
Teddy Einstein

Math 3110

HW5 Solutions

Problem 1: 7.2.1

Given that ∑
∞
n=1

1
n2 = π2

6
, evaluate ∑

∞
n=0

1
(2n+1)2

.

Solution: Let

an =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
n2 n even

0 n odd
bn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 n even

1
n2 n odd

.

Observe ∑
k
i=1 an ≤ ∑

k
n=1

1
n2 ≤ π2/6, so the partial sums of ∑

∞
i=1 a2n are increasing and bounded above,

so ∑
∞
n=1 an converges. By a similar argument, ∑

∞
n=1 bn converges.

Since an + bn =
1
n2 , ∑an converges and ∑ bn converges, by linearity:

∞

∑
n=1

1

n2
=

∞

∑
n=1

an +
∞

∑
n=1

bn

Moreover:
∞

∑
n=1

an =
∞

∑
n=1

1

(2n)2
=

1

4

∞

∑
n=1

1

n2
= π2
/24

Hence:

π2
/6 = π2

/24 +
∞

∑
n=1

bn ⇒
∞

∑
n=1

bn = π
2
/8

and the 2n + 1st partial sum of ∑
∞
n=1 bn is the nth partial sum of ∑

∞
n=0

1
(2n+1)2

, so the respective

sequences of partial sums converge to the same limit by the subsequence theorem.

Problem 2: 7.2.3

Let an, bn be non-negative series and let ∑an and ∑ bn converge. Prove ∑anbn converges using the

methods:

i. Use an inequality relating the partial sums of ∑
∞
n=1 an, ∑

∞
n=1 bn, ∑

∞
n=1 anbn.

Proof. Let sk, s
′
k, s

′′
k denote the kth partial sums of ∑

∞
n=1 an, ∑

∞
n=1 bn, and ∑

∞
n=1 anbn respec-

tively.

We know that sk, s
′
k converge to some values s, s′ respectively, so by the product theorem

for sequences, the sequence sks
′
k → ss′. Furthermore, an, bn are non-negative, so sk, s′k are

increasing sequences. Consequently, sk ≤ s, s
′
k ≤ s

′, so sks
′
k < ss

′ for all k. Since aibj ≥ 0 for

all i, j:

s′′k =
k

∑
n=1

anbn ≤ (
k

∑
n=1

an)(
k

∑
m=1

bm) ≤ sks
′
k,

so s′′k is an increasing (because each anbn ≥ 0) sequence which is bounded above. Hence

∑
∞
n=1 anbn = limk→∞ s′′k converges by the completeness axiom. �
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ii. By using the comparison test.

Proof. Since an is non-negative, an = ∣an∣ and an is absolutely convergent. Since ∑ bn

converges, bn → 0 as n → ∞ by the divergence test and in particular, bn is bounded.1 The

result now follows by problem 7.3.2 (see below). �

Problem 3: 7.2.5

Let ∑
∞
n=0 an be a convergent series with the sum S. Create a sequence bk such that bk = a2k +a2k+1.

Proof. Observe the 2k + 1th partial sum of ∑
∞
n=0 an is the kth partial sum of ∑

∞
n=0 bn, so the partial

sums of the first series form a subsequence of the partial sums of the second. The result now follows

by the subsequence theorem. �

Problem 4: 7.3.5

Let ∑
∞
n=1 an be absolutely convergent and let bn be a bounded sequence. Show that ∑

∞
n=1 anbn

converges.

Proof. Let ∣bn∣ ≤ M for some M ∈ R. Then ∣anbn∣ ≤ M ∣bn∣, so by the comparison test for series:

∑ ∣anbn∣ converges. By the absolute convergence theorem, ∑anbn converges. �

Problem 5: 7.3.6

Let ∑an be a conditionally convergent series. Prove there exist infinitely many positive and negative

terms of an.

Proof. Suppose toward a contradiction there are only finitely many negative terms of an. Then

there exists N ∈ N such that for n ≥ N , an ≥ 0. We know ∑
∞
n=N an converges by the tail convergence

theorem and:
∞

∑
n=N

∣an∣ =
∞

∑
n=N

an

so by the tail convergence theorem ∑
∞
n=1 ∣an∣ converges. Thus ∑an is absolutely convergent, contra-

dicting our hypothesis.

Observe that ∑−an is also conditionally convergent, so the above argument shows that −an has

infinitely many positive terms. Hence an has infinitely many negative terms. �

1Given ε = 1, there exists N ∈ N such that for all n > N , ∣bn∣ < ε, then M = max(b1, . . . , bN ,1) is an upper bound

for bn.


