
13.1.1(a) Consider arbitrary sequence (xn)n∈N such that xn ∈ S,∀n ∈ N. There are only finitely many intervals,
so at least one of them contains infinitely many terms of the sequence. Let I be this interval. We will consider
the subsequence (xnk

)k∈N for which the k-th term is the k-th element of (xn) that is in I. As (xnk
) is a sequence

with elements in the compact interval I, there is a convergent subsequence (xnki
) that converges to c ∈ I. This

subsequence is a subsequence of (xn) and converges to an element of S, so S is sequentially compact.
(b) Infinite unions of compact intervals are not always compact. For example,

R =

∞⋃
n=1

[−n, n]

is a union of compact intervals, but is not sequentially compact, because the sequence xn = n has no convergent
subsequences. The statement is still not true if we impose boundedness. For example, (0, 1] is not sequentially
compact (why?) but (0, 1] = ∪∞n=1[ 1n , 1].

13.2.2(a) f(x) = 1
x − 1 for x ∈ (0, 1] and f(0) = 14 is one such function. Its domain is [0, 1], its range is [0,∞).

The function f is not continuous.
(b) No function satisfying (a) can be continuous. The domain is a compact interval, so all continuous functions
with this domain are bounded. As this function is not bounded, it cannot hope to be continuous.

13.3.2 Write the polynomial as p(x) = anx
n + . . . + a0. We will show that p(x) has a minimum if an > 0. If

an > 0 from a previous homework we know that limx→±∞ p(x) =∞. In particular, this implies that there is M > 0
such that for x < −M and x > M , p(x) ≥ a0. As [−M,M ] is a compact interval and p(x) is continuous, p(x) has
a minimum on [−M,M ], call this minimum m. For every x ∈ R, if x 6∈ [−M,M ] then x > a0 = p(0) ≥ m, and if
x ∈ [−M,M ] then x ≥ m, so p has a minimum at m. The same sort of argument shows that if an < 0 that p(x)
has a maximum on (−∞,∞).

13.4.1 (a) Let I be a compact interval. As its image is a compact interval, there is a, b such that f(I) = [a, b].
By the definition of image, as a and b are in the image of f , there is x ∈ I such that f(x) = a and y ∈ I such that
f(y) = b. Therefore f has a maximum at y and a minimum at x.
(b) Notice that the image is an interval, so if I = [α, β], then f(α), f(β) is in the image, and so is every element
in between them. Hence for every c between f(α) and f(β), there is z ∈ I such that f(z) = c, and thus f has the IVT.

13.4.2 Consider the function f(x) = sin( 1
x ), x 6= 0 and f(0) = 0. This is not a continuous function, as there is a

sequence (xn) converging to 0 such that f(xn) = 1 for all n. It does satisfy the property of the previous question.
If [a, b] is a compact interval, either it does not contain 0, and f is a continuous function on [a, b], and hence has
image a compact interval, or it contains 0, and then the image of f on [a, b] is [0, 1].

13.5.2 Let p be a period of f , a continuous, periodic function defined on R. As f is continuous, by uniform
continuity on compact intervals, f is uniformly continuous on [−p, p]. This implies that given ε > 0, there ex-
ists δ > 0, which we may assume is also smaller than p/2, such that if x, y ∈ [−p, p] and |x − y| < δ then
|f(x) − f(y)| < ε. We will show that in fact, for any x, y ∈ R, if |x − y| < δ then |f(x) − f(y)| < ε. If
x, y ∈ R satisfy that |x − y| < p/2 then either np < x, y < (n + 1)p for some unique n, or x < mp < y for
some unique m. In the first case, |x − y| = |(x − np) − (y − np)| < δ, and x − np, y − np ∈ [0, p]. Then
|f(x) − f(y)| = |f(x − np) − f(y − np)| < ε. In the second case x − mp ∈ [−p, 0] and y − mp ∈ [0, p]. As
|x− y| = |(x−mp)− (y −mp)| < δ, then |f(x)− f(y)| = |f(x−mp)− f(y −mp)| < ε.

13.5.3 Given ε > 0 we want to find δ > 0 such that if x, y ∈ I ∪ J and |x− y| < δ then |f(x)− f(y)| < 2ε.
As f is uniformly continuous on I, there is a δ1 such that for |x − y| < δ1, |f(x) − f(y)| < ε as long as x, y ∈ I.
Similarly, there is a δ2 such that this condition holds as long as x, y ∈ J . Let δ = min(δ1, δ2). Certainly this δ still
works for I and J . Now suppose that x ∈ I and x 6∈ J , y ∈ J and y 6∈ I, and |x− y| < δ. WLOG, x < y. As I ∩ J
and I and J are intervals, there is z ∈ I ∩ J and x < z < y. Therefore |x − z| < δ, and x, z ∈ I and |y − z| < δ
and y, z ∈ J , so we can apply uniform continuity separately. Hence |f(x)−f(y)| ≤ |f(x)−f(z)|+ |f(z)−f(y)| ≤ 2ε.

13.5.4 There are several ways to show that f(x) =
√
x is uniformly continuous on [0,∞). One way is to apply

the last problem and show that it is uniformly continuous on [0, 1] and [1,∞). It is uniformly continuous on [0, 1]
because it is a continuous function on a compact interval. Now we prove from the definition that it is uniformly
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continuous on [1,∞). Given ε > 0, for δ = ε, if |x− y| ≤ δ then

|
√
x−√y| = |x− y|√

x+
√
y
≤ |x− y| < ε

The first equality comes from thinking of x − y as a difference of squares. The second comes from the fact that
x, y ≥ 1. Therefore

√
(x) is uniformly continuous on [1,∞), and the desired result follows.

13.5.5 As ln(x) is continuous at 1, given ε > 0, there is δ > 0 such that if |x− 1| < δ, then | ln(x)− ln(1)| < ε.
For x, y ∈ R, such that |x − y| < δ the |x/y − 1| < δ/x ≤ δ (as x ≥ 1). Therefore | ln(x) − ln(y)| = | ln(x/y)| =
| ln(x/y)− ln(1)| < ε. Hence ln(x) is uniformly continuous on [1,∞).

13.5.6 (a)For ε > 0, let δ = ε/K. Then if |x− y| < δ,

|f(y)− f(x)| ≤ K|y − x| < Kε/K = ε

so f is uniformly continuous.

(b)
√

(x) is uniformly continuous, but does not satisfy this condition (called Lipschitz continuity). We will show
that for every K there is x, y pair such that the slope of the secant between x and y is greater than K: Let
x = 0, y = 1

4K2

|
√
x−√y|
|x− y|

=

√
y

y
=

√
1
√
y

= 2K > K
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