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1 Lie Groups

1.1 Beginning Details

A Lie group is a group G with the structure of a smooth manifold, such that the two maps

G → G, x 7→ x−1 and G×G → G, (x, y) 7→ xy

are smooth. This last condition is equivalent to requiring that the single map G × G →
G, (x, y) 7→ xy−1 be smooth.
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A Lie group G comes with a lot of structure. There is a distinguished element e ∈ G,

the group identity. This means there is a distinguished tangent space, TeG ⊂ TG. For

each g ∈ G, we obtain three maps:

(1) left multiplication: Lg : G → G, h 7→ gh;

(1) right multiplication: Rg : G → G, h 7→ hg; and

(1) conjugation: Ψg : G → G, h 7→ Lg ◦Rg−1(h) = Rg−1 ◦ Lg(h) = ghg−1.

Each of these maps is smooth, and in fact they are all diffeomorphisms. The inverses

of Lg, Rg, and Ψg are Lg−1 , Rg−1 , and Ψg−1 , respectively. They are also group homo-

morphisms, so they are Lie group isomorphisms. Also, note that the left and right

multiplication maps commute with each other. For all g, h ∈ G, we have Lg ◦Rh = Rh ◦Lh.

Remark 1.1. For whatever reason, most of Lie theory is centered around the left multi-

plication maps, but it could just as well have been developed using the right multiplication

maps. ♦

The three maps above are canonical with respect to the Lie group structure. Therefore

all tangent spaces of G are canonically isomorphic. For g, h ∈ G, we have the canonical

linear isomorphisms

Tg(Lhg−1) : TgG → ThG and Tg(Lgh−1) : ThG → TgG.

Thus all tangent spaces of G are canonically isomorphic to the distinguished tangent space

of G, TeG.

Let g ∈ G. Because Ψg(e) = geg−1 = e, we have a canonical operator on the distin-

guished tangent space TeG, given by TeΨg : TeG → TeG. We denote this map by Ad(g).

Since Ψg is a diffeomorphism, Ad(g) = TeΨg is a linear isomorphism, so Ad(g) ∈ GL(TeG),

so

Ad: G → GL(TeG)

is a group representation of G, called the adjoint representation.

Recall that GL(TeG) is the inverse image of the open set R \ {0} under the continuous

(and smooth) map det : gl(TeG) → R, so it is an open subset of the vector space glTeG.
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Thus GL(TeG) is a smooth manifold with tangent bundle GL(TeG)× gl(TeG). Therefore

the tangent map of Ad at the identity e is a map TeAd: TeG → gl(TeG). By slightly

restructuring the domain and codomain, we obtain a map

ad: TeG× TeG → TeG, (v, w) 7→ ad(v)w := (TeAd)(v)w.

Note that ad is linear in both v and w, so ad is bilinear.

1.2 The Exponential Map and Useful Curves

For each Lie group G, we have the exponential map, expG : TeG → G. We usually omit

the subscript from exp if there is no confusion. It is defined by means of one-parameter

subgroups, which we will not discuss here. The exponential map is characterized by the

fact that if v ∈ TeG and s, t ∈ R, then

exp
(
(s + t)v

)
= exp(sv) · exp(tv)

(
= exp(tv) · exp(sv)

)
,

and the following Lemma.

Lemma 1.2. Let v ∈ TeG, and let c : R → G be the smooth curve given by t 7→ exp(tv).

Then ċ(0) = v.

Note that GL(TeG) is a Lie group under multiplication, and that its tangent space at

the identity is essentially gl(TeG). Therefore we have a map

expGL(TeG) : gl(TeG) → GL(TeG).

Since ad(v) ∈ gl(TeG) for all v ∈ TeG, we have

expGLTeG

(
ad(v)

)
∈ GL(TeG).

It is natural to ask what element of GL(TeG) this might be.

Theorem 1.3. Let v ∈ TeG. Then

Ad(expG v) = expGL(TeG)

(
adv

)

3



Remark 1.4. Dropping the subscripts from the exponential maps, we obtain the commu-

tative diagram

g ad //

exp

��

gl(TeG)

exp

��
G

Ad
// GL(TeG)

♦

Combining Theorem 1.3 and Lemma 1.2 yields the following result.

Proposition 1.5. Let v, w ∈ TeG, and let c : R → TeG be the smooth curve given by

t 7→ Ad
(
exp(tv)

)
(w). Then

ċ(0) =
(
[X, Y ]

)
.

2 The Lie Algebra of a Lie Group

2.1 General Lie Algebras

A Lie algebra is a real vector space L equipped with a skew-symmetric bilinear map

L× L → L, (v, w) 7→ [v, w], called a bracket, which satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

for all u, v, w ∈ L. Two standard examples are the set of vector fields on a manifold with

the Lie bracket, or the set of n× n real (or complex) matrices with the bracket

[A,B] := AB −BA.

2.2 The Tangent Space at the Identity

The tangent space TeG at the identity is a real vector space. Using the three classes of

maps inherent in the Lie group structure, we can equip TeG with a bracket that makes it

a Lie algebra. The vector space TeG with this bracket is denoted g, and called the Lie

algebra of the Lie group G.

Each step in the construction of the Lie bracket for g is natural, in the sense that it

is preserved by smooth homomorphisms between Lie groups. Let H be another Lie group
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and ρ : G → H be a smooth homomorphism. The naturality of each step below will be

shown by a commutative diagram involving G, H, and ρ.

G
ρ //

Ψg

��

H

Ψρ(g)

��
G ρ

// H

As described above, for each g ∈ G, we obtain a Lie group isomorphism Ψg : G → G

and a linear isomorphism Ad(g) : TeG → TeG. Then Ad(g) ∈ GL(TeG), so we have a

smooth homomorphism Ad: G → GL(TeG).

TeG
Teρ //

Ad(g)

��

TeH

Ad(ρ(g))

��
TeG Teρ

// TeH

We define a bracket on TeG by [v, w] = ad(v)w. It remains to be shown that this

bracket is anti-symmetric and satisfies the Jacobi identity. We will not prove this here,

although it will follow from the fact that the Lie bracket of vector fields satisfies these

properties.

TeG
Teρ) //

ad(v)

��

TeH

ad((Teρ)v)

��
TeG Teρ

// TeH

2.3 Left Invariant Vector Fields

Definition 2.1. Let f : M→ nfold be a diffeomorphism between smooth manifolds, and

let X ∈ X(M) and Y ∈ X(N ). The pushforward of X by f is

f∗(X) := Tf ◦X ◦ f−1 ∈ X(N ),

and the pullback of Y by f is

f∗(Y ) := Tf−1 ◦ Y ◦ f ∈ X(M).
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Note that

f∗(Y ) = (f−1)∗(Y ) andfX(X) = (f−1)∗(X).

4

Definition 2.2. A vector field X ∈ X(G) is called left invariant if

(ThLg)
(
X(h)

)
= X

(
Lg(h)

)
= X(gh)

for all g, h ∈ G. This means the following diagram commutes for each g ∈ G.

G
X //

Lg

��

TG

TeLg

��
G

X
// TG

The set of all left invariant vector fields on G is denoted L(G). 4

Remark 2.3. Let X ∈ L(G). Then TLg ◦X = X ◦ Lg for all g ∈ G. Thus

TLg ◦X ◦ (Lg)−1 = X and (TLg)−1 ◦X ◦ Lg = X

for all g ∈ G. Certainly if a vector field satisfies either of the above equations for all

g ∈ G it must be left invariant. Therefore L(G) is the set of vector fields invariant under

pushforward by left multiplication, which is also the set of vector fields invariant under

pullback by left vector fields. ♦

The set L(G) is clearly a real vector space, but it is not clear what its dimension is.

There’s no reason to assume that the dimension be finite, but it is. It’s actually quite a

surprise.

Recall the Lie bracket of vector fields. This can be defined in terms of flows of vector

fields, or in terms of derivations. Let X, Y ∈ X(G) be vector fields, let Φt
X ,Φt

Y denote their

respective flows, and let DX ,DY denote their respective associated derivations. Then the

Lie bracket [X, Y ] ∈ X(G) is the unique vector field such that

[X, Y ] = LXY :=
d

dt

∣∣
t=0

(Φt
X)∗Y,

or equivalently,

D[X,Y ] = DX ◦DY −DY ◦DX .
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The pushforward of vector fields by diffeomorphisms preserves the Lie bracket [see page

144 in Conlon’s Differentiable Manifolds, 2nd Edition]. Since left invariant vector fields can

be categorized as those that are invariant under pushforward by all left multiplications,

this implies that the Lie bracket of two left invariant vector fields is also left invariant.

Therefore L(G) equipped with the Lie bracket is a Lie alegrba.

2.4 TeG ∼= L(G) as Vector Spaces

We have two Lie algebras associated with G: the tangent space at the identity, TeG, with

the bracket induced by ad, and the left invariant vector fields, mathcalL(G), with the Lie

bracket. In this section we will demonstrate that they are isomorphic as vector spaces.

Define a map ν : TeG → X(G) by

νξ(g) = TeLg(ξ)

for all ξ ∈ TeG and g ∈ G. Because tangent maps are linear, so is ν. For all ξ ∈ TeG and

g, h ∈ G we have

(ThLg)
(
νξ(h)

)
= (ThLg)

(
TeLh(ξ

)
= Te(Lg ◦ Lh)(ξ) = TeLgh(ξ) = νξ(gh) = (νξ ◦ Lg)(h).

Therefore νξ is left invariant, so ν really is a map TeG → L(G). Its inverse is (immediately)

given by the map

L(G) → TeG, X 7→ X(e) ∈ TeG.

2.5 TeG ∼= L(G) as Lie Algebras

To show that TeG and L(G) are isomorphic as Lie algebras as well as vector fields, we must

show that the map

ν : TeG → L(G)

preserves the brackets, i.e.

νad(ξ)η =
[
νξ, νη

]
for all ξ, η ∈ TeG. Since the Lie bracket of vector fields can be described easily in terms of

flows, it might be helpful to know what the flows of these vector fields look like.

7



Claim 2.4. Let ξ ∈ TeG. and g ∈ G. Then the flow of νξ through g is the curve c : R → G

given by

c(t) = Lg ◦ exp(tξ).

Proof. Note that c(0) = Lg ◦ exp(~0) = Lg(e) = g. Let t ∈ R. Then

˙c(t) =
d

ds

∣∣
s=t

c(t) =
d

ds

∣∣
s=0

c(s + t)

=
d

ds

∣∣
s=0

Lg ◦ exp
(
(s + t)ξ

)
=

d

ds

∣∣
s=0

Lg ◦ exp
(
(t + s)ξ

)
=

d

ds

∣∣
s=0

Lg

(
exp(tξ) · exp(sξ)

)
=

d

ds

∣∣
s=0

Lg ◦ Lexp(tξ)

(
exp(sξ)

)
=

d

ds

∣∣
s=0

Lg exp(tξ)

(
exp(sξ)

)
=

(
TeLg exp(tξ)

)( d

ds

∣∣
s=0

exp(sξ)
)

=
(
TeLg exp(tξ)

)
(ξ)

= νξ

(
g exp(tξ)

)
= νξ

(
c(t)

)
.

QED

Theorem 2.5. Let ξ, η ∈ TeG. Then

νad(ξ)η =
[
νξ, νη

]
.

Proof. Recall that the flow of νξ at time t ∈ R is the map G → G given by Rexp(tξ). Let

g ∈ G. Then using the definition of Ψ, Ad, and ν, the linearity of tangent maps, and

Proposition ??, we calculate

[νξ, νη](g) =
d

dt

∣∣
t=0

((
Rexp(tξ)

)
νeta

)
(g)

=
d

dt

∣∣
t=0

TRexp(tξ) ◦ νeta ◦R−1
exp(tξ)(g)

=
d

dt

∣∣
t=0

TRexp(tξ) ◦ νeta

(
g exp(−tξ)

)
=

d

dt

∣∣
t=0

TRexp(tξ) ◦ TLg exp(−tξ)(η)
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=
d

dt

∣∣
t=0

T
(
Rexp(tξ) ◦ Lg exp(−tξ)

)
(η)

=
d

dt

∣∣
t=0

T
(
Rexp(tξ) ◦ Lg ◦ Lexp(−tξ)

)
(η)

=
d

dt

∣∣
t=0

T
(
Lg ◦Rexp(tξ) ◦ L(exp(tξ))−1

)
(η)

=
d

dt

∣∣
t=0

(
TLg

)
◦

(
TΨexp(tξ)

)
(η)

=
d

dt

∣∣
t=0

(
TLg

)
◦Ad(exp tξ)(η)

=
(
TLg

)( d

dt

∣∣
t=0

Ad(exp tξ)η
)

=
(
TLg

)
[ξ, η]

= ν[ξ,η](g).

QED
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