Taylor series Homework set solutions.

17.1.1 Let $f(x) = (1+x)^r$. Then, by the usual differentiation formulas, we have that

$$f^{(k)}(x) = r(r-1)\cdots(r-k+1)(1+x)^{r-k}$$

Therefore,

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^n \frac{r(r-1)\cdots(r-k+1)}{k!} x^k.$$

Observation 1 The formula

$$\binom{r}{k} := \frac{r(r-1)\cdots(r-k+1)}{k!} \tag{1}$$

is sometimes used to represent the coefficient appearing on the right hand side of equation (1). Observe that when $r \ge k$ is an integer, this formula agrees with its usual definition.

17.2.1 We will prove Lemma 17.2 using induction.

- **Base Case.** By the usual Rolle's theorem, if f(a) = f(b) = 0, then there exists $c \in (a, b)$ such that $f'(c) = f^{(0+1)}(c) = 0$.
- **Inductive Step.** Now assume that the result holds up to a fixed $n \in \mathbb{N}$, that is, assume that if $f^{(n+1)}$ exists on [a, b] and $f(a) = f'(a) = \ldots = f^{(n)}(a) = f(b) = 0$, then there exists c between a and b such that $f^{(n+1)}(c) = 0$.

We want to show that the result holds for n + 1, that is, we want to show that if $f^{(n+2)}$ exists on [a,b] and $f(a) = f'(a) = \ldots = f^{(n+1)}(a) = f(b) = 0$, then there exists c between a and b such that $f^{(n+2)}(c) = 0$. Let g(x) = f'(x). By the usual Rolle's theorem, there exists $c_0 \in (a,b)$ such that

$$g(c_0) = f'(c_0) = 0.$$

Hence $g^{(n+1)} = f^{(n+2)}$ exists and $g(a) = g'(a) = \ldots = g^{(n)}(a) = g(c_0) = 0$. Therefore, by induction hypothesis, there exists c between a and c_0 such that $g^{(n+1)}(c) = 0$. Since $(a, c_0) \subset (a, b)$, we conclude that

$$f^{(n+2)}(c) = g^{(n+1)}(c) = 0$$
 for some $c \in (a, b)$,

as we wanted to show.

17.2.2 a) Assume that

$$P(x) = \sum_{k=0}^{n} b_k x^k = b_0 + b_1 x + \dots + b_n x^n$$

is a polynomial of degree n. If x = u + a, then we can rewrite the above expression as

$$P(x) = P(u+a)$$

$$= \sum_{k=0}^{n} b_{k}(u+a)^{k}$$

$$= \sum_{k=0}^{n} b_{k} \left(\sum_{l=0}^{k} \binom{k}{l} a^{k-l} u^{l}\right)$$

$$= \sum_{k=0}^{n} \sum_{l=0}^{k} b_{k} \binom{k}{l} a^{k-l} u^{l}$$

$$= \sum_{l=0}^{n} \left[\sum_{k=l}^{n} b_{k} \binom{k}{l} a^{k-l}\right] u^{l},$$
(2)

where the last equality follows from the identities of iterated sums. Substituting u = x - a in (2) we get

$$P(x) = \sum_{l=0}^{n} \left[\sum_{k=l}^{n} b_k \binom{k}{l} a^{k-l} \right] (x-a)^l.$$
(3)

On the other hand, using the usual formulas for the derivatives, we obtain that

$$P^{(l)}(x) = \sum_{k=l}^{n} b_k k(k-1) \cdots (k-l+1) x^{k-l}.$$

Hence

$$T_n(x) = \sum_{l=0}^n \frac{P^{(l)}(a)}{l!} (x-a)^l = \sum_{l=0}^n \frac{\sum_{k=l}^n b_k \, k(k-1) \cdots (k-l+1) a^{k-l}}{l!} (x-a)^l. \tag{4}$$

Comparing equations (3) and (4), we conclude that

$$P(x) = T_n(x).$$

b) Observe that, if we set x = u - 1,

$$P(x) = (u-1)^3 - 2(u-1) + 2$$

= $u^3 - 3u^2 + u + 3$
= $(x+1)^3 - 3(x+1)^2 + (x+1) + 3.$

On the other hand, we have that

$$\begin{array}{ll} P(x) = x^3 - 2x + 2, & \text{hence} & P(-1) = 3. \\ P'(x) = 3x^2 - 2, & \text{hence} & P'(-1) = 1. \\ P''(x) = 6x, & \text{hence} & P''(-1) = -6. \\ P'''(x) = 6, & \text{hence} & P''(-1) = 6. \end{array}$$

Therefore,

$$P(x) = 3 + (x+1) + \frac{(-6)}{2!}(x+1)^2 + \frac{6}{3!}(x+1)^3 = 3 + (x+1) - 3(x+1)^2 + (x+1)^3.$$

17.2.3 We will prove this result using induction on n.

- **Base Case.** For n = 0, the problem is asking us to show that if g(a) = g(b) = 0, then there exist $c \in (a, b)$ such that $g^{(0+1)}(c) = g'(c) = 0$. But this is precisely the statement of Rolle's theorem.
- **Inductive Step.** Now assume that the result holds up to a *fixed* $n \in \mathbb{N}$. If we set $a_0 = a$, and $a_{n+1} = b$, then this is equivalent to assuming that if g has (n+1) derivatives, and

$$g(a_0) = g(a_1) = \cdots g(a_{n+1}) = 0,$$

then there exists $c \in (a, b)$ such that $g^{(n+1)}(c) = 0$.

We want to prove that this result holds for n+1, that is, we want to show that if g has (n+2) derivatives, and if

$$g(a_0) = g(a_1) = \cdots = g(a_{n+2}) = 0$$

then there exists $c \in (a, b)$ such that $g^{n+2}(c) = 0$. Let's set f(t) = g'(t). Then, by Rolle's theorem, there exists $c_k \in (a_k, a_{k+1})$ for $k = 0, 1, \ldots, n+1$ such that

$$f(c_k) = g'(c_k) = 0$$
 for $k = 0, \dots, n+1$.

Hence, by induction hypothesis, there exists $c \in (c_0, c_{n+1}) \subset (a, b)$ such that

$$f^{(n+1)}(c) = g^{(n+2)}(c) = 0,$$

as we wanted to show.

17.2.4 a) Since f(a) = f(b) = 0, then, by Rolle's theorem, there exists $c_0 \in (a, b)$ such that $f'(c_0) = 0$. Applying Rolle's theorem again on the intervals $[a, c_0]$ and $[c_0, b]$ for the function g(x) = f'(x), we get that there exists $c_1 \in [a, c_0]$ and $c_2 \in [c_0, b]$ such that

$$f''(c_1) = f''(c_2) = 0.$$

Yet another application of Rolle's theorem gives us a $c \in (c_1, c_2)$ such that f'''(c) = 0.

b) Observe that

$$f'(x) = 2(x-a)(x-b)^2 + 2(x-a)^2(x-b).$$

Hence f(a) = f(b) = f'(a) = f'(b) = 0, that is, the hypothesis of part a) apply. Now, by the usual differentiation formulas, we obtain that

$$f'''(x) = 24x - 12a - 12b.$$

Hence, the equation f'''(c) = 0 is equivalent to the equation

$$24c - 12a - 12b = 0$$
$$c = \frac{a+b}{2}$$

17.3.1 Let $f(x) = e^{-x}$. Then,

$$T_2(x) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} x^k = 1 - x + \frac{x^2}{2}.$$

We want to estimate the magnitude of the residue function

$$R_2(x) = f(x) - T_2(x)$$
 for $x \in [0, 0.1]$.

By Taylor's theorem with Lagrange remainder, we know that for all such x, there exists a c between 0 and x such that

$$R_2(x) = \frac{f^{(3)}(c)}{3!}x^3.$$

So the magnitude of the error is given by

$$|R_2(x)| = |e^{-c}| |\frac{x^3}{3!}|$$
 for some $0 \le c \le x \le 0.1$.

Therefore, we get the bound

$$|R_2(x)| \le e^0 \frac{(0.1)^3}{6} = \frac{(0.1)^3}{6}.$$

17.3.2 Let $f(x) = \cos x$. Observe that, since $f''(0) = -\sin 0 = 0$, the expression $1 - x^2/2$ is not only a degree 2 approximation, but actually a degree 3 approximation! (In other words, $T_2(x) = T_3(x) = 1 - x^2/2$.) Just as in the last problem, we obtain an approximation of the remainder function of the form

$$|R_3(x)| = |\frac{f^{(4)}(c)}{4!}x^4| = |\cos c|\frac{|x|^4}{24}$$
 for some $0 \le c \le x$.

Therefore, if we want to bound the error by .0001 it suffices to choose an interval of the form [-b, b] with

$$\frac{b^4}{24} \le .0001$$

$$b \le \sqrt[4]{24}/10 \approx 0.221336$$

17.3.3 Let $f(x) = \sin x$. We want to bound the remainder function $T_n(x)$ by .0001 for |x| < .5. Proceeding as in the last problem, we can quickly get a bound of the form

$$|R_n(x)| = |\frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}| < \frac{1}{2^{n+1}(n+1)!}.$$

Now, observe that $3840 = 2^{4+1}(4+1)! < 10,\ 000 < 2^{5+1}(5+1)! = 46,080$. Hence, it is enough to take T_5 . However, since $T_4 = T_5$ (for similar reasons as in problem 17.3.2) it suffices to take n = 4.

17.3.4 Let $f(x) = \cos x$. Once again, we observe that since $T_4 = T_5$, we have an estimate of the form

$$|R_4(x)| = |R_5(x)| \le \frac{x^6}{6!}.$$

Now, since

 $(.1)^6/6! < (.1)^8,$

we conclude that $T_4(.1)$ is a good enough approximation to $\cos .1$. Calculating we get the approximation

$$\cos .1 \approx 1 - (.1)^2 / 2 + (.1)^4 / 24 \approx .9950041$$

17-1 a) Let P(x) be a polynomial of degree n. Then,

$$P(x) = \sum_{l=0}^{n} c_l (x-a)^l$$

where $c_l = P^{(l)}(a)/l!$. Therefore, if we assume that

$$P(a) = P'(a) = \ldots = P^{(k-1)}(a) = 0, \qquad P^{(k)}(a) \neq 0,$$

then

$$P(x) = (x - a)^k \left(\sum_{l=k}^n c_l (x - a)^{l-k}\right).$$

If we set

$$Q(x) = \sum_{l=k}^{n} c_l (x-a)^{l-k},$$

then it is clear that $P(x) = (x - a)^k Q(x)$ and $Q(a) = c_k = P^{(k)}(a)/k! \neq 0$, that is, a is k-fold zero of P(x).

Now assume that a is a k-fold zero of P(x), that is, assume that there exists a polynomial Q(x) such that $P(x) = (x-a)^k Q(x)$ and $Q(a) \neq 0$. Expressing the polynomial Q(x) as

$$Q(x) = \sum_{l=0}^{m} b_l (x-a)^l,$$

we obtain that

$$P(x) = (x-a)^{k} \sum_{l=0}^{m} b_{l}(x-a)^{l}$$
$$= \sum_{l=0}^{m} b_{l}(x-a)^{k+l}$$
$$= \sum_{l=k}^{k+m} b_{l-k}(x-a)^{l}$$

with $b_0 \neq 0$. From this expression, it is immediate that

$$P(a) = P'(a) = \dots = P^{(k-1)}(a) = 0,$$
 and $P^{(k)}(a) = b_0 k! \neq 0,$

b) Assume that a is a double zero of the polynomial $P(x) = 2x^3 - bx^2 + 1$. Then, according to part a) we should have that

$$0 = P'(a) = 6a^2 - 2ba = a(6a - 2b).$$

Hence, the only options for a are a = 0 or a = b/3. Since $P(0) \neq 0$, we find ourselves looking for a value of b such that

$$0 = f(a) = f(b/3) = 2\left(\frac{b}{3}\right)^3 - b\left(\frac{b}{3}\right)^2 + 1$$

-1 = $\frac{2}{3}\left(\frac{b^3}{9}\right) - \left(\frac{b^3}{9}\right)$
-1 = $-\frac{1}{3}\left(\frac{b^3}{9}\right)$
 $b^3 = 27$
 $b = 3.$

Pluggin back into our equations, we can see that, effectively, for b = 3 the value a = 1 is a double zero of the polynomial P(x)

c) If in exercise 17.2.3 we take all the roots to be equal to a instead of being all different, then part a) of this problems says that the conclusion in exercise 17.2.3 still holds and is equivalent to the Extended Rolle's Theorem.