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Exercise 1. 3.1

Proof. In all cases addition is associative, the identity element is 0, check
that inverses exist. Checking that the set is closed under addition is the
most nontrivial.

Exercise 2. 3.2

Proof. The inverse to (a+ b
√
2) is

1

a+ b
√
2
=

1

a+ b
√
2
· a− b

√
2

a− b
√
2

=
a− b

√
2

a2 − 2b2
.

Note that this is well defined because if a−2b2 = 0 then a/b =
√
2 if b is nonzero

and b/a = 1/
√
2 if a is nonzero, both of which are impossible since a, b are both

rational. If both a, b are zero then a + b
√
2 is zero, so is not even contained in

the set. So setting c = a
a2−2b2 and d = −b

a2−2b2 we see that a+b
√
2 has an inverse.

It can be seen that the set is closed under multiplication by multiplying out two
such elements and grouping like terms. Multiplication is associative because it
is the restriction of multiplication of real numbers. The identity element 1+0

√
2

is contained in the set.

Exercise 3. 3.3

Proof. Let z, w ∈ C such that zn = 1 and wn = 1. Then (zw)n = znwn = 1
where the penultimate equality holds because multiplication of complex numbers
is commutative. Thus, zw is in G, so G is closed under multiplication. Multi-
plication of complex numbers is associative, so multiplication restricted to the
subset G ⊆ C is associative. The complex number 1 satisfies 1n and is the multi-
plicative identity. Each complex number z has an inverse 1/z, but we must check
that (1/z)n = 1 when zn = 1. We have 1 = (z · 1/z)n = zn(1/z)n = (1/z)n, as
desired. Thus, G is a group (G is called the set of nth roots of unity).



Exercise 4. 3.6

Proof. Find the inverses of each of the elements and make sure that they are
contained in the set.

Exercise 5. 3.8

Proof. The elements 11 and 2 do not have inverses mod 22, so if they are in
the subset then the subset cannot form a group.

Exercise 6. 3.9

Proof. For a prime p and integers n,m, if p does not divide n nor m, then p
does not divide n ·m. Given 1 ≤ x, y ≤ p− 1, we have the p does not divide x
nor y, so p does not divide x · y either. Thus, none of x, 2x, 3x, · · · , (p− 1)x is
a multiple of p.

We claim that the list x, 2x, 3x, · · · , (p− 1)x is a list of p− 1 distinct numbers
mod p. To get a contradiction suppose that this is not the case, i.e. ax ≡ bx
mod p for 1 ≤ a < b ≤ p−1. Then (b−a)x ≡ 0 mod p where 1 ≤ b−a < p−1,
but we just proved that this cannot happen. Since x, 2x, 3x, · · · , (p − 1)x is a
list of p− 1 distinct numbers mod p, one of them must be equal to 1 mod p,
so there exists a z such that xz ≡ 1 mod p.

Exercise 7. 3.10

Proof. When n is prime exercise 3.9 shows that the set {1, . . . , n− 1} is closed
under multiplication mod n. The set contains the identity element 1. Exercise
3.5 shows that multiplications mod n is associative. And finally exercise 3.9
also shows that every element has an inverse. If n is composite, then n = ab for
two numbers 1 ≤ a, b ≤ n − 1, so that ab ≡ 0 mod n, so {1, . . . , n − 1} is not
closed under multiplication.

Exercise 8. 4.1

Proof. The dihedral group Dn can be written as the set of 2n elements

{e, s, r, r2, . . . , rn−1, rs, r2s, . . . , rn−1s}

where s is the reflection through a vertex and opposite side of the n-gon if n
is odd and is the reflection through opposite vertices of the n-gon if n is even,
and r is the rotation 2π/n. Recall from the text the identity sr = rn−1s from
which we see the general relation srk = rn−ks. Then squaring any rks gives
rksrks = rkrn−ks2 = rn · e = e, so rks has order two for every 0 ≤ k ≤ n − 1,
which is n elements. An element of the form rk has order lcm(k, n)/k, which is
2 only if n is even and k = n/2. Thus, if n is even then there are n+1 elements
of order two and if n is odd then there are n element of order two.

Exercise 9. 4.9



Proof. (a) For a matrix A =

(
a b
c d

)
, the value ad − bc is the determi-

nant. The determinant is a multiplicative function, i.e. det(A · B) =
det(A) · det(B). So if det(A) = 1 = det(B), then det(AB) = 1 showing
that the set is closed under multiplication. If you did not know this, then
simply multiply out two matrices in the set and check that the resulting
determinant equals 1.

Matrix multiplication is associative so its restriction to this subset of ma-
trices is also associative.

The identity matrix I =

(
1 0
0 1

)
is the multiplicative identity and sat-

isfies 1 · 1− 0 · 0 = 1.

The inverse to matrix A above is A−1 =

(
d −b
−c a

)
, which has ad −

((−b)(−c)) = ad− bc = 1. Or note that any matrix A with nonzero deter-
minant has an inverse A−1 and by the multiplicativity of the determinant
1 = det(I) = det(AA−1) = det(A) det(A−1) = det(A−1).

(b) Multiply A to see that A4 = I, so has order 4. Multiply out B to see

B3 = I, so has order 3. On the other hand, AB =

(
1 1
0 1

)
, and

(AB)n =

(
1 n
0 1

)
, so has infinite order. Likewise, BA =

(
1 0
−1 1

)
and (BA)n =

(
1 0
−n 1

)
, so BA also has infinite order.

Exercise 10. 4.10

Proof. Note that the base case n = 3 holds because it is the usual associativity
law. Assume the inductive hypothesis: for all 1 ≤ k ≤ n − 1 when given any
k elements x1, . . . , xk ∈ G, the product x1 · · ·xk gives the same element no
matter in which order the group multiplication is carried out, i.e. the product
is well-defined. Now consider a product of n elements x1 · · ·xn and bracket the
element in two different ways,

(x1 · · ·xr)(xr+1 · · ·xn)
(x1 · · ·xs)(xs+1 · · ·xn),

where 1 ≤ r < s ≤ n−1. By the inductive hypothesis the elements (x1 · · ·xr), (xr+1 · · ·xs), (xs+1 · · ·xn)
are well-defined. Then

(x1 · · ·xr)(xr+1 · · ·xn) = (x1 · · ·xr) [(xr+1 · · ·xs)(xs+1 · · ·xn)]
= [(x1 · · ·xr)(xr+1 · · ·xs)] (xs+1 · · ·xn) the usual associativity law
= (x1 · · ·xs)(xs+1 · · ·xn).




