
Teddy Einstein

Math 3110

HW4 Solutions

Problem 1: 6-1

Select a, b ∈ R and let x0 = a, x1 = b. Then continue the sequence by letting each new term be the

average of the preceding two:

xn =
xn−1 + xn−2

2
, n ≥ 2

i. Prove xn is Cauchy:

Proof. Claim: for n ≥ 2, xn − xn−1 = 2−(n−1)(b − a). For n = 2: ∣xn − xn−1∣ =
1
2
(x1 − x0) and

the claim holds. Suppose the claim holds for 2 ≤ n ≤ k. Then xk+1 − xk = 1
2
(xk − xk−1) =

1
2
⋅ 1
2−(k−1) (b − a), so the claim holds by induction.

Without loss of generality, assume m < n. By the triangle inequality:

∣xn − xm∣ ≤
n

∑
i=m+1

∣xi − xi−1∣ ≤
n

∑
i=m+1

1

2i−1
∣b − a∣

Observe that ∑
n
i=m+1

1
2i−1 = 1

2−m−1 ∑
n−m−1
i=0 2−i ≤ 1

2m
→ 0 as m → ∞. Thus given ε > 0 there

exists N such that if m > N , 1
2m

< ε
∣a−b∣

, so then if m > N :

∣xn − xm∣ < ε,

so xn is Cauchy. �

ii. Find limxn in terms of a, b.

Solution: By the preceding part

xn = x0 + (x1 − x0) + (x2 − x1) + . . . + (xn − xn−1) = x0 +
n

∑
i=1

1

2−(i−1)
(b − a)

which by the geometric sum formula:

= a +
2

3
(1 − 2−n)(b − a)→

1

3
a +

2

3
b

as n→∞ (by the fact that (1 − 2−n)→ 1 by linearity of limits for sequences).

Problem 2: 6-2

Let S ⊆ R be bounded.

i. Prove that there exists a sequence in S that converges to supS.
1
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Proof. supS exists because S is bounded. Let n ∈ N. Suppose toward a contradiction that

every x ∈ S has the property that x < supS − 1
n

. Then supS − 1
n

is an upper bound for S

which is strictly less than supS contradicting the definition of sup.

Hence there exists an ∈ S such that supS− 1
n
≤ an ≤ supS (where the upper bound follows

from the definition of sup). Since 1
n
→ 0, the squeeze theorem implies an → supS. �

ii. Let A,B ⊆ R which are bounded. Show sup(A +B) = supA + supB.

Proof. A + B is trivially bounded, so sup(A + B) exists. Let a ∈ A and b ∈ B so that

a ≤ supA and b ≤ supB. Thus a + b ≤ supA + supB. Since our choice of a, b was arbitrary,

every element of A +B is at most supA + supB, so sup(A +B) ≤ sup(A) + sup(B).

Suppose x is an upper bound of A+B. There exist sequences an → supA and bn → supB

in A,B respectively. Thus given ε > 0, there exists N such that if n > N , supA− an ≤
ε
2

and

supB − bn ≤
ε
2
. Thus supA + supB < an + bn + ε ≤ x + ε. Since ε can be arbitrarily small, we

conclude that x ≥ supA + supB, so supA + supB is the least upper bound of A +B. �

Problem 3: 6-4

Let (xn, yn) be a sequence in a bounded rectangle AxB = R ⊆ R2. Prove that (xn, yn) has a

convergent subsequence.

Proof. Since xn is bounded, by the Bolzano-Weierstra theorem, xn has a convergent subsequence

xni → x for some x ∈ A. The sequence yni is a subsequence of yn and is hence bounded, so yni has

a convergent subsequence ynij
→ y for some y ∈ B. Hence (xnij

, ynij
) → (x, y) ∈ R is a convergent

subsequence of (xn, yn) (observe ∣(xn, yn) − (x, y)∣ =
√
(xnij

− x)2 + (ynij
− y)2 which can be made

arbitrarily small). �

Problem 4: 6-6

Let an be a bounded sequence in R.

i. Show that lim inf and lim sup are well defined. In other words, given a sequence an, define Tn

to be the nth tail and let bn = supTn and bn = inf Tn, prove that lim supn→∞ an = limn→∞ bn

and lim infn→∞ an = limn→∞ bn converge.

Proof. Observe that Tn+1 ⊆ Tn, so every upper bound of Tn is an upper bound of Tn+1.

Hence supTn ≥ supTn+1, so bn is a non-increasing sequence. Further, Tn = supi≥n ai, so

Tn ≥ ai for all i ≥ n; in particular, Tn ≥ an. Thus if an is bounded below, then so is Tn.

Hence by the completeness property, bn converges and lim supn→∞ an is well defined. By a

similar argument lim infn→∞ an is well defined. �
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ii. Let xn =
1
n
+ (−1)n Compute lim inf xn and lim supxn.

Solution: Since 0 ≤ 1
n
≤ 1 is decreasing, if N is even, 1

N
+ 1 ≥ 1

n
+ (−1)n for all n > N .

Hence supTN = 1 + 1
N

, so lim supxn = 1.

On the other hand, observe that −1 < xn for all n ∈ N, but for any N ∈ N, since 1
n
→ 0,

given ε > 0 there exists n > N such that xn < −1 + ε, so any lower bound of a tail of xn is at

most −1. Hence lim infn→∞ xn = −1.

iii. Prove lim inf an ≤ lim supan.

Proof. Observe that supTn ≥ a ≥ inf Tn for all a ∈ Tn, so because limits of convergent

sequences preserve order, lim supan ≥ lim inf an. �

iv. Prove that limn→∞ an exists if and only if lim supan = lim inf an.

Proof. Assume L ∶= limn→∞ an exists. Then for all ε > 0, there exists N ∈ N such that for all

n > N , ∣an −L∣ < ε so for n > N :

L − ε < an < L + ε

so L+ ε is an upper bound on Tn whenever n > N , so supTn ≤ L+ ε. Similarly, inf Tn ≥ L+ ε.

Thus:

L − ε ≤ inf Tn ≤ supTn ≤ L + ε⇒ L − ε ≤ lim inf an ≤ lim supan ≤ L + ε

since ε can be made arbitrarily small, lim supan = lim inf an = L.

Conversely suppose lim supan = lim inf an. Then by recycling arguments from before,

inf Tn ≤ an ≤ supTn, so by the squeeze theorem, an → lim supan. �

Problem 5: 6-7

Let S be the set of cluster points of a bounded sequence an in R. Prove that lim supan = maxS

and lim inf an = minS.

Proof. By the preceding problem M ∶= lim supan exists and the sequence supTn →M . Hence there

exists N in naturals such that for n > N ∣ supTn−M ∣ <
ε
2
; choose such an n. By problem 6−2, there

exists a sequence of points tj → supTn such that tj = ai for some i ≥ n because Tn is a subsequence

of an. Thus there exists N ′ ∈ N such that N ′ > N and for all j > N ′, ∣tj − supTn∣ <
ε
2
. Therefore by

the triangle inequality:

∣tj − supTn∣ < ε

Let δ > 0 be given. Suppose toward a contradiction that there are only finitely many i such that

∣ai −M ∣ < δ. Then there exists α such that for all n > α, ∣an −M ∣ ≥ δ. However, the argument

in the preceding paragraph shows that there exists A > α such that there is a t ∈ TA such that

∣t −M ∣ < δ
2
< δ, so we have a contradiction, and M ∈ S.
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Let p ∈ S. Then by the Cluster point theorem, there exists a subsequence of an, ani , which

converges to p. However, supTni
≥ ani by previous arguments. Thus by comparison of sequences,

lim supan ≥ limni→∞ ani = p because subsequences of convergent sequences converge to the same

limit. Hence lim supan = maxS. The argument for lim inf an = minS is similar. �

Problem 6: 7.1.1

Evaluate the following series:

∞

∑
n=2

1

n2 − 1

∞

∑
n=1

(−1)n−1

n(n + 2)

∞

∑
n=1

1

n(n + k)

Solution: By partial fraction decomposition

1

n2 − 1
=

1

2(n − 1)
−

1

2(n + 1)

So the mth partial sum of the first series is:

sm ∶=
1

2
+

1

4
−

1

2(m + 1)

which converges to (provide more detail) 3
4
.

By partial fraction decomposition:

(−1)n

n(n + 2)
=
(−1)n−1

2
(

1

n
−

1

(n + 2)
)

The 2mth partial sum of this series is:

s′2m ∶=
1

2
−

1

4
+

1

2m + 2
−

1

2m + 1

which converges to 1
4
. Similarly show that s′

(2m+1) converges to 1
4

and use this to argue that s′m

converges to 1
4
.

Finally:
1

n(n + k)
=

1

k
(

1

n
−

1

(n + k)
)

which has partial sums for m > k:

s′′m =
1

k
(1 +

1

2
+ . . . +

1

k
) −

1

kn
−

1

kn − 1
− . . . −

1

kn − k

by the tail convergence theorem, it follows that the final sum evaluates to 1
k
(1 + 1

2
+ . . . + 1

k
).

Problem 7: 7.1.2

Translate the Cauchy criterion for sequences into a Cauchy criterion for series:

Solution: A series ∑
∞
i=0 ai converges if and only if given ε > 0 there exists N ∈ N such that for all

n >m > N :

∣
n

∑
i=m

ai∣ < ε
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— that is, if si is the sequence of partial sums of the series, ∣sm − sn∣ < ε so that si is a Cauchy

sequence.

Problem 8: 7.2.2

Prove that if an ≥ 0 and ∑an converges, then so does ∑a2n.

Proof. Since ∑an converges, an → 0 as n→∞. Hence an is bounded above by some M . Therefore:

k

∑
n=0

a2n ≤M
k

∑
n=0

an ≤
∞

∑
n=0

an

so that the sequence of partial sums of ∑
∞
n=0 a

2
n is non-decreasing (b/c a2n > 0) and bounded above.

Thus ∑an converges because its sequence of partial sums converges by the completeness axiom. �

Problem 9: 7.3.1

Prove the infinite triangle inequality for an absolutely convergent series by using the finite triangle

inequality, then prove it by mimicking the proof for the finite triange inequality.

Proof. Let ∑
∞
i=0 ai be an absolutely convergent series.

Let sk be the kth partial sum of the series; then,

∣sk ∣ ≤
k

∑
i=0

∣ai∣

by the finite triangle inequality. Since sk converges because ∑
∞
i=0 ai is absolutely convergent, ∣sk ∣

converges as well to ∣∑
∞
i=0 ai∣, so by sequence comparison, the result holds. �

Proof. Adopt the same notation as in the first proof:

−
k

∑
i=0

∣ai∣ ≤
∞

∑
i=0

ai ≤
k

∑
i=0

∣ai∣

Thus ∣∑
∞
i=0 ai∣ ≤ ∑

∞
i=0 ∣ai∣ by sequence comparison. �

Problem 10: 7.3.3

Let ∑
∞
i=0 ai be a series.

i. Suppose the series converges absolutely. Show that for any subsequence aij , ∑
∞
i=0 aij con-

verges.

Proof. Observe that:
N

∑
j=0

∣aij ∣ ≤
iN

∑
i=0

∣ai∣ ≤
∞

∑
i=0

∣ai∣

so the sequence of partial sums of ∑
∞
j=0 ∣aij ∣ is non-decreasing and bounded above so that it

converges by the completeness axiom. Hence ∑
∞
j=0 aij is absolutely convergent and thus is

convergent. �
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ii. Show that the statement fails when absolute convergence is removed from the hypotheses.

Proof. Consider the example ∑
∞
n=1

(−1)n

n
which converges to log(2), but:

∞

∑
n=1

(−1)2n

2n
=

1

2

∞

∑
1

1

n

which diverges. �


