A little taste of symplectic geometry

Mathematics Seminar
The Richard Stockton College of New Jersey
Pomona, New Jersey

Timothy E. Goldberg

Cornell University
Ithaca, New York
goldberg@math.cornell.edu

October 19, 2009

Abstract

Symplectic geometry is a rich and beautiful field in pure mathematics whose origins lie in classical physics. Specifically, symplectic spaces arose as the natural setting in which to study Hamiltonian mechanics. A symplectic structure is precisely what is needed to associate a dynamical system on the space to each energy function.

I will give a little taste of what this subject is about, focusing on symplectic structures on vector spaces and surfaces, and symmetries of these structures. This talk should be accessible to students with a background knowledge of multivariable calculus and some basic linear algebra.

What does "symplectic" mean?

 $\hbox{``complex''} = \hbox{``symplectic''} = \hbox{``braided or plaited together''}$

Outline

- Classical mechanics
 - Newton's Second Law
 - Hamiltonian reformulation
- Symplectic linear algebra
 - Linear symplectic structures
 - The model symplectic structure
- Momentum and moment maps
 - Angular momentum
 - The Schur-Horn Theorem
- Winding down
 - Summary

1. Classical mechanics

Particles moving in 3-space

Let $\mathbb{R}^3 =$ configuration space = set of possible positions.

Position coordinates: $\mathbf{q} = (q_1, q_2, q_3)$

Consider a particle with mass m moving in configuration space under a **potential** $V(\mathbf{q})$.

V: configuration space $\to \mathbb{R}$, (potential energy)

particle's path: $\mathbf{q}(t) = (q_1(t), q_2(t), q_3(t))$

Newton's Second Law

Newton's Second Law

The force imparted upon the particle from the potential is equal to the product of the particle's mass and acceleration.

$$m \mathbf{q}''(t) = -\nabla V(\mathbf{q}(t))$$

Particles want to decrease their potential energy, $-\nabla V$ points the way.

Hamiltonian reformulation: phase space

$$\left.\begin{array}{ll} \text{position coordinates} & \mathbf{q}=(q_1,q_2,q_3)\\ \text{momenta coordinates} & \mathbf{p}=(p_1,p_2,p_3) \end{array}\right\} \text{ phase space} \\ \text{configuration space} & \text{possible momenta} & = & \mathbf{phase space}\\ \mathbb{R}^3 & \times & \mathbb{R}^3 & = & \mathbb{R}^6 \end{array}$$

$$\mathbf{p}(t)=m\,\mathbf{q}'(t)$$

$$\mathbf{q}(t)$$
 in configuration space \leadsto $\left(\mathbf{q}(t),\mathbf{p}(t)\right)$ in phase space

$$m \mathbf{q}''(t) = -\nabla V(\mathbf{q}(t)) \qquad \leadsto \qquad \mathbf{p}'(t) = -\nabla V(\mathbf{q}(t))$$

Hamiltonian reformulation: total energy function

Definition

The **Hamiltonian function** of a physical system,

$$H$$
: phase space $\to \mathbb{R}$,

measures the total energy of a moving particle.

$$H(\mathbf{q}, \mathbf{p}) = \text{kinetic energy} + \text{potential energy}$$

= $\frac{1}{2} m |\mathbf{v}|^2 + V(\mathbf{q})$
= $\frac{1}{2m} |\mathbf{p}|^2 + V(\mathbf{q})$

Hamilton's Equations

$$H(\mathbf{q}, \mathbf{p}) = \frac{1}{2m} |\mathbf{p}|^2 + V(\mathbf{q}) = \frac{1}{2m} (p_1^2 + p_2^2 + p_3^2) + V(q_1, q_2, q_3)$$

$$p_i(t) = m q_i'(t)$$
:

$$q_i'(t) = \frac{1}{m} \rho_i(t) = \frac{\partial H}{\partial p_i}(\mathbf{q}(t), \mathbf{p}(t))$$

$$\mathbf{p}'(t) = -\nabla V(\mathbf{q}(t))$$
:

$$p_i'(t) = -rac{\partial V}{\partial q_i}(\mathbf{q}(t)) = -rac{\partial H}{\partial q_i}(\mathbf{q}(t), \mathbf{p}(t))$$

Hamilton's Equations

Hamilton's Equations

$$q_i'(t) = \frac{\partial H}{\partial p_i}(\mathbf{q}(t), \mathbf{p}(t))$$

 $p_i'(t) = -\frac{\partial H}{\partial q_i}(\mathbf{q}(t), \mathbf{p}(t))$

- Newton's Second Law ← Hamilton's Equations
- particle's motion satisfies the **dynamics** of the physical system
 Hamilton's equations are satisfied

The Hamiltonian vector field

$$q_i' = \frac{\partial H}{\partial p_i}, \ p_i' = -\frac{\partial H}{\partial q_i}$$

Definition

The **Hamiltonian vector field** of H is the vector field X_H on phase space defined by

$$X_H := \left(\frac{\partial H}{\partial p_1}, \frac{\partial H}{\partial p_2}, \frac{\partial H}{\partial p_3}, -\frac{\partial H}{\partial q_1}, -\frac{\partial H}{\partial q_2}, -\frac{\partial H}{\partial q_3}\right)$$

(dynamics determined by the energy function H)

Hamilton's Equations, second version

$$(\mathbf{q}'(t), \mathbf{p}'(t)) = X_H(\mathbf{q}(t), \mathbf{p}(t))$$

Key property of the Hamiltonian vector field

Claim

 X_H points in directions of constant energy.

Proof. Suffices to show derivative of H in direction X_H is zero.

$$D_{X_{H}}(H) = \nabla H \cdot X_{H}$$

$$= \left(\frac{\partial H}{\partial \mathbf{q}}, \frac{\partial H}{\partial \mathbf{p}}\right) \cdot \left(\frac{\partial H}{\partial \mathbf{p}}, -\frac{\partial H}{\partial \mathbf{q}}\right)$$

$$= \left(\frac{\partial H}{\partial \mathbf{q}} \cdot \frac{\partial H}{\partial \mathbf{p}}\right) - \left(\frac{\partial H}{\partial \mathbf{p}} \cdot \frac{\partial H}{\partial \mathbf{q}}\right)$$

$$= 0.$$

The symplectic structure

2. Symplectic linear algebra

Bilinear forms

Let V = real n-dimensional vector space.

Definition

A bilinear form is a map $\beta \colon V \times V \to \mathbb{R}$ that is linear in each variable.

$$\beta(\mathbf{a}\mathbf{u} + \mathbf{v}, \mathbf{w}) = a\beta(\mathbf{u}, \mathbf{w}) + \beta(\mathbf{v}, \mathbf{w}),$$

$$\beta(\mathbf{u}, a\mathbf{v} + \mathbf{w}) = a\beta(\mathbf{u}, \mathbf{v}) + \beta(\mathbf{u}, \mathbf{w}).$$

Given a basis for V, can represent β by an $(n \times n)$ -matrix $[\beta]$:

$$\beta(\mathbf{u}, \mathbf{v}) = [\mathbf{u}]^t [\beta] [\mathbf{v}].$$

Example: dot product on \mathbb{R}^2 :

$$(u_1,u_2)\cdot(v_1,v_2)=egin{bmatrix} u_1 & u_2\end{bmatrix}egin{bmatrix} 1 & 0 \ 0 & 1\end{bmatrix}egin{bmatrix} v_1 \ v_2\end{bmatrix}=u_1v_1+u_2v_2.$$

Linear symplectic structures

Definition

A symplectic product, a.k.a. linear symplectic structure, is a *skew-symmetric* and *non-degenerate* bilinear form.

skew-symmetric:

- $\beta(\mathbf{u}, \mathbf{v}) = -\beta(\mathbf{v}, \mathbf{u})$ for all $\mathbf{u}, \mathbf{v} \in V$
- $\bullet \ [\beta]^t = -[\beta]$

non-degenerate:

- $(\beta(\mathbf{u}, \mathbf{v}) = 0 \text{ for all } \mathbf{v} \in V) \iff (\mathbf{u} = \mathbf{0})$
- $[\beta]$ is invertible

Symplectic products versus inner products

symplectic product = skew-symmetric & non-degenerate

Compare with:

inner product = symmetric & positive definite
$$(\Rightarrow \text{non-degenerate})$$
 e.g. dot product on \mathbb{R}^n

Note: if
$$\beta$$
 is an inner product, then $\sqrt{\beta(\mathbf{u},\mathbf{u})}=$ "length" of \mathbf{u} , e.g. $\|\vec{v}\|=\sqrt{\vec{v}\cdot\vec{v}}$ in \mathbb{R}^n , BUT if β is symplectic, then $\beta(\mathbf{u},\mathbf{u})=0$ for all \mathbf{u} !

Symplectic \Rightarrow even-dimensional

All vector spaces have inner products, but not all have symplectic products!

Claim

If $\omega \colon V \times V \to \mathbb{R}$ is symplectic, then dim V is even.

Proof. Let $n = \dim V$.

- By skew-symmetry: $[\omega]^t = -[\omega]$, so $det[\omega] = det([\omega]^t) = det(-[\omega]) = (-1)^n det[\omega],$ so $det[\omega] = (-1)^n det[\omega]$.
- By non-degeneracy: $[\omega]$ is invertible, so $det[\omega] \neq 0$, so $(-1)^n = 1$, so *n* is even.

An example

Let
$$V = \mathbb{R}^2$$
, $\mathbf{u} = (x, y)$, $\mathbf{v} = (a, b)$.

Define ω by $[\omega] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

$$\omega(\mathbf{u}, \mathbf{v}) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$= xb - ay$$

$$= \det \begin{bmatrix} x & a \\ y & b \end{bmatrix}$$

$$= \text{oriented area of parallelogram}(\mathbf{u}, \mathbf{v}).$$

The standard symplectic structure on \mathbb{R}^{2n}

Definition

The standard symplectic structure ω on \mathbb{R}^{2n} is $[\omega] = \begin{bmatrix} 0 & \mathrm{I} \\ -\mathrm{I} & 0 \end{bmatrix}$. If $\mathbf{u} = (x_1, \dots, x_n, y_1, \dots, y_n), \mathbf{v} = (a_1, \dots, a_n, b_1, \dots, b_n),$ then $\omega(\mathbf{u},\mathbf{v}) = (x_1b_1 - a_1v_1) + \cdots + (x_nb_n - a_nv_n).$

Note:

$$[\omega]^t = \begin{bmatrix} 0 & \mathbf{I} \\ -\mathbf{I} & 0 \end{bmatrix}^t = \begin{bmatrix} 0^t & (-\mathbf{I})^t \\ \mathbf{I}^t & 0^t \end{bmatrix} = \begin{bmatrix} 0 & -\mathbf{I} \\ \mathbf{I} & 0 \end{bmatrix} = -[\omega],$$
$$\det[\omega] = -\det(\mathbf{I}) \cdot \det(-\mathbf{I}) = (-1)^{n+1} \neq 0.$$

The gradient and Hamiltonian vector fields

Let $f: \mathbb{R}^{2n} \to \mathbb{R}$ be differentiable.

Recall: the **gradient** of f is the vector field ∇f defined by

$$\nabla f := \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}, \frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n}\right).$$

Alternatively, can be defined by the identity

$$D_{\mathbf{v}}f = \nabla f \cdot \mathbf{v}$$
 for all $\mathbf{v} \in \mathbb{R}^{2n}$.

Definition

The **Hamiltonian vector field** of f, a.k.a. the **symplectic gradient**, is the unique vector field X_f satisfying

$$D_{\mathbf{v}}f = \omega(X_f, \mathbf{v})$$
 for all $\mathbf{v} \in \mathbb{R}^{2n}$.

 $(X_f \text{ exists because } \omega \text{ is non-degenerate.})$

Key property of Hamiltonian vector fields

Claim

A function $f: \mathbb{R}^{2n} \to \mathbb{R}$ is constant in the direction of its Hamiltonian vector field X_f .

Proof. Suffices to show derivative of f in direction X_f is zero.

$$D_{X_f}(f) = \omega(X_f, X_f) = 0,$$

since ω is skew-symmetric.

Computing Hamiltonian vector fields

Claim

For the standard ω on \mathbb{R}^{2n} .

$$X_f = \left(\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n}, -\frac{\partial f}{\partial x_1}, \dots, -\frac{\partial f}{\partial x_n}\right).$$

Proof. Let $\mathbf{v} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{2n}$. Then

$$\omega(X_f, \mathbf{v}) = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{y}} & -\frac{\partial f}{\partial \mathbf{x}} \end{bmatrix} \begin{bmatrix} 0 & \mathbf{I} \\ -\mathbf{I} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} \\
= \frac{\partial f}{\partial \mathbf{x}} \cdot \mathbf{a} + \frac{\partial f}{\partial \mathbf{y}} \cdot \mathbf{b} \\
= \nabla f \cdot \mathbf{v} \\
= D_{\mathbf{v}}(f).$$

Playing "Find the Hamiltonian!"

Let χ be a vector field on \mathbb{R}^{2n} .

Is χ conservative? \longleftrightarrow Is there an f such that $\chi = \nabla f$?

Is χ Hamiltonian? \longleftrightarrow Is there an f such that $\chi = X_f$?

 \longleftrightarrow Does χ represent the dynamics

corresponding to some energy function?

3. Momentum & moment maps

Rotations in 3-space

Back to phase space of \mathbb{R}^3 , with coordinates (\mathbf{q}, \mathbf{p}) . Consider rotations in \mathbb{R}^3

- $\mathbf{a} \in \mathbb{R}^3 \quad \rightsquigarrow$ $R_{\mathbf{a}}$, a rotation about axis spanned by \mathbf{a} according to the right-hand rule
 - $\chi_{\mathbf{a}}$, a vector field on phase space, points tangent to direction of rotation

$$\chi_{\mathbf{a}}(\mathbf{q}, \mathbf{p}) = (\mathbf{a} \times \mathbf{q}, \mathbf{a} \times \mathbf{p})$$

Specifics of the rotations

$$\mathbf{a} \in \mathbb{R}^3 \qquad \leadsto \qquad A = egin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \in \mathfrak{so}(3,\mathbb{R})$$
 $\Longrightarrow \qquad R_{\mathbf{a}} := \exp A \in \mathrm{SO}(3,\mathbb{R})$

 $R_{\mathbf{a}}$ is rotation by angle $\cos^{-1}(\cos \|\mathbf{a}\|)$ about the axis spanned by \mathbf{a} according to the right-hand rule.

Angular momentum

Angular momentum:

$$\mu\colon \mathsf{phase} \ \mathsf{space} o \mathbb{R}^3, \qquad \mu(\mathsf{q},\mathsf{p}) := \mathsf{q} imes \mathsf{p}.$$

For the rotation given by $\mathbf{a} \in \mathbb{R}^3$:

$$\mu^{\mathbf{a}}$$
: phase space $ightarrow \mathbb{R}$, $\mu^{\mathbf{a}} ig(\mathbf{q}, \mathbf{p} ig) := ig(\mathbf{q} imes \mathbf{p} ig) \cdot \mathbf{a}$.

Cool fact

 $\mu^{\mathbf{a}}$ is the Hamiltonian function for the rotation vector field $\chi_{\mathbf{a}}$!

$$\chi_{\mathbf{a}} = X_{\mu^{\mathbf{a}}}$$

This is a prototype for **moment maps** in symplectic geometry! (winning strategy for "Find the Hamiltonian!" from symmetry vector fields)

Hermitian matrices

Definition

A complex $(n \times n)$ -matrix A is **Hermitian** if

$$\overline{A^t} = A$$
.

Hermitian matrices . . .

- ... have real diagonal entries.
- ... are diagonalizable.
- ... have real eigenvalues.

The Schur-Horn Theorem

Fix *n* real numbers $\lambda = (\lambda_1, \dots, \lambda_n)$.

Let $\mathcal{H}_{\lambda} = \text{set}$ of Hermitian matrices with eigenvalues λ (in any order), a.k.a. isospectral set.

Schur-Horn Theorem

Define $f: \mathcal{H}_{\lambda} \to \mathbb{R}^n$ by f(A) = diagonal(A),

$$\begin{bmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{bmatrix} \mapsto \begin{bmatrix} A_{11} \\ \vdots \\ A_{nn} \end{bmatrix}.$$

Then

- $f(\mathcal{H}_{\lambda})$ is a **convex polytope**, and
- its vertices are the permutations of λ .

A Schur-Horn example

Example: n = 3, $\lambda = (3, 2, 1)$.

 $f(\mathcal{H}_{\lambda})$ lives in \mathbb{R}^3 , but is contained in the plane x + y + z = 6.

The symplectic convexity theorem

Schur–Horn Theorem: originally proved by min/max argument (1950s). No symplectic stuff.

BUT IN FACT:

- \mathcal{H}_{λ} is a symplectic space.
- $f: \mathcal{H}_{\lambda} \to \mathbb{R}^n$ is a symplectic moment map.
- Schur-Horn Theorem is a special case of the Atiyah/Guillemin-Sternberg Theorem (1982), about convexity of images of moment maps. (MUCH more general)

4. Winding down

Summary

- Hamilton's Equations: H (energy) $\rightsquigarrow X_H$ (dynamics)
- Linear symplectic structure \approx skew-symmetric inner product.
- Symplectic gradient: $f \stackrel{\omega}{\longmapsto} X_{\mathcal{F}}$
- Moment maps find the Hamiltonian for symmetry vector fields, e.g. angular momentum.
- Moment maps have great properties, e.g. convexity theorem.
- Schur–Horn Theorem:

A convexity theorem example you can get your hands on.

THE END

Thank you for listening.