The pigeonhole principle

Marymount Manhattan College April 14, 2010

Outline

- Introduction
 - (Not So) Magic Squares
 - Pigeonholes
- 2 Examples
 - Someone's been using my initials.
 - Hairs in NYC
 - Triangular dartboard
 - A party problem
 - Birthdays

1. Introduction

(Not So) Magic Squares

The challenge

Fill in boxes with 1's and -1's so that **columns**, **rows**, and **diagonals** all have DIFFERENT sums.

SURPRISE!

It can't be done!

(Not So) Magic Squares

1 1	-1 -1	1 1	-1 -1 1 1
1 1	-1 -1	-1 -1	
1 -1 1 -1	-1 1	1 -1	-1 1
	-1 1	-1 1	1 -1
-1 1 1 1	1 -1	1 1	1 1
	1 1	-1 1	1 -1
1 -1	-1 1	-1 -1	-1 -1

T. Goldberg (Cornell)

(Not So) Magic Squares

Why can't it be done?

- different sums needed = 2 columns + 2 rows + 2 diagonals = 6
- biggest possible sum: 1+1=2 smallest possible sum: (-1)+(-1)=-2.
- Every possible sum is between (or equal to) -2 and 2.
- BUT, only five numbers from -2 to 2.

$$\#(sums needed) > \#(sums possible)$$

Therefore at least two of the sums must be the same!

This is the Pigeonhole Principle.

T. Goldberg (Cornell)

The pigeonhole principle

The principle

- If 6 pigeons have to fit into 5 pigeonholes, then some pigeonhole gets more than one pigeon.
- More generally, if #(pigeons) > #(pigeonholes), then some pigeonhole gets more than one pigeon.

Counting Argument → Combinatorics

The pigeonhole principle

Strategy for using pigeonhole principle

- Identify the pigeons and pigeonholes.
 (Want to assign a pigeonhole for each pigeon.)
- Is #(pigeons) > #(pigeonholes)?
- If YES, then some pigeonhole has to get more than one pigeon!

EXAMPLE: (Not So) Magic Squares

```
pigeons = different sums needed (6)
pigeonholes = possible sums (< 5)</pre>
```

Therefore 2 (or more) sums must be the same.

What about 6×6 ?

			-1		
	1	-1			
1					1
		-1		-1	
					1

- different sums needed = 6 columns + 6 rows + 2 diagonals = 14
- biggest possible sum: 1+1+1+1+1+1=6 smallest possible sum:

$$(-1) + (-1) + (-1) + (-1) + (-1) + (-1) = -6.$$

Nope! (Actually doesn't work for any $n \times n$.)

2. Examples

Someone's been using my initials.

How many first/last name initials are there?

- 26 possible letters.
- $26 \times 26 = 676$ possible pairs of initials.

CLAIM: At least 2 students at Marymount Manhattan College have the same first/last initials.

```
pigeons = MMC students
  pigeonholes = possible first/last initials
   \#(pigeons) \approx 2,100
\#(pigeonholes) = 676
```

Warning: Doesn't mean every student has an "initial twin"!

T. Goldberg (Cornell)

Someone's been using my initials.

How many first/middle/last name initials are there?

- 26 possible letters.
- Some people have no middle names, so include "blank" for middle initial.
- $26 \times 27 \times 26 = 18,252$ possible triples of initials.

CLAIM: At least 2 students at **Cornell University** have the same first/middle/last initials.

```
pigeons = CU students
  pigeonholes = possible first/middle/last initials
   \#(pigeons) \approx 20,600
\#(pigeonholes) = 18,252
```

Hairs in New York City

CLAIM: At any time in New York City, there are 2 people with the same number of hairs.

```
pigeons = people in New York City
  pigeonholes = possible # of hairs
   \#(pigeons) \approx 8,363,000
\#(pigeonholes) < 7,000,000
```

A triangular dartboard

Dartboard = equilateral triangle with side length of 2 feet

CLAIM: If you throw 5 darts (no misses), at least 2 will be within a foot of each other.

A triangular dartboard

- Divide triangle into 4 sub-triangles.
- Darts in same sub-triangle are within 1 foot of each other.

```
pigeons = darts (5)
pigeonholes = sub-triangles (4)
```

A party problem

Set-Up:

- Party with 10 people.
- Each guest counts how many guests she/he has met before.

Cool Fact:

At least 2 people will have met the same number of guests before!

A party problem

Cool Fact:

At least 2 people will have met the same number of guests before!

Why?

```
pigeons = party guests
pigeonholes = possible number of guests met before
```

- How many guests has each person met before? (0-9)
- 0 = met **no one** before.
 - 9 = met **everyone** before.
- 0 and 9 can't happen at the same party!
- number of guests met before: only nine possiblities! (0 - 8 or 1 - 9)

A party problem

Cool Fact:

At least 2 people will have met the same number of guests before!

```
pigeons = party guests (10)
pigeonholes = possible number of guests met before (9)
```

T. Goldberg (Cornell)

Birthday twins!

Question: How many people do you need to guarantee 2 of them share a birthday?

What are the odds?

So:

366 + 1 = 367 people $\rightarrow 100\%$ chance of shared birthday

It's amazing! 23 people 50% 99% 57 people 100 people 99.9999% 200 people 99.99999999999999999999999999

This is called **The Birthday Problem**.

Not really Pigeonhole Principle, but still about counting things.

THE END

Thank you for listening.

For many more Pigeonhole puzzles and examples, please see the Internet.