Taylor series Homework set solutions.

17.1.1 Let f(x) = (1 + 2)". Then, by the usual differentiation formulas, we have that
@) =r@r—1) - (r—k+1)(1+z)"

Therefore,
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Observation 1 The formula

(;) _ r(r—1)..l.d<r—k+1>

(1)

is sometimes used to represent the coefficient appearing on the right hand side of equation (1).

Observe that when r > k is an integer, this formula agrees with its usual definition.

17.2.1 We will prove Lemma 17.2 using induction.

Base Case. By the usual Rolle’s theorem, if f(a) = f(b) = 0, then there exists ¢ € (a, b) such that

f(e) = fO () =0,

Inductive Step. Now assume that the result holds up to a fired n € N, that is, assume that if
O+ exists on [a,b] and f(a) = f/(a) = ... = f(a) = f(b) = 0, then there exists ¢ between

a and b such that f+1(c) = 0.

We want to show that the result holds for n + 1, that is, we want to show that if f(**2)
exists on [a,b] and f(a) = f'(a) = ... = f®*(a) = f(b) = 0, then there exists ¢ between a
and b such that f("*2)(¢) = 0. Let g(z) = f'(x). By the usual Rolle’s theorem, there exists

¢o € (a,b) such that
9(co) = f'(co) = 0.

Hence g("t1) = f(+2) exists and g(a) = ¢'(a) = ... = ¢™(a) = glcy) =
by induction hypothesis, there exists ¢ between a and ¢y such that g("“)(c
(a,co) C (a,b), we conclude that

f(n+2) (c) = g(”“)(c) =0 for some c € (a,b),

as we wanted to show.
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Therefore,
= 0. Since



17.2.2 a) Assume that

n
P(x) = Zbkxk =by+bix+ -+ byx"
k=0
is a polynomial of degree n. If z = u + a, then we can rewrite the above expression as

P(z) = Pl(u+a)

= > b(uta)
k=0

- EIES0)

where the last equality follows from the identities of iterated sums. Substituting u = = — a in (2)

we get
n

P)=Y" LG;bk (’;) akl} (z —a). (3)

=0
On the other hand, using the usual formulas for the derivatives, we obtain that

PWU(g) = f:bk k(k—1)---(k—1+1)z*,
k=l

Hence

o n_ s ) (b ] 1)
Tn(x)_zp ( )($_a)l_;2k:lbkk(k 1)“ (k—1+1) (x—a)l. (4)

Comparing equations (3) and (4), we conclude that

P(x) = Ty(x).

b) Observe that, if we set z =u — 1,
Px) = (u—17°—-2u—1)+2
= u®—3u+u+3
= (2+12-3@@+1)*+(z+1)+3.
On the other hand, we have that
P(z) =23 —2x+2, hence P(—1)=3.

P'(x) = 32% - 2, hence P'(-1)=1.
P’(x) = 6z, hence P"(-1) = —6.
P"(z) =6, hence P"(—1)=06.



Therefore,

<_2!6)<x+1)2+6<x+1)3=3+(x+1)—3(x+1)2+(x+1)3.

Plx)=3+(x+1)+ a0

17.2.3 We will prove this result using induction on n.

Base Case. For n = 0, the problem is asking us to show that if g(a) = ¢(b) = 0, then there
exist ¢ € (a,b) such that ¢g(°tV(¢) = ¢/(¢) = 0. But this is precisely the statement of Rolle’s
theorem.

Inductive Step. Now assume that the result holds up to a fired n € N. If we set ag = a, and
ap+1 = b, then this is equivalent to assuming that if g has (n + 1) derivatives, and
9(ao) = g(a1) = -+~ g(ant1) =0,

then there exists ¢ € (a,b) such that ¢+ (¢) = 0.

We want to prove that this result holds for n+ 1, that is, we want to show that if g has (n+2)
derivatives, and if

g9(ao) = g(ar) = -~ glant2) =0,
then there exists ¢ € (a,b) such that ¢g"*2(c) = 0. Let’s set f(t) = ¢/(t). Then, by Rolle’s
theorem, there exists ¢, € (ak,axy1) for Kk =0,1,...,n+ 1 such that

fleg) =d (k) =0 fork=0,...,n+1.
Hence, by induction hypothesis, there exists ¢ € (co, cnt1) C (a,b) such that
7 (e) = 64D () = 0,
as we wanted to show.
17.2.4 a) Since f(a) = f(b) = 0, then, by Rolle’s theorem, there exists ¢y € (a, b) such that f'(¢) =

0. Applying Rolle’s theorem again on the intervals [a, ¢p] and [co, b] for the function g(z) = f'(x),
we get that there exists ¢; € [a, cp] and 3 € [cp, b] such that

f//(cl) — f”(CQ) — 0
Yet another application of Rolle’s theorem gives us a ¢ € (¢1,¢) such that f(c) = 0.

b) Observe that
fl(x) =2(x — a)(x — b)* + 2(x — a)*(x — D).

Hence f(a) = f(b) = f'(a) = f'(b) = 0, that is, the hypothesis of part a) apply. Now, by the usual
differentiation formulas, we obtain that

" (z) = 24x — 12a — 12b.



Hence, the equation f"”'(¢) = 0 is equivalent to the equation

24¢c — 12a — 12b 0
a+b

2

17.3.1 Let f(x) = e™*. Then,

2 k) (o 2
Tg(x)zzf k'( ):z?k:l—w—ka;.

We want to estimate the magnitude of the residue function
Ry(z) = f(x) — Ta(x) for z € [0,0.1].

By Taylor’s theorem with Lagrange remainder, we know that for all such x, there exists a ¢ between
0 and x such that

So the magnitude of the error is given by

3
|Ry(z)] = |e™] % for some 0 < ¢ < z < 0.1.
Therefore, we get the bound ‘
Ro()] < (0.1)3 _ (0.1)3.

6 6

17.3.2 Let f(z) = cosz. Observe that, since f”/(0) = —sin0 = 0, the expression 1—22/2 is not only
a degree 2 approximation, but actually a degree 3 approximation! (In other words, Th(z) = T5(z) =
1—22/2.) Just as in the last problem, we obtain an approximation of the remainder function of the

form @
Ry(a)| = 11O

Therefore, if we want to bound the error by .0001 it suffices to choose an interval of the form [—b, b]
with

4 — 1 eosel 12
x| =|cosc]| 24 for some 0 < ¢ < .

4

b
— <.0001
24 —

b < v/24/10 ~ 0.221336

17.3.3 Let f(z) = sinxz. We want to bound the remainder function T, (x) by .0001 for |z| < .5.
Proceeding as in the last problem, we can quickly get a bound of the form

F0e)
(n+1)!

1

[ Rn(2)] = | 2 (4 1)

xn+1‘<



Now, observe that 3840 = 24t1(4 + 1)! < 10, 000 < 2°+1(5 + 1)! = 46,080. Hence, it is enough to
take T5. However, since Ty = T (for similar reasons as in problem 17.3.2) it suffices to take n = 4.

17.3.4 Let f(z) = cosz. Once again, we observe that since Ty = T5, we have an estimate of the

form
26
|Ra(2)| = |Bs5(2)] < -
Now, since

(.1)%/6! < (.1)8,

we conclude that Ty(.1) is a good enough approximation to cos.l. Calculating we get the approxi-
mation

cos.1~1—(.1)2/2+ (.1)*/24 ~ .9950041

17-1 a) Let P(x) be a polynomial of degree n. Then,

n

P(x) = Z oz —a),

=0
where ¢; = PU(a)/l!. Therefore, if we assume that
Pla)=P(a)=...=P¥*V@)=0, P®(a)£0,

then

If we set
Qz) =) alz—a)F
=k
then it is clear that P(z) = (z — a)*Q(z) and Q(a) = ¢ = P¥)(a)/k! # 0, that is, a is k-fold zero
of P(x).
Now assume that a is a k-fold zero of P(x), that is, assume that there exists a polynomial Q(z)
such that P(z) = (z — a)*Q(z) and Q(a) # 0. Expressing the polynomial Q(z) as

we obtain that



with by # 0. From this expression, it is immediate that

P(a)=P'(a)=...=P%V(a) =0, and P®(a) = bok! # 0,

b) Assume that a is a double zero of the polynomial P(z) = 223 — bz? + 1. Then, according to part
a) we should have that
0= P'(a) = 6a® — 2ba = a(6a — 2b).

Hence, the only options for a are a = 0 or a = b/3. Since P(0) # 0, we find ourselves looking for a
value of b such that

0 = fla)= f(b/3) = 2(2)3 —b<g>2+1

=366
S

o= 27
b = 3.

Pluggin back into our equations, we can see that, effectively, for b = 3 the value a = 1 is a double
zero of the polynomial P(x)

c¢) If in exercise 17.2.3 we take all the roots to be equal to a instead of being all different, then part
a) of this problems says that the conclusion in exercise 17.2.3 still holds and is equivalent to the
Extended Rolle’s Theorem.



