
Taylor series Homework set solutions.

17.1.1 Let f(x) = (1 + x)r. Then, by the usual di�erentiation formulas, we have that

f (k)(x) = r(r − 1) · · · (r − k + 1)(1 + x)r−k.

Therefore,

Tn(x) =
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=0

r(r − 1) · · · (r − k + 1)
k!

xk.

Observation 1 The formula (
r

k

)
:=

r(r − 1) · · · (r − k + 1)
k!

(1)

is sometimes used to represent the coe�cient appearing on the right hand side of equation (1).

Observe that when r ≥ k is an integer, this formula agrees with its usual de�nition.

17.2.1 We will prove Lemma 17.2 using induction.

Base Case. By the usual Rolle's theorem, if f(a) = f(b) = 0, then there exists c ∈ (a, b) such that

f ′(c) = f (0+1)(c) = 0.

Inductive Step. Now assume that the result holds up to a �xed n ∈ N, that is, assume that if

f (n+1) exists on [a, b] and f(a) = f ′(a) = . . . = f (n)(a) = f(b) = 0, then there exists c between
a and b such that f (n+1)(c) = 0.

We want to show that the result holds for n + 1, that is, we want to show that if f (n+2)

exists on [a, b] and f(a) = f ′(a) = . . . = f (n+1)(a) = f(b) = 0, then there exists c between a
and b such that f (n+2)(c) = 0. Let g(x) = f ′(x). By the usual Rolle's theorem, there exists

c0 ∈ (a, b) such that

g(c0) = f ′(c0) = 0.

Hence g(n+1) = f (n+2) exists and g(a) = g′(a) = . . . = g(n)(a) = g(c0) = 0. Therefore,
by induction hypothesis, there exists c between a and c0 such that g(n+1)(c) = 0. Since
(a, c0) ⊂ (a, b), we conclude that

f (n+2)(c) = g(n+1)(c) = 0 for some c ∈ (a, b),

as we wanted to show.
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17.2.2 a) Assume that

P (x) =
n∑

k=0

bkx
k = b0 + b1x + · · ·+ bnxn

is a polynomial of degree n. If x = u + a, then we can rewrite the above expression as

P (x) = P (u + a)

=
n∑

k=0

bk(u + a)k

=
n∑

k=0

bk

( k∑
l=0

(
k

l

)
ak−lul

)
=

n∑
k=0

k∑
l=0

bk

(
k

l

)
ak−lul

=
n∑

l=0

[ n∑
k=l

bk

(
k

l

)
ak−l

]
ul, (2)

where the last equality follows from the identities of iterated sums. Substituting u = x − a in (2)

we get

P (x) =
n∑

l=0

[ n∑
k=l

bk

(
k

l

)
ak−l

]
(x− a)l. (3)

On the other hand, using the usual formulas for the derivatives, we obtain that

P (l)(x) =
n∑

k=l

bk k(k − 1) · · · (k − l + 1)xk−l.

Hence

Tn(x) =
n∑

l=0

P (l)(a)
l!

(x− a)l =
n∑

l=0

∑n
k=l bk k(k − 1) · · · (k − l + 1)ak−l

l!
(x− a)l. (4)

Comparing equations (3) and (4), we conclude that

P (x) = Tn(x).

b) Observe that, if we set x = u− 1,

P (x) = (u− 1)3 − 2(u− 1) + 2
= u3 − 3u2 + u + 3
= (x + 1)3 − 3(x + 1)2 + (x + 1) + 3.

On the other hand, we have that

P (x) = x3 − 2x + 2, hence P (−1) = 3.
P ′(x) = 3x2 − 2, hence P ′(−1) = 1.
P ′′(x) = 6x, hence P ′′(−1) = −6.
P ′′′(x) = 6, hence P ′′(−1) = 6.
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Therefore,

P (x) = 3 + (x + 1) +
(−6)
2!

(x + 1)2 +
6
3!

(x + 1)3 = 3 + (x + 1)− 3(x + 1)2 + (x + 1)3.

17.2.3 We will prove this result using induction on n.

Base Case. For n = 0, the problem is asking us to show that if g(a) = g(b) = 0, then there

exist c ∈ (a, b) such that g(0+1)(c) = g′(c) = 0. But this is precisely the statement of Rolle's

theorem.

Inductive Step. Now assume that the result holds up to a �xed n ∈ N. If we set a0 = a, and
an+1 = b, then this is equivalent to assuming that if g has (n + 1) derivatives, and

g(a0) = g(a1) = · · · g(an+1) = 0,

then there exists c ∈ (a, b) such that g(n+1)(c) = 0.

We want to prove that this result holds for n+1, that is, we want to show that if g has (n+2)
derivatives, and if

g(a0) = g(a1) = · · · g(an+2) = 0,

then there exists c ∈ (a, b) such that gn+2(c) = 0. Let's set f(t) = g′(t). Then, by Rolle's

theorem, there exists ck ∈ (ak, ak+1) for k = 0, 1, . . . , n + 1 such that

f(ck) = g′(ck) = 0 for k = 0, . . . , n + 1.

Hence, by induction hypothesis, there exists c ∈ (c0, cn+1) ⊂ (a, b) such that

f (n+1)(c) = g(n+2)(c) = 0,

as we wanted to show.

17.2.4 a) Since f(a) = f(b) = 0, then, by Rolle's theorem, there exists c0 ∈ (a, b) such that f ′(c0) =
0. Applying Rolle's theorem again on the intervals [a, c0] and [c0, b] for the function g(x) = f ′(x),
we get that there exists c1 ∈ [a, c0] and c2 ∈ [c0, b] such that

f ′′(c1) = f ′′(c2) = 0.

Yet another application of Rolle's theorem gives us a c ∈ (c1, c2) such that f ′′′(c) = 0.

b) Observe that

f ′(x) = 2(x− a)(x− b)2 + 2(x− a)2(x− b).

Hence f(a) = f(b) = f ′(a) = f ′(b) = 0, that is, the hypothesis of part a) apply. Now, by the usual

di�erentiation formulas, we obtain that

f ′′′(x) = 24x− 12a− 12b.
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Hence, the equation f ′′′(c) = 0 is equivalent to the equation

24c− 12a− 12b = 0

c =
a + b

2

17.3.1 Let f(x) = e−x. Then,

T2(x) =
2∑

k=0

f (k)(0)
k!

xk = 1− x +
x2

2
.

We want to estimate the magnitude of the residue function

R2(x) = f(x)− T2(x) for x ∈ [0, 0.1].

By Taylor's theorem with Lagrange remainder, we know that for all such x, there exists a c between
0 and x such that

R2(x) =
f (3)(c)

3!
x3.

So the magnitude of the error is given by

|R2(x)| = |e−c| |x
3

3!
| for some 0 ≤ c ≤ x ≤ 0.1.

Therefore, we get the bound

|R2(x)| ≤ e0 (0.1)3

6
=

(0.1)3

6
.

17.3.2 Let f(x) = cosx. Observe that, since f ′′′(0) = − sin 0 = 0, the expression 1−x2/2 is not only

a degree 2 approximation, but actually a degree 3 approximation! (In other words, T2(x) = T3(x) =
1−x2/2.) Just as in the last problem, we obtain an approximation of the remainder function of the

form

|R3(x)| = |f
(4)(c)
4!

x4| = | cos c| |x|
4

24
for some 0 ≤ c ≤ x.

Therefore, if we want to bound the error by .0001 it su�ces to choose an interval of the form [−b, b]
with

b4

24
≤ .0001

b ≤ 4
√

24/10 ≈ 0.221336

17.3.3 Let f(x) = sin x. We want to bound the remainder function Tn(x) by .0001 for |x| < .5.
Proceeding as in the last problem, we can quickly get a bound of the form

|Rn(x)| = |f
(n+1)(c)
(n + 1)!

xn+1| < 1
2n+1(n + 1)!

.
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Now, observe that 3840 = 24+1(4 + 1)! < 10, 000 < 25+1(5 + 1)! = 46, 080. Hence, it is enough to

take T5. However, since T4 = T5 (for similar reasons as in problem 17.3.2) it su�ces to take n = 4.

17.3.4 Let f(x) = cosx. Once again, we observe that since T4 = T5, we have an estimate of the

form

|R4(x)| = |R5(x)| ≤ x6

6!
.

Now, since

(.1)6/6! < (.1)8,

we conclude that T4(.1) is a good enough approximation to cos .1. Calculating we get the approxi-

mation

cos .1 ≈ 1− (.1)2/2 + (.1)4/24 ≈ .9950041

17-1 a) Let P (x) be a polynomial of degree n. Then,

P (x) =
n∑

l=0

cl(x− a)l,

where cl = P (l)(a)/l!. Therefore, if we assume that

P (a) = P ′(a) = . . . = P (k−1)(a) = 0, P (k)(a) 6= 0,

then

P (x) = (x− a)k

( n∑
l=k

cl(x− a)l−k

)
.

If we set

Q(x) =
n∑

l=k

cl(x− a)l−k,

then it is clear that P (x) = (x− a)kQ(x) and Q(a) = ck = P (k)(a)/k! 6= 0, that is, a is k-fold zero

of P (x).
Now assume that a is a k-fold zero of P (x), that is, assume that there exists a polynomial Q(x)
such that P (x) = (x− a)kQ(x) and Q(a) 6= 0. Expressing the polynomial Q(x) as

Q(x) =
m∑

l=0

bl(x− a)l,

we obtain that

P (x) = (x− a)k
m∑

l=0

bl(x− a)l

=
m∑

l=0

bl(x− a)k+l

=
k+m∑
l=k

bl−k(x− a)l
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with b0 6= 0. From this expression, it is immediate that

P (a) = P ′(a) = . . . = P (k−1)(a) = 0, and P (k)(a) = b0k! 6= 0,

b) Assume that a is a double zero of the polynomial P (x) = 2x3− bx2 +1. Then, according to part
a) we should have that

0 = P ′(a) = 6a2 − 2ba = a(6a− 2b).

Hence, the only options for a are a = 0 or a = b/3. Since P (0) 6= 0, we �nd ourselves looking for a

value of b such that

0 = f(a) = f(b/3) = 2
(

b

3

)3

− b

(
b

3

)2

+ 1

−1 =
2
3

(
b3

9

)
−
(

b3

9

)
−1 = −1

3

(
b3

9

)
b3 = 27
b = 3.

Pluggin back into our equations, we can see that, e�ectively, for b = 3 the value a = 1 is a double

zero of the polynomial P (x)

c) If in exercise 17.2.3 we take all the roots to be equal to a instead of being all di�erent, then part

a) of this problems says that the conclusion in exercise 17.2.3 still holds and is equivalent to the

Extended Rolle's Theorem.
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