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Introduction

The purpose of this notes is twofold. The first goal is to give a quick answer to
the question “What is representation theory about?” To answer this, we will
show by examples what are the most important results of this theory, and the
problems that it is trying to solve. To make the answer short we will not develop
all the formal details of the theory and we will give preference to examples over
proofs. Few results will be proved, and in the ones were a proof is given, we will
skip the technical details. We hope that the examples and arguments presented
here will be enough to give the reader and intuitive but concise idea of the
covered material.

The second goal of the notes is to be a guide to the reader interested in
starting a serious study of representation theory. Sometimes, when starting the
study of a new subject, it’s hard to understand the underlying motivation of
all the abstract definitions and technical lemmas. It’s also hard to know what
is the ultimate goal of the subject and to identify the important results in the
sea of technical lemmas. We hope that after reading this notes, the interested
reader could start a serious study of representation theory with a clear idea of
its goals and philosophy.

Lets talk now about the material covered on this notes. In the first section
we will state the celebrated Peter-Weyl theorem, which can be considered as a
generalization of the theory of Fourier analysis on the circle S1. Lets recall that
Fourier theory says that the functions {fn(x) = eln x} form a Hilbert basis for
the space L2(S1). The relation between this result and representation theory
is the following: Let G be a compact group, and let (π, V ) be an irreducible
representation of G, i.e., a morphism

π : G −→ GL(V )

such that the only invariant subspaces of V are {0} and V . Given a basis
{v1, . . . , vn} of V , we can associate to every element of g ∈ G a matrix π(g)
with coefficients in C. Observe that every coefficient defines in this fashion a
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function in the group. We will call this type of functions coefficient functions.
In the S1 case the coefficient functions are precisely the functions fn(x) = eln x,
and hence Fourier theory says that the coefficient functions of S1 form a Hilbert
basis for L2(S1). The Peter-Weyl theorem says that the same result is true for
any compact group G. At the end of this section we will give some indication
on how to get, given a compact group G, all its irreducible representations.

1 The Peter-Weyl Theorem

The Peter-Weyl Theorem is one of the most important results in representations
theory. This theorem relate the representation theory of a compact groupG with
the space L2(G) of the square integrable functions. We will start this sections
giving the basic definitions of a Lie group and a Lie algebra and the relation of
a Lie group with its Lie algebra, and we will set the notation that we will use
in the rest of this notes.

In the next subsection we will study the representations of a Lie group, with
special emphasis to the case where G is compact. The goal will be to decompose
the space L2(G) as a direct sum of irreducible representations under the left
and right regular action. For this we will first define the concept of irreducible,
completely reducible and unitary representation. The we will observe that if
G is compact, then every irreducible representation of G is unitary and finite
dimensional. Now given an irreducible representation of G, we can take the
space spanned by its coefficient functions. This space is invariant and irreducible
under the left and right regular action and forms an irreducible component of
L2(G). The Peter-Weyl theorem will then say that the direct sum of all this
components is enough to generate the space of square integrable functions.

From the Peter-Weyl theorem we see that to understand the space L2(G) is
enough to classify all the irreducible representations of G. In the last subsec-
tion we will observe that if G is a compact, connected and simply connected
Lie group, then its irreducible representations are in a 1-1 correspondence with
the irreducible, finite dimensional representations of its Lie algebra. Besides we
will observe that the Lie algebras of a compact group are reductive. There-
fore we can reduce the problem of calculating the irreducible representations of
compact Lie groups to the problem of finding the irreducible, finite dimensional
representations of the reductive Lie algebras.

1.1 Preliminaries

Definition 1.1 A Lie group is a group G, that also has the structure of an
smooth manifold, that is compatible with multiplication and with taking inverse,
i.e., the function

µ : G×G −→ G

(x, y) 7→ xy−1

is differentiable.
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Given an element a ∈ G we can associate to it two functions,

La : G −→ G and Ra : G −→ G
x 7→ ax x 7→ xa

of the group onto itself. This functions are diffeomorphism under the smooth
manifold structure and are called the left multiplication and right multiplication
respectively.

Definition 1.2 A Lie algebra is a vector space g together with a bilinear oper-
ation [·, ·] : g× g 7→ g, called the Lie bracket, with the following properties

1. [X,Y ] = −[Y,X] (Antisymmetry)

2. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi identity)

for all X,Y, Z ∈ g.

Let G be a Lie group, and let

g = Lie(G) := X(G)G

be the space of all left invariant vector fields. This space has a natural Lie
algebra structure given by the commutator of vector fields, [X,Y ] = XY −Y X,
and we will call it the Lie algebra associated to G.

Theorem 1.3 Given a Lie algebra g there exist a unique (up to isomorphism)
Lie group G̃ such that it is connected, simply connected and Lie(G̃) = g. Fur-
thermore, if G is another connected Lie group with Lie(G) = g, then there exists
a covering homomorphism p : G̃ −→ G.

1.2 Lie Group Representations

Definition 1.4 Let G be a Lie group, and let V be a locally convex topological
vector space (LCTVS). A representation of G on V is a homomorphism

π : G −→ GL(V )

that is continuous in the strong topology of V , i.e., the function (g, v) 7→ π(g)v
is continuous. In this case we say that (π, V ) is a representation of G.

Example 1.5 A) Let G = S1, and let

π : S1 −→ GL2(C)

θ 7→
[

cos θ − sin θ
sin θ cos θ

]
Then (π,C2) is a representation of S1.

B) Let G = SLn(R) and consider the representation given by assigning
to every element g ∈ G the linear transformation that it represents. This
repreentation is called the definition representation of G = SLn(R).
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Definition 1.6 We say that two representations (π, V ), (σ,W ), are equivalent,
if there exists a vector space isomorphism T : V −→W that commutes with the
group action, i.e, the following diagram is commutative.

V
π(g)−→ V

T

y ©
yT

W
π(g)−−−→ W

.

Example 1.7 Consider the following two representations of R∗,

x 7→
[
x 0
0 1/x

]
, y x 7→

[
1/x 0
0 x

]
,

it’s clear that the two representations are equivalent.

Definition 1.8 Let (π, V ) be a representations of G. We say that W ⊂ V is
an invariant subspace if π(g)W ⊂W for all g ∈ G.

Definition 1.9 We say that a representation (π, V ) of G is irreducible if the
only invariant subspaces are {0} and V .

Lemma 1.10 (Schur’s lemma) Let (π, V ) be an irreducible representation of
G and let T ∈ End(V ) be an equivariant transformation, i.e., π(g)T = Tπ(g),
for all g ∈ G. Then T = λId

Proof. To prove this lemma observe that we can always find an eigenvalue
λ of T . Hence Ker(T −λId) 6= {0}. Since Ker(T −λId) is an invariant subspace
under the action of G and V is irreducible, we should have that Ker(T −λId) =
V , i.e., T = λId. �

Definition 1.11 We say that a representation (π, V ) is completely reducible
if there exist invariant subspaces Vj ⊂ V, j = 1, . . . , l such that Vi ∩ Vj = {0}
and

V = ⊕Vj

Observe that no all representations are completely reducible, for example
the representation

π : R −→ GL(2,R)

x 7→
[

1 x
0 1

]
is not completely reducible.

Definition 1.12 Let H be a Hilbert space. A representation (π,H) is called
unitary if π(g) is a unitary operator for all g ∈ G, i.e.,

〈π(g)v, π(g)w〉 = 〈v, w〉 ∀g ∈ G.
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Observe that if dimH <∞, then every unitary representation is completely
reducible, because if V ⊂ H is an invariant subspace, then V ⊥ is also invariant.

From now on we will assume that G is a compact group. Let (π,H) be a
representation of G on the Hilbert space H with inner product 〈·, ·〉. Define a
new inner product (·, ·) on H by the formula

(v, w) =
∫
G

〈π(g)v, π(g)w〉 dg

where dg is a Haar measure on G. Since G is compact, Vol(G) < ∞ and the
above integral defines a new inner product that converges for all v, w ∈ H. It
is then easy to check that

(π(x)v, π(x)w) =
∫
G

〈π(gx)v, π(gx)w〉 dg

=
∫
G

〈π(g)v, π(g)w〉 dg = (v, w),

i.e, (π,H) is a unitary representation with respect to this new inner product.
(Here we have used that since G is compact, then it is unimodular, i.e., the left
and right measures are the same).

This is the so called “unitarian trick” of Hermann Weyl. Observe that using
this trick we can assume that any representation of a compat Lie group is unitary
and hence any finite dimensional representation is completely reducible, in fact
we also have the following result.

Theorem 1.13 Let G be a compact group, and let (π,H) be an irreducible
unitary representation of G. Then dim(H) <∞.

Example 1.14 A) Let G = S1. Then all the irreducible unitary representa-
tions of G are of the form θ 7→ einθ, n ∈ Z.

B) We can define two actions of G in the space L2(G), called the left regular
action and the right regular action defined, respectively, by

(La · f)(x) = f(a−1x) y (Ra · f)(x) = f(xa)

If G is unimodular, then

〈Laf, Lah〉 =
∫
G

Laf(x)Lah(x) dx =
∫
G

f(a−1x)h(a−1x) dx

=
∫
G

f(x)h(x) dx = 〈f, h〉

=
∫
G

f(xa)h(xa) dx = 〈Raf,Rah〉.

Putting this two actions together we obtain a unitary representation of G ×G
on L2(G).
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Observe that, as a Hilbert space

L2(S1) =
⊕̂
n∈Z

C einθ

and the space generated by every einθ is invariant under the regular action, i.e.,
L2(S1) is generated by the functions that we get from the irreducible represen-
tations of S1.

In general we have the following construction. Let G be a compact group,
and let (π,H) be a unitary and irreducible representation of G. Given v, w ∈ H,
we define a function cv,w : G −→ C by

cv,w(g) = 〈π(g)v, w〉

the functions cv,w are called the coefficient functions of the representation.

Observation 1.15 If (π, V ), (σ,W ) are two equivalent representations, then
the space generated by its coefficient functions are the same.

There is an slightly different way of looking at the coefficient functions. Let
v, w ∈ H and define Tv,w ∈ End(H) ' H ⊗H∗ by

Tv,w(u) = 〈v, u〉w

then

tr(π(g)−1T ) = Tr(u 7→ 〈ṽ, u〉π(g−1)w)
= 〈v, π(g)−1w〉 = 〈π(g)v, w〉 = cv,w(g)

Theorem 1.16 Let (π,H) be a unitary representation of G. Define an action
of G×G en End(H) by (g, h) · T = π(g)Tπ(h)−1, and let

A : End(H) −→ L2(G)
T 7→ (g 7→ Tr(π(g)−1T )

Then A is a G-equivariant linear transformation.

Definition 1.17 Given a representation (π,H) we define the character of the
representation to be the function χ(x) = Tr(π(x)). Observe that this function
has the property that χ(gxg−1) = χ(x).

Theorem 1.18 (Schur’s orthogonality relations) Let H be a finite dimen-
sional Hilbert space, and define and inner product on End(H) by 〈T, S〉 =
Tr(T ∗S).

A) If (π1, H1), (π2, H2) are two inequivalent irreducible representations of
G. Then for all T ∈ End(H1), S ∈ End(H2)

〈A(T ), A(S)〉 = 0 in L2(G)
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B) If S, T ∈ H, then

〈A(S), A(T )〉 =
1
d
〈S, T 〉

where d = dim H

Definition 1.19 Let G be a Lie group, we define its unitary spectrum as the
set

Ĝ =
{

equivalent classes of irreducible
unitary representations of G

}
.

If we put all of this results together we see that we can build an embedding⊕
γ∈Ĝ

A(Hγ ⊗Hγ
∗) ⊂ L2(G)

that is G × G equivariant. Peter-Weyl theorem says that this embedding is
actually a bijection!

Theorem 1.20

L2(G) =
⊕̂
γ∈Ĝ

A(Hγ ⊗Hγ
∗) =

⊕̂
γ∈Ĝ

A(End(Hγ))

Besides, if f ∈ C∞(G), then ⊕γ∈G̃fγ → f uniformly, where fγ is the projection
of f to the subspace A(End(Hγ)).

To close this subsection we would like to make a couple of remarks on the
Peter-Weyl theorem. We can define an action of g on C∞(G) by

(Xf)(g) =
d

dt

∣∣∣∣
t=0

f(g exptX)

and we can extend this action to define an action of U(g), the universal en-
veloping algebra of g, that in this way gets identified with the left invariant
differential operators on G. Observe that, using this identification, the space
of left and right differential operators is precisely the center of the universal
enveloping algebra, Z(g). By Schur’s lemma, every X ∈ Z(g) acts as a constant
on each of the irreducible components Hγ ⊗Hγ

∗. Following this argument we
see that if we have a differential equation on G that is bi-invariant under the
group action, then we can reduce the problem of solving this differential equa-
tion to the problem of solving some related algebraic equation. Is a general
principle in physics that the equations that define the fundamental forces of
nature should remain invariant under the space symmetries. In the case of a
Lie group G this translate to saying that we should be able to write this equa-
tions using bi-invariant differential operators. Observe that, in particular, the
Casimir element of g acts on G as the Laplace operator and is always in Z(g).
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Example 1.21 In the case where G = S1 we have that

∂

∂x
einx = in einx

and hence
∂2

∂x2
einx = −n2 einx.

This are the only eigenvalues of the Laplacian ∆ = ∂2

∂x2

1.3 Classification of irreducible representations of com-
pact Lie groups

Definition 1.22 Let g be a Lie algebra, and let V be a LCTVS. A representa-
tion of g on V is a map

π : g −→ gl(V )

such that π([X,Y ]) = [π(X), π(Y )] = π(X)π(Y )−π(Y )π(X), and is continuous
in the operator strong topology.

In a similar way to the group case, we can define the notions of irreducible,
completely reducible and unitary representation. Observe that in this case a
representation is called unitary if

〈Xv,w〉+ 〈v,Xw〉 = 0 for all v, w ∈ V , X ∈ g

Theorem 1.23 Let G be a compact connected and simply connected group, then
the irreducible representations of G are in a 1-1 correspondence with the irre-
ducible finite dimensional representations of g.

If (π,H) is a finite dimensional representation of G, we will call (dπ,H)
to the associated representation of g. This representations are related by the
formulas

d

dt

∣∣∣∣
t=0

π(exptX) = dπ(X).

π(exptX) = exp(t dπ(X))

If G is compact and connected, then (Ad, g) is a finite dimensional repre-
sentation of G and hence is completely reducible because using the “unitarian
trick” we can think that is a unitary representation. From this we find that
(ad, g) is completely reducible.

Definition 1.24 A Lie algebra g is said to be reductive if (ad, g) is completely
reducible.

Definition 1.25 A group G is said to be reductive if its Lie algebra g is reduc-
tive.
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Observation 1.26 If G is compact and connected, then g, and therefore G,
are reductive.

Theorem 1.27 If g is reductive, then,

g = ζ(g)⊕ [g, g]

where ζ(g) is the center of g and [g, g] si semisimple.

Let g be a reductive Lie algebra, and let (π, V ) be an irreducible represen-
tation of g. Then by Schur’s lemma if X ∈ ζ(g) then X acts as a constant, and
therefore there exists λ ∈ ζ(g)∗ such that π(X) = λ(X)Id for all X ∈ ζ(g). From
this we find that V is irreducible as a representation of [g, g] and hence all irre-
ducible representations of a reductive Lie algebra are made up of an irreducible
representation of [g, g] and an element in ζ(g)∗.

Definition 1.28 Let g be a Lie algebra. We can define on g a bilinear sym-
metric form, called the Cartan-Killing form, using the formula

B(X,Y ) = Tr(ad(X)ad(Y )).

Definition 1.29 A Lie algebra gu is said to be compact if its Cartan-Killing
form is nondegenerated and negative definite.

Theorem 1.30 A) If G is a compact Lie group such that its Lie algebra gu is
semisimple, then gu is a compact Lie algebra.

B) If g = Lie(G) is a compact Lie algebra, then G is a compact Lie group.

Theorem 1.31 Let g be a complex semisimple Lie algebra, then g has a compact
real form, i.e., there exists a real compact Lie algebra gu such that g = gu⊕ igu
as a real Lie algebra.

Example 1.32 Let

g = sl2(C) = {A ∈M2×2(C) | trA = 0} = Span{H,E, F}

where

H =
[

1 0
0 −1

]
, E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
and let

su2 = {A ∈M2×2|A∗ +A = 0} = Span
{[

i 0
0 −i

] [
0 −1
1 0

]
,

[
0 i
i 0

]}
.

Then gu := su2 is a real form of g, since clearly g = gu ⊕ igu. Observe that as
real Lie algebras sl2(R) = SpanR{H,E, F} and su2 are not isomorphic, however
their complexifications are.
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From all this results we see that we have simplified the problem of finding all
irreducible representations of a compact Lie group G to the problem of finding
all irreducible, finite dimensional representations of a semisimple Lie algebra g.
To complete the program established by the Peter-Weyl theorem we still need
to solve the following problems:

1. Classification of Simple Lie algebras. Killing practically solved this
problem, however he never constructed the exceptional Lie algebras, he
only mentioned that they could exists. It was finally Cartan in his 1894
thesis the one that constructed all of the exceptional Lie algebras besides
clarifying and simplifying Killing’s work.

2. Classify all the irreducible finite dimensional representations of
semisimple Lie algebras. Cartan and Weyl led the classification efforts
during the first part of the XX century. To achieve the classification they
used the system of weights and roots, and showed that this representations
are in 1-1 correspondence with the set of integral dominant weights of a
given Cartan subalgebra.

3. Describe Z(g) and the characters associated with the irreducible
representations. Harish-Chandra’s isomorphism stablish an isomor-
phism between Z(g) and S(h)W the algebra of W -invariant polynomials on
h where h ⊂ g is a Cartan subalgebra, and W is the corresponding Weyl
group. Harish-Chandra derived this result as part of his extraordinary
work on representation theory and harmonic analysis that he developed
mainly between the 50’s–70’s.
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