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Math 3110

HW4 Solutions

Problem 1: 6-1

Select a,b € R and let g = a, 1 = b. Then continue the sequence by letting each new term be the

average of the preceding two:

i.

ii.

Tn-1+Tn-2
Ty = T n22

Prove z,, is Cauchy:

Proof. Claim: for n > 2, z, — 2p_1 = 2~ D(b-a). For n = 2: |n = Tpo1| = %(ml - xzg) and

the claim holds. Suppose the claim holds for 2 < n < k. Then zp. — Tk = %(mk - Xp-1) =

1, _1
2 2—(k—1)

Without loss of generality, assume m < n. By the triangle inequality:

(b-a), so the claim holds by induction.

n n

|0, = Tm| < . Yo Jw - x| < ' > 51 |b-al
1=m+1 i=m+1
Observe that Y. 4 2%1 = 2_% Z?;Om_l 27 < 2% — 0 as m — oo. Thus given € > 0 there
exists NV such that if m > NV, % < ﬁ, so then if m > N:

[Ty = 2| <€,
S0 x, is Cauchy. O
Find lim z,, in terms of a, b.

Solution: By the preceding part

n 1
Tp=x0+ (21 —20)+ (T2 —21) +... + (Tp — Tpo1) :x0+;m(b—a)
which by the geometric sum formula:

2 1 2
=a+ 5(1_27’”)({)—@)—)504’5[)

as n — oo (by the fact that (1-27") — 1 by linearity of limits for sequences).

Problem 2: 6-2
Let S ¢ R be bounded.

i.

Prove that there exists a sequence in S that converges to sup S.
1



Proof. sup S exists because S is bounded. Let n € N. Suppose toward a contradiction that

%. Then sup S - % is an upper bound for S

every z € S has the property that = < sup S -
which is strictly less than sup S contradicting the definition of sup.
Hence there exists a,, € S such that sup S —% < ay < sup S (where the upper bound follows

from the definition of sup). Since % — 0, the squeeze theorem implies a,, - sup S. ([
ii. Let A, B <R which are bounded. Show sup(A + B) = sup A + sup B.

Proof. A + B is trivially bounded, so sup(A + B) exists. Let a € A and b € B so that
a<supA and b <sup B. Thus a+b < sup A + sup B. Since our choice of a,b was arbitrary,
every element of A + B is at most sup A + sup B, so sup(A + B) < sup(A) + sup(B).
Suppose x is an upper bound of A+ B. There exist sequences a,, - sup A and b,, > sup B
in A, B respectively. Thus given € > 0, there exists N such that if n > N, sup A -a, < 5 and
sup B - by, < 5. Thus sup A + sup B < a, + b, + € <z + €. Since € can be arbitrarily small, we

conclude that x > sup A + sup B, so sup A + sup B is the least upper bound of A + B. O

Problem 3: 6-4
Let (x,,y,) be a sequence in a bounded rectangle AzB = R ¢ R%. Prove that (x,,y,) has a

convergent subsequence.

Proof. Since x,, is bounded, by the Bolzano-Weierstra theorem, x,, has a convergent subsequence
Zpn, = « for some x € A. The sequence y,, is a subsequence of y,, and is hence bounded, so y,, has

a convergent subsequence yn, —y for some y € B. Hence (attnJ 7ynij) - (z,y) € R is a convergent

subsequence of (x,,y,) (observe |(z,,yn) — (z,y)| = \/(xmj -x)%+ (ynij —y)? which can be made
arbitrarily small). O

Problem 4: 6-6

Let a, be a bounded sequence in R.

i. Show that liminf and lim sup are well defined. In other words, given a sequence a,,, define T;,
to be the nth tail and let b,, = sup 7, and by = inf T;,, prove that limsup,, ., an =lim, e by,

and liminf, . a, = lim,_, b, converge.

Proof. Observe that T,.1 € T}, so every upper bound of T}, is an upper bound of T},,1.
Hence supT;, > supTy+1, SO b, is a non-increasing sequence. Further, T}, = sup;s,, a;, so
T, > a; for all ¢ > n; in particular, T,, > a,. Thus if a, is bounded below, then so is T,.
Hence by the completeness property, b, converges and limsup,, .., a, is well defined. By a

similar argument liminf,,_, . a, is well defined. O



ii. Let @, = £ + (-1)" Compute liminf 2,, and limsup .

Solution: Since 0 < L <1 is decreasing, if N is even, & +1 >+ + (~1)" for all n > N.
Hence supTyy =1+ %, so limsupx,, = 1.

On the other hand, observe that —1 < x,, for all n € N, but for any N € N, since % - 0,
given € > 0 there exists n > N such that z,, < =1 + ¢, so any lower bound of a tail of z,, is at
most —1. Hence liminf,,_, . z, = -1.

iii. Prove liminf a,, < limsupay,.

Proof. Observe that supT,, > a > infT,, for all a € T}, so because limits of convergent

sequences preserve order, limsup a,, > liminf a,,. O

iv. Prove that lim,,_, a, exists if and only if limsup a,, = liminf a,,.

Proof. Assume L :=lim,,_,, a,, exists. Then for all ¢ > 0, there exists NV € N such that for all

n>N, |a, - L| <€ so for n> N:
L-e<a,<L+e¢

so L +e€ is an upper bound on T}, whenever n > N, so supT,, < L+e¢. Similarly, inf T, > L +e.
Thus:

L-e<infT, <supT, <L+e=L-e<liminfa, <limsupa, <L +¢€

since € can be made arbitrarily small, limsup a,, = liminfa,, = L.
Conversely suppose limsupa,, = liminfa,. Then by recycling arguments from before,

inf T}, < a,, <supT),, so by the squeeze theorem, a,, - limsup a,,. O

Problem 5: 6-7
Let S be the set of cluster points of a bounded sequence a,, in R. Prove that limsupa, = max$§

and liminf a,, = min S.

Proof. By the preceding problem M :=limsup a,, exists and the sequence sup T, - M. Hence there
exists N in naturals such that for n > N [sup T, - M| < §; choose such an n. By problem 6 -2, there
exists a sequence of points t; — sup 7;, such that ¢; = a; for some i > n because T}, is a subsequence
of a,,. Thus there exists N’ € N such that N> N and for all j > N, [t; —supT,| < §. Therefore by
the triangle inequality:

|t; —supT,|<e

Let § > 0 be given. Suppose toward a contradiction that there are only finitely many 4 such that
|a; — M| < 6. Then there exists o such that for all n > «, |a, — M| > §. However, the argument
in the preceding paragraph shows that there exists A > « such that there is a t € Ty such that

[t — M| < g < §, so we have a contradiction, and M € S.



Let p € S. Then by the Cluster point theorem, there exists a subsequence of a,, a,,, which
converges to p. However, supT,,, > a,, by previous arguments. Thus by comparison of sequences,
limsupa, > lim,, .. an, = p because subsequences of convergent sequences converge to the same

limit. Hence limsup a,, = max.S. The argument for liminf a,, = min S is similar. (Il

Problem 6: 7.1.1
Evaluate the following series:
oo 1 ( 1)71 1 ) 1

,;QnZ—l Z:n(n-t-2) nZ::ln(n-t-k)

Solution: By partial fraction decomposition
1 1 1
n2-1 2(n-1) 2(n+1)
So the mth partial sum of the first series is:

11 1
Smi= o+ - - ———
24 2(m+1)

which converges to (provide more detail)

~lw

By partial fraction decomposition:

(—1)” ~ (_1)n_1(l ~ 1 )

n(n+2) 2 n (n+2)
The 2mth partial sum of this series is:
, 111 1

8o, = — — — + -
T 4 2m+2 2m+1
which converges to i. Similarly show that s’(2m 41y converges to i and use this to argue that s/,
converges to i.

Finally:
1 1.1 1
n(n+k) %(ﬁ_ (n+k)
which has partial sums for m > k:
1 1 1 1

1
=—(1+=+ 7)———7—...—
k 2 kn kn-1 kn—-k

by the tail convergence theorem, it follows that the final sum evaluates to +(1+ 1 +...+ 1).

Problem 7: 7.1.2

Translate the Cauchy criterion for sequences into a Cauchy criterion for series:

Solution: A series Y2y a; converges if and only if given e > 0 there exists N € N such that for all

n>m>N:
n

Sa

i=m




— that is, if s; is the sequence of partial sums of the series, |s,, — s,| < € so that s; is a Cauchy

sequence.

Problem &: 7.2.2

Prove that if a,, > 0 and Y a,, converges, then so does . a%.

Proof. Since Y. a, converges, a, — 0 as n - oo. Hence a,, is bounded above by some M. Therefore:

so that the sequence of partial sums of ¥°° a2 is non-decreasing (b/c a2 > 0) and bounded above.

Thus Y a,, converges because its sequence of partial sums converges by the completeness axiom. [

Problem 9: 7.3.1
Prove the infinite triangle inequality for an absolutely convergent series by using the finite triangle

inequality, then prove it by mimicking the proof for the finite triange inequality.

Proof. Let Y72, a; be an absolutely convergent series.

Let si be the kth partial sum of the series; then,

k
[kl < 3 lail
i=0

by the finite triangle inequality. Since s converges because Y i~y a; is absolutely convergent, |s|

converges as well to [Y72 a;|, so by sequence comparison, the result holds. ([

Proof. Adopt the same notation as in the first proof:

k oo k
—Z|ai| < Zai < Z|al|
=0 =0 =0

Thus |20 ai| € Yiog lai| by sequence comparison. O

Problem 10: 7.3.3
Let »72, a; be a series.
i. Suppose the series converges absolutely. Show that for any subsequence a;;, ¥72y a;; con-
verges.
Proof. Observe that:
N in oo
> lai | < Y lail < 3 ladl
§=0 =0 i=0
so the sequence of partial sums of Z;’io |a,| is non-decreasing and bounded above so that it
converges by the completeness axiom. Hence Z;io a;; is absolutely convergent and thus is

convergent. (I



ii. Show that the statement fails when absolute convergence is removed from the hypotheses.

=n"

Proof. Consider the example Y-, which converges to log(2), but:
SIS
nml 21 1

which diverges. O

n

N |
SEE



