13.1.1(a) Consider arbitrary sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $x_{n} \in S, \forall n \in \mathbb{N}$. There are only finitely many intervals, so at least one of them contains infinitely many terms of the sequence. Let I be this interval. We will consider the subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ for which the k -th term is the k -th element of $\left(x_{n}\right)$ that is in I. As $\left(x_{n_{k}}\right)$ is a sequence with elements in the compact interval I, there is a convergent subsequence ($x_{n_{k_{i}}}$) that converges to $c \in I$. This subsequence is a subsequence of $\left(x_{n}\right)$ and converges to an element of S, so S is sequentially compact.
(b) Infinite unions of compact intervals are not always compact. For example,

$$
\mathbb{R}=\bigcup_{n=1}^{\infty}[-n, n]
$$

is a union of compact intervals, but is not sequentially compact, because the sequence $x_{n}=n$ has no convergent subsequences. The statement is still not true if we impose boundedness. For example, $(0,1]$ is not sequentially compact (why?) but $(0,1]=\cup_{n=1}^{\infty}\left[\frac{1}{n}, 1\right]$.
13.2.2(a) $f(x)=\frac{1}{x}-1$ for $x \in(0,1]$ and $f(0)=14$ is one such function. Its domain is $[0,1]$, its range is $[0, \infty)$. The function f is not continuous.
(b) No function satisfying (a) can be continuous. The domain is a compact interval, so all continuous functions with this domain are bounded. As this function is not bounded, it cannot hope to be continuous.
13.3.2 Write the polynomial as $p(x)=a_{n} x^{n}+\ldots+a_{0}$. We will show that $p(x)$ has a minimum if $a_{n}>0$. If $a_{n}>0$ from a previous homework we know that $\lim _{x \rightarrow \pm \infty} p(x)=\infty$. In particular, this implies that there is $M>0$ such that for $x<-M$ and $x>M, p(x) \geq a_{0}$. As $[-M, M]$ is a compact interval and $p(x)$ is continuous, $p(x)$ has a minimum on $[-M, M]$, call this minimum \underline{m}. For every $x \in \mathbb{R}$, if $x \notin[-M, M]$ then $x>a_{0}=p(0) \geq \underline{\mathrm{m}}$, and if $x \in[-M, M]$ then $x \geq \underline{\mathrm{m}}$, so p has a minimum at $\underline{\mathrm{m}}$. The same sort of argument shows that if $a_{n}<0$ that $p(x)$ has a maximum on $(-\infty, \infty)$.
13.4.1 (a) Let I be a compact interval. As its image is a compact interval, there is a, b such that $f(I)=[a, b]$. By the definition of image, as a and b are in the image of f, there is $x \in I$ such that $f(x)=a$ and $y \in I$ such that $f(y)=b$. Therefore f has a maximum at y and a minimum at x.
(b) Notice that the image is an interval, so if $I=[\alpha, \beta]$, then $f(\alpha), f(\beta)$ is in the image, and so is every element in between them. Hence for every c between $f(\alpha)$ and $f(\beta)$, there is $z \in I$ such that $f(z)=c$, and thus f has the IVT.
13.4.2 Consider the function $f(x)=\sin \left(\frac{1}{x}\right), x \neq 0$ and $f(0)=0$. This is not a continuous function, as there is a sequence $\left(x_{n}\right)$ converging to 0 such that $f\left(x_{n}\right)=1$ for all n. It does satisfy the property of the previous question. If $[a, b]$ is a compact interval, either it does not contain 0 , and f is a continuous function on $[a, b]$, and hence has image a compact interval, or it contains 0 , and then the image of f on $[a, b]$ is $[0,1]$.
13.5.2 Let p be a period of f, a continuous, periodic function defined on \mathbb{R}. As f is continuous, by uniform continuity on compact intervals, f is uniformly continuous on $[-p, p]$. This implies that given $\epsilon>0$, there exists $\delta>0$, which we may assume is also smaller than $p / 2$, such that if $x, y \in[-p, p]$ and $|x-y|<\delta$ then $|f(x)-f(y)|<\epsilon$. We will show that in fact, for any $x, y \in \mathbb{R}$, if $|x-y|<\delta$ then $|f(x)-f(y)|<\epsilon$. If $x, y \in \mathbb{R}$ satisfy that $|x-y|<p / 2$ then either $n p<x, y<(n+1) p$ for some unique n, or $x<m p<y$ for some unique m. In the first case, $|x-y|=|(x-n p)-(y-n p)|<\delta$, and $x-n p, y-n p \in[0, p]$. Then $|f(x)-f(y)|=|f(x-n p)-f(y-n p)|<\epsilon$. In the second case $x-m p \in[-p, 0]$ and $y-m p \in[0, p]$. As $|x-y|=|(x-m p)-(y-m p)|<\delta$, then $|f(x)-f(y)|=|f(x-m p)-f(y-m p)|<\epsilon$.
13.5.3 Given $\epsilon>0$ we want to find $\delta>0$ such that if $x, y \in I \cup J$ and $|x-y|<\delta$ then $|f(x)-f(y)|<2 \epsilon$.

As f is uniformly continuous on I, there is a δ_{1} such that for $|x-y|<\delta_{1},|f(x)-f(y)|<\epsilon$ as long as $x, y \in I$. Similarly, there is a δ_{2} such that this condition holds as long as $x, y \in J$. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Certainly this δ still works for I and J. Now suppose that $x \in I$ and $x \notin J, y \in J$ and $y \notin I$, and $|x-y|<\delta$. WLOG, $x<y$. As $I \cap J$ and I and J are intervals, there is $z \in I \cap J$ and $x<z<y$. Therefore $|x-z|<\delta$, and $x, z \in I$ and $|y-z|<\delta$ and $y, z \in J$, so we can apply uniform continuity separately. Hence $|f(x)-f(y)| \leq|f(x)-f(z)|+|f(z)-f(y)| \leq 2 \epsilon$.
13.5.4 There are several ways to show that $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$. One way is to apply the last problem and show that it is uniformly continuous on $[0,1]$ and $[1, \infty)$. It is uniformly continuous on $[0,1]$ because it is a continuous function on a compact interval. Now we prove from the definition that it is uniformly
continuous on $[1, \infty)$. Given $\epsilon>0$, for $\delta=\epsilon$, if $|x-y| \leq \delta$ then

$$
|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq|x-y|<\epsilon
$$

The first equality comes from thinking of $x-y$ as a difference of squares. The second comes from the fact that $x, y \geq 1$. Therefore $\sqrt{(} x)$ is uniformly continuous on $[1, \infty)$, and the desired result follows.
13.5.5 As $\ln (x)$ is continuous at 1 , given $\epsilon>0$, there is $\delta>0$ such that if $|x-1|<\delta$, then $|\ln (x)-\ln (1)|<\epsilon$. For $x, y \in \mathbb{R}$, such that $|x-y|<\delta$ the $|x / y-1|<\delta / x \leq \delta($ as $x \geq 1)$. Therefore $|\ln (x)-\ln (y)|=|\ln (x / y)|=$ $|\ln (x / y)-\ln (1)|<\epsilon$. Hence $\ln (x)$ is uniformly continuous on $[1, \infty)$.
13.5.6 (a)For $\epsilon>0$, let $\delta=\epsilon / K$. Then if $|x-y|<\delta$,

$$
|f(y)-f(x)| \leq K|y-x|<K \epsilon / K=\epsilon
$$

so f is uniformly continuous.
(b) $\sqrt{(} x)$ is uniformly continuous, but does not satisfy this condition (called Lipschitz continuity). We will show that for every K there is x, y pair such that the slope of the secant between x and y is greater than K : Let $x=0, y=\frac{1}{4 K^{2}}$

$$
\frac{|\sqrt{x}-\sqrt{y}|}{|x-y|}=\frac{\sqrt{y}}{y}=\frac{\sqrt{1}}{\sqrt{y}}=2 K>K
$$

