Math 3110 Preliminary Exam Solutions

1. Prove that there exists $x \in \mathbb{R}$ such that $x=\cos x$.

Let $f(x)=x, g(x)=\cos x$. Observe that

$$
f(0)=0<1=g(0)
$$

and

$$
f(\pi / 2)=\pi / 2>0=g(\pi / 2) .
$$

Hence, by the intersection principle, there exists $x \in[0, \pi / 2]$ such that

$$
x=f(x)=g(x)=\cos x
$$

2. Calculate

$$
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n
$$

Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n & =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+n}-n\right)\left(\sqrt{n^{2}+n}+n\right)}{\sqrt{n^{2}+n}+n} \\
& =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+n}+n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+1 / n}+1}=\frac{1}{2}
\end{aligned}
$$

3. Find the radius of convergence of each of the following power series:

We will use the ratio test to find the radius of convergence, R, for each of the following power series:
a) $\sum n^{3} x^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{3} x^{n+1}}{(n)^{3} x^{n}}\right|=\lim _{n \rightarrow \infty}(1+1 / n)^{3}|x|=|x| .
$$

Hence, $R=1$.
b) $\sum \frac{2^{n}}{n!} x^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(2)^{n+1} x^{n+1}}{(n+1)!}}{\frac{(2)^{n} x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty} \frac{2}{n+1}|x|=0 .
$$

Hence, $R=\infty$.
c) $\sum \frac{2^{n}}{n^{2}} x^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(2)^{n+1} x^{n+1}}{(n+1)^{2}}}{\frac{(2)^{n} x^{n}}{n^{2}}}\right|=\lim _{n \rightarrow \infty} \frac{2}{(1+1 / n)^{2}}|x|=2|x|
$$

Hence, $R=1 / 2$.
d) $\sum \frac{n^{3}}{3^{n}} x^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{3} x^{n+1}}{n^{n+1}}}{\frac{n^{3} x^{n}}{3^{n}}}\right|=\lim _{n \rightarrow \infty}(1+1 / n)^{3} \frac{|x|}{3}=\frac{|x|}{3} .
$$

Hence, $R=3$.
4. Prove that the function f defined by

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

is continuous at $x=0$. Draw a graph of the function.
Observe that, since $\left|\sin \frac{1}{x}\right| \leq 1$ for all $x \neq 0$,

$$
\begin{array}{ccc}
-|x| \leq x \sin \frac{1}{x} \leq & |x| & \text { for all } x \neq 0 . \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 .
\end{array}
$$

Hence, by the squeeze theorem,

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0=f(0)
$$

that is, f is continuous at $x=0$.

5. Suppose that f is a continuous function on $[-1,1]$ such that $x^{2}+(f(x))^{2}=1$ for all x. Show that either $f(x)=\sqrt{1-x^{2}}$ or $f(x)=-\sqrt{1-x^{2}}$. (Recall that if a is a positive number, then \sqrt{a} denotes the positive square root.)

Solving algebraically, we have that,

$$
\begin{equation*}
\text { for all } d \in[-1,1], \quad f(d)=\sqrt{1-d^{2}} \quad \text { or } \quad f(d)=-\sqrt{1-d^{2}} . \tag{1}
\end{equation*}
$$

From this, we can observe that

$$
\begin{equation*}
\text { If } f(d)=0, \quad \text { then } \quad d=1 \quad \text { or } \quad d=-1 . \tag{2}
\end{equation*}
$$

Assume, for the sake of contradiction, that there exists $-1<a, b<1$ such that

$$
\begin{equation*}
f(a)=\sqrt{1-a^{2}} \quad \text { and } \quad f(b)=-\sqrt{1-b^{2}} . \tag{3}
\end{equation*}
$$

We are removing the option $a, b= \pm 1$ because $f(1)=f(-1)=0=-0$, so the "sign" at $f(1)$ or $f(-1)$ doesn't really matter. Assume that $a \leq b$. (The case $a>b$ is completely analogous.) Then f is continuous in the closed interval $[a, b]$ with $f(a)>0$ and $f(b)<0$. By Bolzano's theorem,

$$
f(c)=0 \quad \text { for some }-1<a \leq c \leq b<1 .
$$

But this contradicts (2). Hence, statement (3) is false and we conclude that the function f satisfies

$$
\begin{equation*}
f(x)=\sqrt{1-x^{2}} \quad \text { for all } x \in[-1,1] \quad \text { or } \quad f(x)=-\sqrt{1-x^{2}} \quad \text { for all } x \in[-1,1] . \tag{4}
\end{equation*}
$$

(Compare statements (1) and (4).)

