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Abstract

Symplectic geometry is a rich and beautiful field in pure mathematics
whose origins lie in classical physics. Specifically, symplectic spaces
arose as the natural setting in which to study Hamiltonian mechanics.
A symplectic structure is precisely what is needed to associate a
dynamical system on the space to each energy function.

I will give a little taste of what this subject is about, focusing on
symplectic structures on vector spaces and surfaces, and symmetries of
these structures. This talk should be accessible to students with a
background knowledge of multivariable calculus and some basic linear
algebra.
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What does “symplectic” mean?

Proto-Indo-European root
*plek-

Latin

vvmmmmmmmmmmmm
Greek

((QQQQQQQQQQQQ

com-plexus
Hermann Weyl // sym-plektos

“complex” = “symplectic” = “braided or plaited together”
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Classical mechanics

1. Classical mechanics
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Classical mechanics Newton’s Second Law

Particles moving in 3-space

Let R3 = configuration space = set of possible positions.

Position coordinates: q = (q1, q2, q3)

Consider a particle with mass m moving in configuration space under a
potential V (q).

V : configuration space→ R, (potential energy)

particle’s path: q(t) =
(
q1(t), q2(t), q3(t)

)

T. Goldberg (Cornell) A little taste of symplectic geometry October 19, 2009 7 / 37



Classical mechanics Newton’s Second Law

Newton’s Second Law

Newton’s Second Law

The force imparted upon the particle from the potential is equal to the
product of the particle’s mass and acceleration.

m q′′(t) = −∇V
(
q(t)

)

Particles want to decrease their potential energy, −∇V points the way.
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Classical mechanics Hamiltonian reformulation

Hamiltonian reformulation: phase space

position coordinates q = (q1, q2, q3)
momenta coordinates p = (p1, p2, p3)

 phase space

configuration space & possible momenta = phase space
R3 × R3 = R6

p(t) = m q′(t)

q(t) in configuration space  
(
q(t),p(t)

)
in phase space

m q′′(t) = −∇V
(
q(t)

)
 p′(t) = −∇V

(
q(t)

)
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Classical mechanics Hamiltonian reformulation

Hamiltonian reformulation: total energy function

Definition

The Hamiltonian function of a physical system,

H : phase space→ R,

measures the total energy of a moving particle.

H(q,p) = kinetic energy + potential energy
= 1

2 m |v|2 + V (q)
= 1

2m |p|
2 + V (q)
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Classical mechanics Hamiltonian reformulation

Hamilton’s Equations

H(q,p) =
1

2m
|p|2 + V (q) =

1

2m

(
p2
1 + p2

2 + p2
3

)
+ V (q1, q2, q3)

pi (t) = m q′i (t):

q′i (t) =
1

m
pi (t) =

∂H

∂pi

(
q(t),p(t)

)
p′(t) = −∇V

(
q(t)

)
:

p′i (t) = −∂V

∂qi

(
q(t)

)
= −∂H

∂qi

(
q(t),p(t)

)
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Classical mechanics Hamiltonian reformulation

Hamilton’s Equations

Hamilton’s Equations

q′i (t) =
∂H

∂pi

(
q(t),p(t)

)
p′i (t) = −∂H

∂qi

(
q(t),p(t)

)
Newton’s Second Law ⇐⇒ Hamilton’s Equations

particle’s motion satisfies the dynamics of the physical system
⇐⇒ Hamilton’s equations are satisfied
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Classical mechanics Hamiltonian reformulation

The Hamiltonian vector field

q′i = ∂H
∂pi

, p′i = − ∂H
∂qi

Definition

The Hamiltonian vector field of H is the vector field XH on phase space
defined by

XH :=

(
∂H

∂p1
,
∂H

∂p2
,
∂H

∂p3
,− ∂H

∂q1
,− ∂H

∂q2
,− ∂H

∂q3

)
(dynamics determined by the energy function H)

Hamilton’s Equations, second version(
q′(t),p′(t)

)
= XH

(
q(t),p(t)

)
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Classical mechanics Hamiltonian reformulation

Key property of the Hamiltonian vector field

Claim

XH points in directions of constant energy.

Proof. Suffices to show derivative of H in direction XH is zero.

DXH
(H) = ∇H · XH

=

(
∂H

∂q
,
∂H

∂p

)
·
(
∂H

∂p
,−∂H

∂q

)
=

(
∂H

∂q
· ∂H

∂p

)
−
(
∂H

∂p
· ∂H

∂q

)
= 0.
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Classical mechanics Hamiltonian reformulation

The symplectic structure

H =⇒ XH

Hamiltonian function Hamiltonian vector field
energy dynamics

↑
symplectic
structure
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Symplectic linear algebra

2. Symplectic linear algebra
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Symplectic linear algebra Linear symplectic structures

Bilinear forms

Let V = real n-dimensional vector space.

Definition

A bilinear form is a map β : V × V → R that is linear in each variable.

β(a u + v,w) = a β(u,w) + β(v,w),

β(u, a v + w) = a β(u, v) + β(u,w).

Given a basis for V , can represent β by an (n × n)-matrix [β]:

β(u, v) = [u]t [β] [v].

Example: dot product on R2:

(u1, u2) · (v1, v2) =
[
u1 u2

] [1 0
0 1

] [
v1

v2

]
= u1v1 + u2v2.
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Symplectic linear algebra Linear symplectic structures

Linear symplectic structures

Definition

A symplectic product, a.k.a. linear symplectic structure, is a
skew-symmetric and non-degenerate bilinear form.

skew-symmetric:

β(u, v) = −β(v,u) for all u, v ∈ V

[β]t = −[β]

non-degenerate:

(β(u, v) = 0 for all v ∈ V ) ⇐⇒ (u = 0)

[β] is invertible
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Symplectic linear algebra Linear symplectic structures

Symplectic products versus inner products

symplectic product = skew-symmetric & non-degenerate

Compare with:

inner product = symmetric & positive definite
(⇒ non-degenerate)

e.g. dot product on Rn

Note: if β is an inner product, then
√
β(u,u) = “length” of u,

e.g. ‖~v‖ =
√
~v · ~v in Rn,

BUT if β is symplectic, then β(u,u) = 0 for all u!
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Symplectic linear algebra Linear symplectic structures

Symplectic ⇒ even-dimensional

All vector spaces have inner products, but not all have symplectic products!

Claim

If ω : V × V → R is symplectic, then dim V is even.

Proof. Let n = dim V .

By skew-symmetry: [ω]t = −[ω],

so det[ω] = det([ω]t) = det(−[ω]) = (−1)n det[ω],

so det[ω] = (−1)n det[ω].

By non-degeneracy: [ω] is invertible,

so det[ω] 6= 0, so (−1)n = 1, so n is even.
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Symplectic linear algebra The model symplectic structure

An example

Let V = R2, u = (x , y), v = (a, b).

Define ω by [ω] =

[
0 1
−1 0

]
.

ω(u, v) =
[
x y

] [ 0 1
−1 0

] [
a
b

]
= xb − ay

= det

[
x a
y b

]
= oriented area of parallelogram(u, v).
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Symplectic linear algebra The model symplectic structure

The standard symplectic structure on R2n

Definition

The standard symplectic structure ω on R2n is [ω] =

[
0 I
−I 0

]
.

If u = (x1, . . . , xn, y1, . . . , yn), v = (a1, . . . , an, b1, . . . , bn), then

ω(u, v) = (x1b1 − a1y1) + · · ·+ (xnbn − anyn).

Note:

[ω]t =

[
0 I
−I 0

]t

=

[
0t (−I)t

It 0t

]
=

[
0 −I
I 0

]
= −[ω],

det[ω] = − det(I) · det(−I) = (−1)n+1 6= 0.
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Symplectic linear algebra The model symplectic structure

The gradient and Hamiltonian vector fields

Let f : R2n → R be differentiable.
Recall: the gradient of f is the vector field ∇f defined by

∇f :=
(
∂f
∂x1
, . . . , ∂f

∂xn
, ∂f
∂y1
, . . . , ∂f

∂yn

)
.

Alternatively, can be defined by the identity

Dvf = ∇f · v for all v ∈ R2n.

Definition

The Hamiltonian vector field of f , a.k.a. the symplectic gradient, is
the unique vector field Xf satisfying

Dvf = ω
(
Xf , v

)
for all v ∈ R2n.

(Xf exists because ω is non-degenerate.)
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Symplectic linear algebra The model symplectic structure

Key property of Hamiltonian vector fields

Claim

A function f : R2n → R is constant in the direction of its Hamiltonian
vector field Xf .

Proof. Suffices to show derivative of f in direction Xf is zero.

DXf
(f ) = ω

(
Xf ,Xf

)
= 0,

since ω is skew-symmetric.
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Symplectic linear algebra The model symplectic structure

Computing Hamiltonian vector fields

Claim

For the standard ω on R2n,

Xf =

(
∂f

∂y1
, . . . ,

∂f

∂yn
,− ∂f

∂x1
, . . . ,− ∂f

∂xn

)
.

Proof. Let v = (a,b) ∈ R2n. Then

ω(Xf , v) =
[
∂f
∂y −∂f

∂x

] [ 0 I
−I 0

] [
a
b

]
=

∂f

∂x
· a +

∂f

∂y
· b

= ∇f · v
= Dv(f ).
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Symplectic linear algebra The model symplectic structure

Playing “Find the Hamiltonian!”

Let χ be a vector field on R2n.

Is χ conservative? ←→ Is there an f such that χ = ∇f ?

Is χ Hamiltonian? ←→ Is there an f such that χ = Xf ?
←→ Does χ represent the dynamics

corresponding to some energy function?
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Momentum and moment maps

3. Momentum &
moment maps
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Momentum and moment maps Angular momentum

Rotations in 3-space

Back to phase space of R3, with coordinates (q,p).
Consider rotations in R3.

a ∈ R3  Ra, a rotation about axis spanned by a
according to the right-hand rule

 χa, a vector field on phase space,
points tangent to direction of rotation

χa

(
q,p
)

=
(
a× q, a× p

)
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Momentum and moment maps Angular momentum

Specifics of the rotations

a ∈ R3  A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3,R)

 Ra := exp A ∈ SO(3,R)

Ra is rotation by angle cos−1(cos ‖a‖) about the axis spanned by a
according to the right-hand rule.

T. Goldberg (Cornell) A little taste of symplectic geometry October 19, 2009 29 / 37



Momentum and moment maps Angular momentum

Angular momentum

Angular momentum:

µ : phase space→ R3, µ
(
q,p
)

:= q× p.

For the rotation given by a ∈ R3:

µa : phase space→ R, µa
(
q,p
)

:=
(
q× p

)
· a.

Cool fact

µa is the Hamiltonian function for the rotation vector field χa!

χa = Xµa

This is a prototype for moment maps in symplectic geometry!
(winning strategy for “Find the Hamiltonian!” from symmetry vector
fields)
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Momentum and moment maps The Schur–Horn Theorem

Hermitian matrices

Definition

A complex (n × n)-matrix A is Hermitian if

At = A.

Hermitian matrices . . .

. . . have real diagonal entries.

. . . are diagonalizable.

. . . have real eigenvalues.
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Momentum and moment maps The Schur–Horn Theorem

The Schur–Horn Theorem

Fix n real numbers λ = (λ1, . . . , λn).

Let Hλ = set of Hermitian matrices with eigenvalues λ (in any order),
a.k.a. isospectral set.

Schur–Horn Theorem

Define f : Hλ → Rn by f (A) = diagonal(A),A11 . . . A1n
...

. . .
...

An1 . . . Ann

 7→
A11

...
Ann

 .
Then

f
(
Hλ
)

is a convex polytope,
and

its vertices are the permutations of λ.
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Momentum and moment maps The Schur–Horn Theorem

A Schur–Horn example

Example: n = 3, λ = (3, 2, 1).

f (Hλ) lives in R3, but is contained in the plane x + y + z = 6.
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Momentum and moment maps The Schur–Horn Theorem

The symplectic convexity theorem

Schur–Horn Theorem: originally proved by min/max argument (1950s).
No symplectic stuff.

BUT IN FACT:

Hλ is a symplectic space.

f : Hλ → Rn is a symplectic moment map.

Schur–Horn Theorem is a special case of the
Atiyah/Guillemin–Sternberg Theorem (1982),
about convexity of images of moment maps.
(MUCH more general)
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Winding down

4. Winding down
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Winding down Summary

Summary

Hamilton’s Equations: H (energy)  XH (dynamics)

Linear symplectic structure ≈ skew-symmetric inner product.

Symplectic gradient: f
ω7−→ Xf

Moment maps find the Hamiltonian for symmetry vector fields,
e.g. angular momentum.

Moment maps have great properties, e.g. convexity theorem.

Schur–Horn Theorem:
A convexity theorem example you can get your hands on.
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Winding down Summary

THE END

Thank you for listening.
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