise, initial value and Dirichlet boundary conditions, pathwise approach

$[X,\mu]$ a certain locally finite metric measure space

consider the formal Cauchy problem on $[0,t_0]\times X$

$$\frac{\partial u}{\partial t} = -A^{\theta}u + F(u) + G(u) \cdot \dot{z^*}, \quad t \in (0, t_0],$$
(1)

with initial condition u(0, x) = f(x), where

▶ -A is the generator of a strongly continuous Markovian symmetric semigroup $(T_t)_{t\geq 0}$ on $L_2(\mu)$ satisfying sub-Gaussian heat kernel estimates

(e.g. the Dirichlet Laplacian in the above models)

- A^{θ} , $\theta \leq 1$, is a fractional power of A
- $\blacktriangleright\ F$ and G are sufficiently regular functions on $\mathbb R$
- ► z^* is a random element in $C^{1-\alpha}([0, t_0], H_q^{\theta\beta}(\mu)^*)$
- $\blacktriangleright f \in H_2^{2\gamma + \theta \delta + \varepsilon}(\mu)$

$[X,\mu]$ a certain locally finite metric measure space

consider the formal Cauchy problem on $[0,t_0]\times X$

$$\frac{\partial u}{\partial t} = -A^{\theta}u + F(u) + G(u) \cdot \dot{z^*}, \quad t \in (0, t_0],$$
(1)

with initial condition u(0, x) = f(x), where

▶ -A is the generator of a strongly continuous Markovian symmetric semigroup $(T_t)_{t\geq 0}$ on $L_2(\mu)$ satisfying sub-Gaussian heat kernel estimates

(e.g. the Dirichlet Laplacian in the above models)

- A^{θ} , $\theta \leq 1$, is a fractional power of A
- \blacktriangleright F and G are sufficiently regular functions on $\mathbb R$
- z^* is a random element in $C^{1-\alpha}([0, t_0], H_q^{\theta\beta}(\mu)^*)$
- $\blacktriangleright \ f \in H_2^{2\gamma + \theta \delta + \varepsilon}(\mu)$

Aim: pathwise mild function solution $u \in C^{\gamma}([0, t_0], H_2^{\theta\delta}(\mu))$

for $\theta = 1$ mild solution defined by

$$u(t) = T_t f + \int_0^t T_{t-s} F(u(s)) \, ds + \int_0^t T_{t-s} G(u(s)) \, dz^*(s)$$
 (2)

where $u(t) := u(t, \cdot)$ and the last formal integral to be determined, (for $\theta < 1$ use the subordinated semigroup T^{θ} with generator $-A^{\theta}$ instead of T_t)

Main ideas:

- ▶ the spatial smoothness is measured in terms of potential spaces $H_2^{\sigma}(\mu)$ generated by the semigroup, and the latter lifts certain dual spaces to function spaces,
- the paraproduct is introduced by duality relations
- the time integral is realized by means of Banach space valued fractional calculus

our approach is independent of series expansions

Aim: pathwise mild function solution $u \in C^{\gamma}([0, t_0], H_2^{\theta\delta}(\mu))$

for $\theta = 1$ mild solution defined by

$$u(t) = T_t f + \int_0^t T_{t-s} F(u(s)) \, ds + \int_0^t T_{t-s} G(u(s)) \, dz^*(s)$$
 (2)

where $u(t) := u(t, \cdot)$ and the last formal integral to be determined, (for $\theta < 1$ use the subordinated semigroup T^{θ} with generator $-A^{\theta}$ instead of T_t)

Main ideas:

- ▶ the spatial smoothness is measured in terms of potential spaces $H_2^{\sigma}(\mu)$ generated by the semigroup, and the latter lifts certain dual spaces to function spaces,
- the paraproduct is introduced by duality relations
- the time integral is realized by means of Banach space valued fractional calculus

our approach is independent of series expansions

2. Bessel potential spaces associated with semigroups on (metric) measure spaces

Main assumptions:

- ▶ (X, d, μ) locally compact metric measure space, μ Radon measure, $X = \text{supp}\mu$ admitting a
- ▶ strongly continuous Markov semigroup $(T_t)_{t\geq 0}$ on $L_2(\mu)$

 $T_t = e^{-At}$, -A infinitesimal generator,

 T_t has transition densities p_t(x, y) possessing generalized sub-Gaussian estimates with parameter β

$$t^{-\frac{d_f}{w}} \Phi_1(t^{-\frac{1}{w}} d(x,y)) \le p_t(x,y) \le t^{-\frac{d_f}{w}} \Phi_2(t^{-\frac{1}{w}} d(x,y))$$

if $0 < t < R_0$, and $p_t(x, y) \le e^{\omega t}$ if $t \ge R_0$, for any $x, y \in X$ and some constants $R_0 > 0$ and $0 < \omega < 1$, with bounded decreasing functions Φ_i on $(0, \infty)$, Φ_2 such that

$$\int_0^\infty s^{d_f+\beta/2-1}\Phi_2(s)\mathrm{d} s<\infty$$

Fractional powers of *A* are determined by:

$$A^{\alpha}u = \operatorname{const}(\alpha, l) \int_0^{\infty} t^{-\alpha - 1} (I - T_t)^l u \, dt$$

for $l>\alpha>0$ and

$$A^{-\alpha}\varphi = \Gamma(\alpha)^{-1} \int_0^\infty t^{\alpha-1} T_t \varphi \, dt$$

for $\alpha > 0$ and all $\varphi \in L_2(\mu)$ if 0 is in the resolvent of A

define for $\sigma \ge 0$ and some $\omega > 0$: Bessel potential operators: (take $e^{-\omega t}T_t$ instead of T_t)

 $J^{\sigma} := (\omega I + A)^{-\sigma/2}$

Bessel potential spaces: $H_2^{\sigma}(\mu) := J^{\sigma}(L_2(\mu))$ with norm

$$\begin{split} ||u||_{H_2^{\sigma}(\mu)} &:= ||(\omega I + A)^{\sigma/2}(u)||_{L_2(\mu)} \sim ||u||_{L_2(\mu)} + ||A^{\sigma/2}(u)||_{L_2(\mu)} \\ \text{(resp. for all } p > 1, \ H_p^{\sigma}(\mu) &:= J^{\sigma}(L_p(\mu)) \text{ with norm} \end{split}$$

 $||u||_{H_p^{\sigma}(\mu)} := ||(\omega I + A)^{\sigma/2}(u)||_{L_p(\mu)} \sim ||u||_{L_p(\mu)} + ||A^{\sigma/2}(u)||_{L_p(\mu)})$

we also consider the spaces

$$H_{2,\infty}^{\sigma}(\mu) := H_2^{\sigma}(\mu) \cap L_{\infty}(\mu)$$

with norm

$$||u||_{H^{\sigma}_{2,\infty}}(\mu) := ||u||_{H^{\sigma}_{A}(\mu)} + ||u||_{L_{\infty}(\mu)}$$

Dual spaces:

$$H_p^{\sigma}(\mu)^* =: H_{p'}^{-\sigma}(\mu)$$

with $\sigma \ge 0$, $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$.

By duality the operators T_t can be extended to the dual spaces: If $w \in H^{-\sigma}(\mu)$ then $T_t w$ is the element of $L_2(\mu)$ determined by the scalar products

$$(v, T_t w) := (T_t v, w), \quad v \in L_2(\mu).$$

(Note that $|(v, T_t w)| = |(T_t v, w)| \le ||T_t v||_{H^{\sigma}_p(\mu)} ||w||_{H^{-\sigma}_{r'}(\mu)}$.)

Mapping properties of T_t in the above spaces are implied.

(for L_{∞} -properties the ultracontractivity is used, for paraproducts the full heat kernel estimates - fulfilled for many examples, classical and fractal cases)

Application to parabolic SPDE on fractals:

- fractal Laplacians: Lindstrøm, Barlow, Bass, Kusuoka, Strichartz, Kigami (and many others)
- these fractals are special metric measure spaces fulfilling the above assumptions: the Laplacians generate semigroups with sub-Gaussian heat kernel estimates

3. Rigorous definition and solution of the stochastic partial (pseudo) differential equation

general situation as above: (T_t) with generator -A (or T_t^{θ} with generator $-A^{\theta}$ instead);

recall that u is a mild solution of the Cauchy problem (1) if

$$u(t) = T_t f + \int_0^t T_{t-s} F(u(s)) \, ds + \int_0^t T_{t-s} G(u(s)) \, dz^*(ds)$$

rewrite the last formal integral as

$$\int_0^t U_t(s) \, dz^*(s)$$

where

$$U_t(s)(w) := T_{t-s}(G(u(s)) \cdot w)$$

is for fixed sufficiently nice u with values in $H^\delta_{2,\infty}(\mu)$ and $q:=\frac{d_S}{\delta}$ shown to be a mapping

$U_t: [0, t_0] \to L\left(H_q^{-\beta}(\mu), H_{2,\infty}^{\delta}(\mu)\right)$

with fractional order of smoothness α' slightly greater than α ,

by assumption $z^* \in C^{1-\alpha}([0, t_0], H_q^{-\beta}(\mu))$, and consequently, has fractional order of smoothness $1 - \alpha' < 1 - \alpha$, so that we can define

$$\int_0^t U_t(s) \, dz^*(s) := \int_0^t D_{0+}^{\alpha'} U_t(s) \left(D_{t-}^{1-\alpha'} z_t^*(s) \right) \, ds$$

for left and right sided fractional derivatives $D_{0+}^{\alpha'}$ and $D_{t-}^{1-\alpha'}$ (and $z_t^* := z^* - z^*(t)$).

If the noise coefficient functions are **linear**, the L_{∞} -norms can be omitted. This leads to solutions for all spectral dimensions: Let $0 < \theta \leq 1$.

$$U_t(s)(w) := T_{t-s}(G(u(s)) \cdot w)$$

is for fixed sufficiently nice u with values in $H^\delta_{2,\infty}(\mu)$ and $q:=\frac{d_S}{\delta}$ shown to be a mapping

$U_t: [0, t_0] \to L\left(H_q^{-\beta}(\mu), H_{2,\infty}^{\delta}(\mu)\right)$

with fractional order of smoothness α' slightly greater than α ,

by assumption $z^* \in C^{1-\alpha}([0, t_0], H_q^{-\beta}(\mu))$, and consequently, has fractional order of smoothness $1 - \alpha' < 1 - \alpha$, so that we can define

$$\int_0^t U_t(s) \, dz^*(s) := \int_0^t D_{0+}^{\alpha'} U_t(s) \left(D_{t-}^{1-\alpha'} z_t^*(s) \right) \, ds$$

for left and right sided fractional derivatives $D_{0+}^{\alpha'}$ and $D_{t-}^{1-\alpha'}$ (and $z_t^* := z^* - z^*(t)$).

If the noise coefficient functions are **linear**, the L_{∞} -norms can be omitted. This leads to solutions for all spectral dimensions: Let $0 < \theta \leq 1$.

Theorem. (i) For linear coefficient functions F and G:

If
$$z^* \in C^{1-\alpha}([0,t_0], H_q^{-\theta\beta}(\mu))$$
, $q = \frac{d_S}{\delta}$, $f \in H_2^{2\gamma+\theta\delta}(\mu)$, $0 < \alpha, \beta, \gamma, \delta < 1$, $\alpha < \gamma$, $\beta < \delta < \frac{d_S}{2\theta}$ and

$$\gamma + \frac{\delta}{2} < 1 - \alpha - \frac{\beta}{2} \,,$$

then problem (1) has a unique mild solution $u \in W^{\gamma}([0, t_0], H_2^{\theta\delta}(\mu))$. This solution is also an element of $C^{\gamma}([0, t_0], H_2^{\theta\delta}(\mu))$.

(ii) For nonlinear F and G: the same for $W^{\gamma}([0, t_0], H_{2,\infty}^{\theta\delta}(\mu))$ and $C^{\gamma}([0, t_0], H_2^{\theta\delta}(\mu))$, if the last inequality in (i) is replaced by

$$\gamma + \frac{d_s}{4\theta} < 1 - \alpha - \frac{k}{2}$$

$$\left(||u||_{W^{\gamma}([0,t_0],H)} := \sup_{t \in [0,t_0]} \left(||u(t)||_H + \int_0^t \frac{||u(t) - u(s)||_H}{|t - s|^{1+\gamma}} ds\right)\right)$$

Standard example for \mathbf{z}^* : let $\{e_i\}_{i\in\mathbb{N}}$ be a complete orthonormal system of eigenfunctions of A in $L_2(\mu)$ and λ_i be the corresponding eigenvalues, $\{B_i^H(t)\}_{i\in\mathbb{N}}$ are i.i.d fractional Brownian motions in \mathbb{R} with Hurst exponent 0 < H < 1, and take for z^* the formal series

$$b^H(t):=\sum_{i=1}^\infty B^H_i(t)\,q_i\,e_i\quad\text{with}\quad \sum_{i=1}^\infty q^2_i\,\lambda_i^{-2\beta_*}<\infty\,,$$

for real coefficients q_i and a parameter $\beta_* \in (0,1)$, then we have a.s.

$$z^* = b^H \in C^{1-\alpha} \left([0, t_0], H_q^{-\beta}(\mu) \right)$$

for any $0 < 1 - \alpha < H$ and any (a) $\beta_* \leq \beta < 1$ and $1 < q \leq 2$, or (b) $\beta_* < \beta < 1$ and q > 2, provided the eigenfunctions satisfy $|e_i(x) - e_i(y)| \leq c \lambda_i^{\varepsilon/2} d(x, y)^{\varepsilon}$ for some $\varepsilon > 0$ (sufficient conditions: $d_S < 2$ or Hölder continuity of the heat kernel)

(convergence of the series in these spaces)