13.1.1(a) Consider arbitrary sequence (z,)nen such that x,, € S,¥n € N. There are only finitely many intervals,
so at least one of them contains infinitely many terms of the sequence. Let I be this interval. We will consider
the subsequence (x,, )ken for which the k-th term is the k-th element of (z,) that is in I. As (x,, ) is a sequence
with elements in the compact interval I, there is a convergent subsequence (z,, ) that converges to ¢ € I. This
subsequence is a subsequence of (x,) and converges to an element of S, so S is selquentially compact.
(b) Infinite unions of compact intervals are not always compact. For example,

R = U [—n,n]

is a union of compact intervals, but is not sequentially compact, because the sequence x, = n has no convergent
subsequences. The statement is still not true if we impose boundedness. For example, (0,1] is not sequentially
compact (why?) but (0,1] = U2, [, 1].

13.2.2(a) f(z) =1 — 1 for z € (0,1] and f(0) = 14 is one such function. Its domain is [0, 1], its range is [0, 00).
The function f is not continuous.
(b) No function satisfying (a) can be continuous. The domain is a compact interval, so all continuous functions
with this domain are bounded. As this function is not bounded, it cannot hope to be continuous.

13.3.2 Write the polynomial as p(z) = a,2™ + ... + ap. We will show that p(z) has a minimum if a,, > 0. If
ap > 0 from a previous homework we know that lim, 1 p(z) = co. In particular, this implies that there is M > 0
such that for z < —M and © > M, p(x) > ag. As [-M, M] is a compact interval and p(x) is continuous, p(x) has
a minimum on [—M, M], call this minimum m. For every z € R, if z & [-M, M| then z > ag = p(0) > m, and if
x € [-M, M] then > m, so p has a minimum at m. The same sort of argument shows that if a,, < 0 that p(x)
has a maximum on (—o0, 00).

13.4.1 (a) Let I be a compact interval. As its image is a compact interval, there is a, b such that f(I) = [a,b].
By the definition of image, as a and b are in the image of f, there is # € I such that f(x) = a and y € I such that
f(y) = b. Therefore f has a maximum at y and a minimum at .

(b) Notice that the image is an interval, so if I = [a, 8], then f(«), f(8) is in the image, and so is every element
in between them. Hence for every ¢ between f(«) and f(f), there is z € I such that f(z) = ¢, and thus f has the IVT.

13.4.2 Consider the function f(z) =sin(1),z # 0 and f(0) = 0. This is not a continuous function, as there is a
sequence (x,) converging to 0 such that f(x,) =1 for all n. It does satisfy the property of the previous question.
If [a,b] is a compact interval, either it does not contain 0, and f is a continuous function on [a, b], and hence has

image a compact interval, or it contains 0, and then the image of f on [a,b] is [0, 1].

13.5.2 Let p be a period of f, a continuous, periodic function defined on R. As f is continuous, by uniform
continuity on compact intervals, f is uniformly continuous on [—p,p]. This implies that given € > 0, there ex-
ists 6 > 0, which we may assume is also smaller than p/2, such that if z,y € [—p,p] and |z — y| < J then
|f(z) — f(y)] < e. We will show that in fact, for any z,y € R, if |z —y| < ¢ then |f(z) — f(y)] < e If
z,y € R satisfy that |x — y| < p/2 then either np < z,y < (n + 1)p for some unique n, or x < mp < y for
some unique m. In the first case, |z — y| = |(x — np) — (y — np)| < 0, and = — np,y — np € [0,p]. Then
|f(x) = fly)| = |f(x —np) — f(y — np)| < e. In the second case x — mp € [—p,0] and y — mp € [0,p]. As
|z —y| = [(z —mp) — (y —mp)| <4, then |f(z) — f(y)| = |f(z —mp) — fly —mp)| <e

13.5.3 Given € > 0 we want to find § > 0 such that if z,y € TU J and |x — y| < ¢ then |f(z) — f(y)| < 2e.
As f is uniformly continuous on I, there is a §; such that for |z — y| < 1, |f(z) — f(y)| < € as long as z,y € I.
Similarly, there is a d2 such that this condition holds as long as z,y € J. Let § = min(d1, d2). Certainly this & still
works for I and J. Now suppose that z € Tand x ¢ J,y € Jand y € I, and |z —y| < §. WLOG, z <y. AsInNJ
and I and J are intervals, there is z € INJ and < z < y. Therefore |x — 2| < §, and 2,z € T and |y — 2| < §
and y, z € J, so we can apply uniform continuity separately. Hence |f(x)— f(y)| < |f(z)— f(2)|+|f(2) — f(v)] < 2e.

13.5.4 There are several ways to show that f(z) = y/z is uniformly continuous on [0,00). One way is to apply
the last problem and show that it is uniformly continuous on [0,1] and [1,c0). It is uniformly continuous on [0, 1]
because it is a continuous function on a compact interval. Now we prove from the definition that it is uniformly



continuous on [1,00). Given ¢ > 0, for 6 = ¢, if |z — y| < § then
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The first equality comes from thinking of x — y as a difference of squares. The second comes from the fact that
x,y > 1. Therefore \ﬂx) is uniformly continuous on [1,00), and the desired result follows.

13.5.5 As In(x) is continuous at 1, given € > 0, there is § > 0 such that if |z — 1| < §, then |In(z) — In(1)| < e.
For z,y € R, such that |z — y| < § the |[z/y — 1| < §/x < 0 (as > 1). Therefore |In(x) — In(y)| = |In(z/y)| =
|In(z/y) —In(1)| < e. Hence In(x) is uniformly continuous on [1, c0).

13.5.6 (a)For € > 0, let § = ¢/K. Then if |x — y| < 4,
[f(y) = f(@)| < Kly —z| < Ke/K =€
so f is uniformly continuous.

(b)/(z) is uniformly continuous, but does not satisfy this condition (called Lipschitz continuity). We will show
that for every K there is x,y pair such that the slope of the secant between z and y is greater than K: Let
r=0,y= 15
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