Teddy Einstein
Math 3110

HW4 Solutions

Problem 1: 6-1
Select $a, b \in \mathbb{R}$ and let $x_{0}=a, x_{1}=b$. Then continue the sequence by letting each new term be the average of the preceding two:

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2}, \quad n \geq 2
$$

i. Prove x_{n} is Cauchy:

Proof. Claim: for $n \geq 2, x_{n}-x_{n-1}=2^{-(n-1)}(b-a)$. For $n=2$: $\left|x_{n}-x_{n-1}\right|=\frac{1}{2}\left(x_{1}-x_{0}\right)$ and the claim holds. Suppose the claim holds for $2 \leq n \leq k$. Then $x_{k+1}-x_{k}=\frac{1}{2}\left(x_{k}-x_{k-1}\right)=$ $\frac{1}{2} \cdot \frac{1}{2^{-(k-1)}}(b-a)$, so the claim holds by induction.

Without loss of generality, assume $m<n$. By the triangle inequality:

$$
\left|x_{n}-x_{m}\right| \leq \sum_{i=m+1}^{n}\left|x_{i}-x_{i-1}\right| \leq \sum_{i=m+1}^{n} \frac{1}{2^{i-1}}|b-a|
$$

Observe that $\sum_{i=m+1}^{n} \frac{1}{2^{i-1}}=\frac{1}{2^{-m-1}} \sum_{i=0}^{n-m-1} 2^{-i} \leq \frac{1}{2^{m}} \rightarrow 0$ as $m \rightarrow \infty$. Thus given $\epsilon>0$ there exists N such that if $m>N, \frac{1}{2^{m}}<\frac{\epsilon}{|a-b|}$, so then if $m>N$:

$$
\left|x_{n}-x_{m}\right|<\epsilon,
$$

so x_{n} is Cauchy.
ii. Find $\lim x_{n}$ in terms of a, b.

Solution: By the preceding part

$$
x_{n}=x_{0}+\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\ldots+\left(x_{n}-x_{n-1}\right)=x_{0}+\sum_{i=1}^{n} \frac{1}{2^{-(i-1)}}(b-a)
$$

which by the geometric sum formula:

$$
=a+\frac{2}{3}\left(1-2^{-n}\right)(b-a) \rightarrow \frac{1}{3} a+\frac{2}{3} b
$$

as $n \rightarrow \infty$ (by the fact that $\left(1-2^{-n}\right) \rightarrow 1$ by linearity of limits for sequences).

Problem 2: 6-2
Let $S \subseteq \mathbb{R}$ be bounded.
i. Prove that there exists a sequence in S that converges to $\sup S$.

Proof. $\sup S$ exists because S is bounded. Let $n \in \mathbb{N}$. Suppose toward a contradiction that every $x \in S$ has the property that $x<\sup S-\frac{1}{n}$. Then $\sup S-\frac{1}{n}$ is an upper bound for S which is strictly less than $\sup S$ contradicting the definition of sup.

Hence there exists $a_{n} \in S$ such that $\sup S-\frac{1}{n} \leq a_{n} \leq \sup S$ (where the upper bound follows from the definition of sup). Since $\frac{1}{n} \rightarrow 0$, the squeeze theorem implies $a_{n} \rightarrow \sup S$.
ii. Let $A, B \subseteq \mathbb{R}$ which are bounded. Show $\sup (A+B)=\sup A+\sup B$.

Proof. $A+B$ is trivially bounded, so $\sup (A+B)$ exists. Let $a \in A$ and $b \in B$ so that $a \leq \sup A$ and $b \leq \sup B$. Thus $a+b \leq \sup A+\sup B$. Since our choice of a, b was arbitrary, every element of $A+B$ is at most $\sup A+\sup B$, $\operatorname{sosup}(A+B) \leq \sup (A)+\sup (B)$.

Suppose x is an upper bound of $A+B$. There exist sequences $a_{n} \rightarrow \sup A$ and $b_{n} \rightarrow \sup B$ in A, B respectively. Thus given $\epsilon>0$, there exists N such that if $n>N$, $\sup A-a_{n} \leq \frac{\epsilon}{2}$ and $\sup B-b_{n} \leq \frac{\epsilon}{2}$. Thus sup $A+\sup B<a_{n}+b_{n}+\epsilon \leq x+\epsilon$. Since ϵ can be arbitrarily small, we conclude that $x \geq \sup A+\sup B$, so $\sup A+\sup B$ is the least upper bound of $A+B$.

Problem 3: 6-4

Let $\left(x_{n}, y_{n}\right)$ be a sequence in a bounded rectangle $A x B=R \subseteq \mathbb{R}^{2}$. Prove that $\left(x_{n}, y_{n}\right)$ has a convergent subsequence.

Proof. Since x_{n} is bounded, by the Bolzano-Weierstra theorem, x_{n} has a convergent subsequence $x_{n_{i}} \rightarrow x$ for some $x \in A$. The sequence $y_{n_{i}}$ is a subsequence of y_{n} and is hence bounded, so $y_{n_{i}}$ has a convergent subsequence $y_{n_{i_{j}}} \rightarrow y$ for some $y \in B$. Hence $\left(x_{n_{i_{j}}}, y_{n_{i_{j}}}\right) \rightarrow(x, y) \in R$ is a convergent subsequence of $\left(x_{n}, y_{n}\right)$ (observe $\left|\left(x_{n}, y_{n}\right)-(x, y)\right|=\sqrt{\left(x_{n_{i_{j}}}-x\right)^{2}+\left(y_{n_{i_{j}}}-y\right)^{2}}$ which can be made arbitrarily small).

Problem 4: 6-6

Let a_{n} be a bounded sequence in \mathbb{R}.
i. Show that liminf and limsup are well defined. In other words, given a sequence a_{n}, define T_{n} to be the nth tail and let $\overline{b_{n}}=\sup T_{n}$ and $\underline{b_{n}}=\inf T_{n}$, prove that $\lim \sup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \overline{b_{n}}$ and $\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \underline{b_{n}}$ converge.

Proof. Observe that $T_{n+1} \subseteq T_{n}$, so every upper bound of T_{n} is an upper bound of T_{n+1}. Hence $\sup T_{n} \geq \sup T_{n+1}$, so $\overline{b_{n}}$ is a non-increasing sequence. Further, $T_{n}=\sup _{i \geq n} a_{i}$, so $T_{n} \geq a_{i}$ for all $i \geq n$; in particular, $T_{n} \geq a_{n}$. Thus if a_{n} is bounded below, then so is T_{n}. Hence by the completeness property, $\overline{b_{n}}$ converges and $\limsup _{n \rightarrow \infty} a_{n}$ is well defined. By a similar argument $\liminf _{n \rightarrow \infty} a_{n}$ is well defined.
ii. Let $x_{n}=\frac{1}{n}+(-1)^{n}$ Compute $\liminf x_{n}$ and $\limsup x_{n}$.

Solution: Since $0 \leq \frac{1}{n} \leq 1$ is decreasing, if N is even, $\frac{1}{N}+1 \geq \frac{1}{n}+(-1)^{n}$ for all $n>N$. Hence $\sup T_{N}=1+\frac{1}{N}$, so $\lim \sup x_{n}=1$.

On the other hand, observe that $-1<x_{n}$ for all $n \in \mathbb{N}$, but for any $N \in \mathbb{N}$, since $\frac{1}{n} \rightarrow 0$, given $\epsilon>0$ there exists $n>N$ such that $x_{n}<-1+\epsilon$, so any lower bound of a tail of x_{n} is at most -1 . Hence $\liminf _{n \rightarrow \infty} x_{n}=-1$.
iii. Prove $\liminf a_{n} \leq \limsup a_{n}$.

Proof. Observe that $\sup T_{n} \geq a \geq \inf T_{n}$ for all $a \in T_{n}$, so because limits of convergent sequences preserve order, $\lim \sup a_{n} \geq \liminf a_{n}$.
iv. Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists if and only if $\lim \sup a_{n}=\liminf a_{n}$.

Proof. Assume $L:=\lim _{n \rightarrow \infty} a_{n}$ exists. Then for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n>N,\left|a_{n}-L\right|<\epsilon$ so for $n>N$:

$$
L-\epsilon<a_{n}<L+\epsilon
$$

so $L+\epsilon$ is an upper bound on T_{n} whenever $n>N$, so $\sup T_{n} \leq L+\epsilon$. Similarly, $\inf T_{n} \geq L+\epsilon$. Thus:

$$
L-\epsilon \leq \inf T_{n} \leq \sup T_{n} \leq L+\epsilon \Rightarrow L-\epsilon \leq \liminf a_{n} \leq \limsup a_{n} \leq L+\epsilon
$$

since ϵ can be made arbitrarily small, $\lim \sup a_{n}=\liminf a_{n}=L$.
Conversely suppose $\lim \sup a_{n}=\lim \inf a_{n}$. Then by recycling arguments from before, $\inf T_{n} \leq a_{n} \leq \sup T_{n}$, so by the squeeze theorem, $a_{n} \rightarrow \limsup a_{n}$.

Problem 5: 6-7
Let S be the set of cluster points of a bounded sequence a_{n} in \mathbb{R}. Prove that $\lim \sup a_{n}=\max S$ and $\liminf a_{n}=\min S$.

Proof. By the preceding problem $M:=\limsup a_{n}$ exists and the sequence $\sup T_{n} \rightarrow M$. Hence there exists N in naturals such that for $n>N\left|\sup T_{n}-M\right|<\frac{\epsilon}{2}$; choose such an n. By problem $6-2$, there exists a sequence of points $t_{j} \rightarrow \sup T_{n}$ such that $t_{j}=a_{i}$ for some $i \geq n$ because T_{n} is a subsequence of a_{n}. Thus there exists $N^{\prime} \in \mathbb{N}$ such that $N^{\prime}>N$ and for all $j>N^{\prime},\left|t_{j}-\sup T_{n}\right|<\frac{\epsilon}{2}$. Therefore by the triangle inequality:

$$
\left|t_{j}-\sup T_{n}\right|<\epsilon
$$

Let $\delta>0$ be given. Suppose toward a contradiction that there are only finitely many i such that $\left|a_{i}-M\right|<\delta$. Then there exists α such that for all $n>\alpha,\left|a_{n}-M\right| \geq \delta$. However, the argument in the preceding paragraph shows that there exists $A>\alpha$ such that there is a $t \in T_{A}$ such that $|t-M|<\frac{\delta}{2}<\delta$, so we have a contradiction, and $M \in S$.

Let $p \in S$. Then by the Cluster point theorem, there exists a subsequence of $a_{n}, a_{n_{i}}$, which converges to p. However, $\sup T_{n_{i}} \geq a_{n_{i}}$ by previous arguments. Thus by comparison of sequences, $\limsup a_{n} \geq \lim _{n_{i} \rightarrow \infty} a_{n_{i}}=p$ because subsequences of convergent sequences converge to the same limit. Hence $\lim \sup a_{n}=\max S$. The argument for $\lim \inf a_{n}=\min S$ is similar.

Problem 6: 7.1.1
Evaluate the following series:

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+2)} \quad \sum_{n=1}^{\infty} \frac{1}{n(n+k)}
$$

Solution: By partial fraction decomposition

$$
\frac{1}{n^{2}-1}=\frac{1}{2(n-1)}-\frac{1}{2(n+1)}
$$

So the m th partial sum of the first series is:

$$
s_{m}:=\frac{1}{2}+\frac{1}{4}-\frac{1}{2(m+1)}
$$

which converges to (provide more detail) $\frac{3}{4}$.
By partial fraction decomposition:

$$
\frac{(-1)^{n}}{n(n+2)}=\frac{(-1)^{n-1}}{2}\left(\frac{1}{n}-\frac{1}{(n+2)}\right)
$$

The $2 m$ th partial sum of this series is:

$$
s_{2 m}^{\prime}:=\frac{1}{2}-\frac{1}{4}+\frac{1}{2 m+2}-\frac{1}{2 m+1}
$$

which converges to $\frac{1}{4}$. Similarly show that $s_{(2 m+1)}^{\prime}$ converges to $\frac{1}{4}$ and use this to argue that s_{m}^{\prime} converges to $\frac{1}{4}$.

Finally:

$$
\frac{1}{n(n+k)}=\frac{1}{k}\left(\frac{1}{n}-\frac{1}{(n+k)}\right)
$$

which has partial sums for $m>k$:

$$
s_{m}^{\prime \prime}=\frac{1}{k}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)-\frac{1}{k n}-\frac{1}{k n-1}-\ldots-\frac{1}{k n-k}
$$

by the tail convergence theorem, it follows that the final sum evaluates to $\frac{1}{k}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)$.

Problem 7: 7.1.2

Translate the Cauchy criterion for sequences into a Cauchy criterion for series:
Solution: A series $\sum_{i=0}^{\infty} a_{i}$ converges if and only if given $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>m>N$:

$$
\left|\sum_{i=m}^{n} a_{i}\right|<\epsilon
$$

- that is, if s_{i} is the sequence of partial sums of the series, $\left|s_{m}-s_{n}\right|<\epsilon$ so that s_{i} is a Cauchy sequence.

Problem 8: 7.2.2
Prove that if $a_{n} \geq 0$ and $\sum a_{n}$ converges, then so does $\sum a_{n}^{2}$.
Proof. Since $\sum a_{n}$ converges, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence a_{n} is bounded above by some M. Therefore:

$$
\sum_{n=0}^{k} a_{n}^{2} \leq M \sum_{n=0}^{k} a_{n} \leq \sum_{n=0}^{\infty} a_{n}
$$

so that the sequence of partial sums of $\sum_{n=0}^{\infty} a_{n}^{2}$ is non-decreasing ($\mathrm{b} / \mathrm{c} a_{n}^{2}>0$) and bounded above. Thus $\sum a_{n}$ converges because its sequence of partial sums converges by the completeness axiom.

Problem 9: 7.3.1

Prove the infinite triangle inequality for an absolutely convergent series by using the finite triangle inequality, then prove it by mimicking the proof for the finite triange inequality.

Proof. Let $\sum_{i=0}^{\infty} a_{i}$ be an absolutely convergent series.
Let s_{k} be the k th partial sum of the series; then,

$$
\left|s_{k}\right| \leq \sum_{i=0}^{k}\left|a_{i}\right|
$$

by the finite triangle inequality. Since s_{k} converges because $\sum_{i=0}^{\infty} a_{i}$ is absolutely convergent, $\left|s_{k}\right|$ converges as well to $\left|\sum_{i=0}^{\infty} a_{i}\right|$, so by sequence comparison, the result holds.

Proof. Adopt the same notation as in the first proof:

$$
-\sum_{i=0}^{k}\left|a_{i}\right| \leq \sum_{i=0}^{\infty} a_{i} \leq \sum_{i=0}^{k}\left|a_{i}\right|
$$

Thus $\left|\sum_{i=0}^{\infty} a_{i}\right| \leq \sum_{i=0}^{\infty}\left|a_{i}\right|$ by sequence comparison.

Problem 10: 7.3.3
Let $\sum_{i=0}^{\infty} a_{i}$ be a series.
i. Suppose the series converges absolutely. Show that for any subsequence $a_{i_{j}}, \sum_{i=0}^{\infty} a_{i_{j}}$ converges.

Proof. Observe that:

$$
\sum_{j=0}^{N}\left|a_{i_{j}}\right| \leq \sum_{i=0}^{i_{N}}\left|a_{i}\right| \leq \sum_{i=0}^{\infty}\left|a_{i}\right|
$$

so the sequence of partial sums of $\sum_{j=0}^{\infty}\left|a_{i_{j}}\right|$ is non-decreasing and bounded above so that it converges by the completeness axiom. Hence $\sum_{j=0}^{\infty} a_{i_{j}}$ is absolutely convergent and thus is convergent.
ii. Show that the statement fails when absolute convergence is removed from the hypotheses.

Proof. Consider the example $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ which converges to $\log (2)$, but:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{2 n}=\frac{1}{2} \sum_{1}^{\infty} \frac{1}{n}
$$

which diverges.

