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Introduction
Necklace Splittings

A group of k thieves wants to evenly di-
vide a necklace with q types of beads among
themselves such that each thief receives the
same number of beads of each type. What
is the smallest number of cuts that suffice in
general?

Theorem (Alon) Every open necklace with
q types of beads and kai beads of each type
with 1 ≤ i ≤ q has a k-splitting of size at
most (k − 1)q.

Mass Equipartitions

Definition ∆(j, h) is the lowest dimension
where any configuration of j masses can al-
ways be equiparted by h hyperplanes into
2h orthants.

Previous Work
Ramos Conjecture
We know

∆(j, k) ≥ dj 2t − 1
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Ramos conjectured that this bound is tight.

Known Values of ∆(j, k)
∆(j, 1) = j by the Ham Sandwich Thm

∆(j, 2) = d 32je for j ∈ {2t − 1, 2t, 2t + 1}.
[2, 4]

∆(2, 2) = 3 and ∆(1, 3) = 3 [3]

The Ramos Conjecture remains unresolved.
Even ∆(1, 4) is still open.

Combined Methods
Splitings for k = 4

Theorem For k = 4 thieves and all q, there
exists a cyclic k-splitting of size at most
(k − 1)q.

We may view splittings of the necklace
among four people as equipartitions of q
masses into four orthants defined by two
hyperplanes. However, the equipartition
framework has the stricter property that op-
posite orthants (i.e. orthants that don’t share
a common half-space defined by any hy-
perplane) never receive adjacent necklace
pieces.
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k = 4, j = 2t

We first prove the statement for all
j = q ∈ {2t − 1, 2t, 2t + 1}. Since ∆(2t, 2) =
3 · 2t−1, there exists a suitable equipartition
in R3·2t−1

. We place the beads of the neck-
lace along the moment curve γ in R3·2t−1

As in [JM], place the nth bead on the point
γ(n) where γ(n) = (n, n2, . . . , n3·2t−1

). De-
fine the q masses as follows:

Ai := {γ(n) : the nth bead is of bead type i}.

Since the moment curve is in general po-
sition, the necklace intersects each hyper-
plane in at most 3 · 2t−1 points, yielding
2(3 · 2t−1) = 3 · 2t = (k − 1)q intersection
points, or cuts. Therefore, the maximum
number of necklace cuts that always suffice
by [AN] also suffice for a cyclic distribution
of necklace pieces for j = 2t masses.

New Results
j = 2t − 1, 2t + 1.

A potential issue arises for these values of
j. The bounds give minimal dimension d =
3 ·2t−1−1 and 3 ·2t−1 +2 respectively, yield-
ing up to 3·2t−2 and 3·2t+4 potential inter-
section points (or cuts) between the necklace
and at least one of the hyperplanes.

However, a typical necklace splitting only
requires at most 3(2t − 1) and 3(2t + 1)
cuts respectively. Perhaps in these cases
an extra cut is required to ensure a cyclic
distribution of the necklace. However, this
turns out not to be the case.

k = 4, all j
Let j = 2t − r. Place the necklace along the
moment curve in Rd where d = 3 · 2t−1.
This permits at most 3·2t intersection points
with two hyperplanes. Append 4 beads of r
new bead types to the end of the necklace
(as shown in the diagram below for r = 1).

This new necklace contains 2t bead types
and can be equiparted in this space. How-
ever the appended section must be parted
by precisely 3r cuts. This leaves at most
3 · 2t − 3r = 3(2t − r) cuts to equipart the
original necklace. Hence, Alon’s bound on
the number of cuts for a general necklace
splitting suffices for a cyclic splitting of any
j masses as well.

Future Work
Varying k.
We may generalize the notion of cyclic
necklace splittings for higher k. For
2t−1 < k ≤ 2t, place each thief on a vertex
of the t-dimensional hypercube. Allow two
thieves to receive adjacent necklace pieces
only if they share an edge of the hypercube.
We call this restricted division a binary
necklace splitting.

Conjecture Given a necklace with q types
of beads and k thieves, there exists a binary
necklace splitting of size (k − 1)q.
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