## Taylor series Homework set solutions.

17.1.1 Let $f(x)=(1+x)^{r}$. Then, by the usual differentiation formulas, we have that

$$
f^{(k)}(x)=r(r-1) \cdots(r-k+1)(1+x)^{r-k}
$$

Therefore,

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{n} \frac{r(r-1) \cdots(r-k+1)}{k!} x^{k} .
$$

Observation 1 The formula

$$
\begin{equation*}
\binom{r}{k}:=\frac{r(r-1) \cdots(r-k+1)}{k!} \tag{1}
\end{equation*}
$$

is sometimes used to represent the coefficient appearing on the right hand side of equation (1). Observe that when $r \geq k$ is an integer, this formula agrees with its usual definition.
17.2.1 We will prove Lemma 17.2 using induction.

Base Case. By the usual Rolle's theorem, if $f(a)=f(b)=0$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=f^{(0+1)}(c)=0$.

Inductive Step. Now assume that the result holds up to a fixed $n \in \mathbb{N}$, that is, assume that if $f^{(n+1)}$ exists on $[a, b]$ and $f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=f(b)=0$, then there exists $c$ between $a$ and $b$ such that $f^{(n+1)}(c)=0$.
We want to show that the result holds for $n+1$, that is, we want to show that if $f^{(n+2)}$ exists on $[a, b]$ and $f(a)=f^{\prime}(a)=\ldots=f^{(n+1)}(a)=f(b)=0$, then there exists $c$ between $a$ and $b$ such that $f^{(n+2)}(c)=0$. Let $g(x)=f^{\prime}(x)$. By the usual Rolle's theorem, there exists $c_{0} \in(a, b)$ such that

$$
g\left(c_{0}\right)=f^{\prime}\left(c_{0}\right)=0
$$

Hence $g^{(n+1)}=f^{(n+2)}$ exists and $g(a)=g^{\prime}(a)=\ldots=g^{(n)}(a)=g\left(c_{0}\right)=0$. Therefore, by induction hypothesis, there exists $c$ between $a$ and $c_{0}$ such that $g^{(n+1)}(c)=0$. Since $\left(a, c_{0}\right) \subset(a, b)$, we conclude that

$$
f^{(n+2)}(c)=g^{(n+1)}(c)=0 \quad \text { for some } c \in(a, b)
$$

as we wanted to show.
17.2.2 a) Assume that

$$
P(x)=\sum_{k=0}^{n} b_{k} x^{k}=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
$$

is a polynomial of degree $n$. If $x=u+a$, then we can rewrite the above expression as

$$
\begin{align*}
P(x) & =P(u+a) \\
& =\sum_{k=0}^{n} b_{k}(u+a)^{k} \\
& =\sum_{k=0}^{n} b_{k}\left(\sum_{l=0}^{k}\binom{k}{l} a^{k-l} u^{l}\right) \\
& =\sum_{k=0}^{n} \sum_{l=0}^{k} b_{k}\binom{k}{l} a^{k-l} u^{l} \\
& =\sum_{l=0}^{n}\left[\sum_{k=l}^{n} b_{k}\binom{k}{l} a^{k-l}\right] u^{l}, \tag{2}
\end{align*}
$$

where the last equality follows from the identities of iterated sums. Substituting $u=x-a$ in (2) we get

$$
\begin{equation*}
P(x)=\sum_{l=0}^{n}\left[\sum_{k=l}^{n} b_{k}\binom{k}{l} a^{k-l}\right](x-a)^{l} . \tag{3}
\end{equation*}
$$

On the other hand, using the usual formulas for the derivatives, we obtain that

$$
P^{(l)}(x)=\sum_{k=l}^{n} b_{k} k(k-1) \cdots(k-l+1) x^{k-l} .
$$

Hence

$$
\begin{equation*}
T_{n}(x)=\sum_{l=0}^{n} \frac{P^{(l)}(a)}{l!}(x-a)^{l}=\sum_{l=0}^{n} \frac{\sum_{k=l}^{n} b_{k} k(k-1) \cdots(k-l+1) a^{k-l}}{l!}(x-a)^{l} . \tag{4}
\end{equation*}
$$

Comparing equations (3) and (4), we conclude that

$$
P(x)=T_{n}(x) .
$$

b) Observe that, if we set $x=u-1$,

$$
\begin{aligned}
P(x) & =(u-1)^{3}-2(u-1)+2 \\
& =u^{3}-3 u^{2}+u+3 \\
& =(x+1)^{3}-3(x+1)^{2}+(x+1)+3 .
\end{aligned}
$$

On the other hand, we have that

$$
\begin{array}{lll}
P(x)=x^{3}-2 x+2, & \text { hence } & P(-1)=3 . \\
P^{\prime}(x)=3 x^{2}-2, & \text { hence } & P^{\prime}(-1)=1 . \\
P^{\prime \prime}(x)=6 x, & \text { hence } & P^{\prime \prime}(-1)=-6 . \\
P^{\prime \prime \prime}(x)=6, & \text { hence } & P^{\prime \prime}(-1)=6 .
\end{array}
$$

Therefore,

$$
P(x)=3+(x+1)+\frac{(-6)}{2!}(x+1)^{2}+\frac{6}{3!}(x+1)^{3}=3+(x+1)-3(x+1)^{2}+(x+1)^{3}
$$

17.2.3 We will prove this result using induction on $n$.

Base Case. For $n=0$, the problem is asking us to show that if $g(a)=g(b)=0$, then there exist $c \in(a, b)$ such that $g^{(0+1)}(c)=g^{\prime}(c)=0$. But this is precisely the statement of Rolle's theorem.

Inductive Step. Now assume that the result holds up to a fixed $n \in \mathbb{N}$. If we set $a_{0}=a$, and $a_{n+1}=b$, then this is equivalent to assuming that if $g$ has $(n+1)$ derivatives, and

$$
g\left(a_{0}\right)=g\left(a_{1}\right)=\cdots g\left(a_{n+1}\right)=0
$$

then there exists $c \in(a, b)$ such that $g^{(n+1)}(c)=0$.
We want to prove that this result holds for $n+1$, that is, we want to show that if $g$ has $(n+2)$ derivatives, and if

$$
g\left(a_{0}\right)=g\left(a_{1}\right)=\cdots g\left(a_{n+2}\right)=0
$$

then there exists $c \in(a, b)$ such that $g^{n+2}(c)=0$. Let's set $f(t)=g^{\prime}(t)$. Then, by Rolle's theorem, there exists $c_{k} \in\left(a_{k}, a_{k+1}\right)$ for $k=0,1, \ldots, n+1$ such that

$$
f\left(c_{k}\right)=g^{\prime}\left(c_{k}\right)=0 \quad \text { for } k=0, \ldots, n+1
$$

Hence, by induction hypothesis, there exists $c \in\left(c_{0}, c_{n+1}\right) \subset(a, b)$ such that

$$
f^{(n+1)}(c)=g^{(n+2)}(c)=0
$$

as we wanted to show.
17.2.4 a) Since $f(a)=f(b)=0$, then, by Rolle's theorem, there exists $c_{0} \in(a, b)$ such that $f^{\prime}\left(c_{0}\right)=$ 0 . Applying Rolle's theorem again on the intervals $\left[a, c_{0}\right]$ and $\left[c_{0}, b\right]$ for the function $g(x)=f^{\prime}(x)$, we get that there exists $c_{1} \in\left[a, c_{0}\right]$ and $c_{2} \in\left[c_{0}, b\right]$ such that

$$
f^{\prime \prime}\left(c_{1}\right)=f^{\prime \prime}\left(c_{2}\right)=0
$$

Yet another application of Rolle's theorem gives us a $c \in\left(c_{1}, c_{2}\right)$ such that $f^{\prime \prime \prime}(c)=0$.
b) Observe that

$$
f^{\prime}(x)=2(x-a)(x-b)^{2}+2(x-a)^{2}(x-b)
$$

Hence $f(a)=f(b)=f^{\prime}(a)=f^{\prime}(b)=0$, that is, the hypothesis of part a) apply. Now, by the usual differentiation formulas, we obtain that

$$
f^{\prime \prime \prime}(x)=24 x-12 a-12 b
$$

Hence, the equation $f^{\prime \prime \prime}(c)=0$ is equivalent to the equation

$$
\begin{aligned}
24 c-12 a-12 b & =0 \\
c & =\frac{a+b}{2}
\end{aligned}
$$

17.3.1 Let $f(x)=e^{-x}$. Then,

$$
T_{2}(x)=\sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} x^{k}=1-x+\frac{x^{2}}{2}
$$

We want to estimate the magnitude of the residue function

$$
R_{2}(x)=f(x)-T_{2}(x) \quad \text { for } x \in[0,0.1]
$$

By Taylor's theorem with Lagrange remainder, we know that for all such $x$, there exists a $c$ between 0 and $x$ such that

$$
R_{2}(x)=\frac{f^{(3)}(c)}{3!} x^{3}
$$

So the magnitude of the error is given by

$$
\left|R_{2}(x)\right|=\left|e^{-c}\right|\left|\frac{x^{3}}{3!}\right| \quad \text { for some } 0 \leq c \leq x \leq 0.1
$$

Therefore, we get the bound

$$
\left|R_{2}(x)\right| \leq e^{0} \frac{(0.1)^{3}}{6}=\frac{(0.1)^{3}}{6}
$$

17.3.2 Let $f(x)=\cos x$. Observe that, since $f^{\prime \prime \prime}(0)=-\sin 0=0$, the expression $1-x^{2} / 2$ is not only a degree 2 approximation, but actually a degree 3 approximation! (In other words, $T_{2}(x)=T_{3}(x)=$ $1-x^{2} / 2$.) Just as in the last problem, we obtain an approximation of the remainder function of the form

$$
\left|R_{3}(x)\right|=\left|\frac{f^{(4)}(c)}{4!} x^{4}\right|=|\cos c| \frac{|x|^{4}}{24} \quad \text { for some } 0 \leq c \leq x
$$

Therefore, if we want to bound the error by .0001 it suffices to choose an interval of the form $[-b, b]$ with

$$
\begin{array}{r}
\frac{b^{4}}{24} \leq .0001 \\
b \leq \sqrt[4]{24} / 10 \approx 0.221336
\end{array}
$$

17.3.3 Let $f(x)=\sin x$. We want to bound the remainder function $T_{n}(x)$ by . 0001 for $|x|<.5$. Proceeding as in the last problem, we can quickly get a bound of the form

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}\right|<\frac{1}{2^{n+1}(n+1)!}
$$

Now, observe that $3840=2^{4+1}(4+1)!<10,000<2^{5+1}(5+1)!=46,080$. Hence, it is enough to take $T_{5}$. However, since $T_{4}=T_{5}$ (for similar reasons as in problem 17.3.2) it suffices to take $n=4$.
17.3.4 Let $f(x)=\cos x$. Once again, we observe that since $T_{4}=T_{5}$, we have an estimate of the form

$$
\left|R_{4}(x)\right|=\left|R_{5}(x)\right| \leq \frac{x^{6}}{6!} .
$$

Now, since

$$
(.1)^{6} / 6!<(.1)^{8},
$$

we conclude that $T_{4}(.1)$ is a good enough approximation to cos.1. Calculating we get the approximation

$$
\cos .1 \approx 1-(.1)^{2} / 2+(.1)^{4} / 24 \approx .9950041
$$

17-1 a) Let $P(x)$ be a polynomial of degree $n$. Then,

$$
P(x)=\sum_{l=0}^{n} c_{l}(x-a)^{l}
$$

where $c_{l}=P^{(l)}(a) / l!$. Therefore, if we assume that

$$
P(a)=P^{\prime}(a)=\ldots=P^{(k-1)}(a)=0, \quad P^{(k)}(a) \neq 0
$$

then

$$
P(x)=(x-a)^{k}\left(\sum_{l=k}^{n} c_{l}(x-a)^{l-k}\right) .
$$

If we set

$$
Q(x)=\sum_{l=k}^{n} c_{l}(x-a)^{l-k}
$$

then it is clear that $P(x)=(x-a)^{k} Q(x)$ and $Q(a)=c_{k}=P^{(k)}(a) / k!\neq 0$, that is, $a$ is $k$-fold zero of $P(x)$.
Now assume that $a$ is a $k$-fold zero of $P(x)$, that is, assume that there exists a polynomial $Q(x)$ such that $P(x)=(x-a)^{k} Q(x)$ and $Q(a) \neq 0$. Expressing the polynomial $Q(x)$ as

$$
Q(x)=\sum_{l=0}^{m} b_{l}(x-a)^{l},
$$

we obtain that

$$
\begin{aligned}
P(x) & =(x-a)^{k} \sum_{l=0}^{m} b_{l}(x-a)^{l} \\
& =\sum_{l=0}^{m} b_{l}(x-a)^{k+l} \\
& =\sum_{l=k}^{k+m} b_{l-k}(x-a)^{l}
\end{aligned}
$$

with $b_{0} \neq 0$. From this expression, it is immediate that

$$
P(a)=P^{\prime}(a)=\ldots=P^{(k-1)}(a)=0, \quad \text { and } P^{(k)}(a)=b_{0} k!\neq 0
$$

b) Assume that $a$ is a double zero of the polynomial $P(x)=2 x^{3}-b x^{2}+1$. Then, according to part a) we should have that

$$
0=P^{\prime}(a)=6 a^{2}-2 b a=a(6 a-2 b) .
$$

Hence, the only options for $a$ are $a=0$ or $a=b / 3$. Since $P(0) \neq 0$, we find ourselves looking for a value of $b$ such that

$$
\begin{aligned}
0 & =f(a)=f(b / 3)=2\left(\frac{b}{3}\right)^{3}-b\left(\frac{b}{3}\right)^{2}+1 \\
-1 & =\frac{2}{3}\left(\frac{b^{3}}{9}\right)-\left(\frac{b^{3}}{9}\right) \\
-1 & =-\frac{1}{3}\left(\frac{b^{3}}{9}\right) \\
b^{3} & =27 \\
b & =3
\end{aligned}
$$

Pluggin back into our equations, we can see that, effectively, for $b=3$ the value $a=1$ is a double zero of the polynomial $P(x)$
c) If in exercise 17.2.3 we take all the roots to be equal to $a$ instead of being all different, then part a) of this problems says that the conclusion in exercise 17.2 .3 still holds and is equivalent to the Extended Rolle's Theorem.

