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Exercise 1. 4.2

Proof. Note that the identity element in the group Zn under modular addition
is the element 0. For all of the groups in this problem the element 0 has order
1.

(a) Every element of Z5 except 0 has order five.

(b) In the group Z9, the elements 3 and 6 have order three. All other elements
other than 0 have order 9.

(c) In the group Z12, the elements 1, 5, 7, 11 have order 12. The elements 2, 10
have order six. The elements 3, 9 have order four. The elements 4, 8 have
order three. The element 6 has order two.

The general formula for the order of x in Zn is n
gcd(x,n) . Can you prove this? In

particular, this says that if an element x is relatively prime to n, then it has or-
der n, which means that every element of the group is of the form i ·x for some i.

Also, notice that the order of any element divides the order of the group (we
will prove this later on).

Exercise 2. 4.3

Proof. Write out the multiplication table to check that the set is closed under
multiplication and that each of their inverses is contained in the set.

Another way to see that all of these elements have an inverse mod 15 is by
Bezout’s identity which in this case says that for an element x mod 15 there
exist integers a, b such that ax+ b · 15 = 1 if and only if x is relatively prime to
15. But equation ax+ b · 15 = 1 is the statement ax ≡ 1 mod 15, so x has an
inverse mod 15. And in particular, x’s inverse a will also have to be relatively
prime to 15. Now check that the set {1, 2, 4, 7, 8, 13, 14} is precisely the set of
numbers less than 15 that are relatively prime to 15, so they must all contain
their inverses in the set.

The orders are
1 2 4 7 8 11 13 14
1 4 2 4 4 2 4 2

.



Note that 14 ≡ −1 mod 15, and 13 ≡ −2 mod 15, so this may help in doing
computations.

Exercise 3. 4.4

Proof. Fix an element g ∈ G and consider all of the products gx for all x ∈ G.
Suppose two such products are the same, i.e. gx = gy for some elements
x, y ∈ G. Then multiplying by the inverse of g on the left gives g−1gx = g−1gy,
which implies x = y. Therefore, the original elements x, y must have been the
same, so all of the products are distinct.

Suppose that h ∈ G is an arbitrary element of G. We need to show that there
exists x ∈ G such that gx = h. The element x = g−1h satisfies this property.
Thus, the products gx fill up G. Note that you can use a counting argument
here only if G is finite!

The case for the products xg is analogous. Note that this problem is really
defining a map φg : G→ G that takes x ∈ G to φg(x) = gx, and we proved that
this map is injective and surjective. More on this later in the course.

Exercise 4. 4.6

Proof. We have that x2 = e, y2 = e, and (xy)2 = e. The first two equations can
be rewritten as x = x−1 and y = y−1. Then the second equation gives

xyxy = e

=⇒ yxy = x−1

=⇒ xy = y−1x−1

=⇒ xy = yx,

where the last implications holds because x = x−1 and y = y−1.

Exercise 5. 4.7

Proof. First we check that this set is closed under the operations. Given two
rational numbers x, y such that 0 ≤ x, y < 1, then both expressions x + y and
x + y − 1 are rational numbers. In particular, if 0 ≤ x + y < 1, then the
group operation gives the rational number x+y that is contained in the desired
range. It always holds that x + y < 2, so in the case that 1 ≤ x + y, we have
0 ≤ x+ y − 1 < 1. Thus, in both cases the group operation specifies a rational
number within the specified range.

To differentiate between usual addition (+) and the operation that defines
the group operation we use the new notation +G for addition in the group.
The identity element is the rational number 0 that is contained in the range
0 ≤ x < 1, and for any such x the group law says 0 +G x = x+G 0 = x because
0 + x = x+ 0 < 1 always holds.



Check that associativity holds, i.e. no matter which order you apply the group
operation to three numbers, the number of times you subtract 1 is the same.

As is the case in any group, the inverse of the identity element, 0, is itself.
The inverse of a rational number x in the range 0 < x < 1 is a rational number
y in the range 0 < y < 1 such that x +G y = 0. This can only happen if
x+ y = 1, so that x+G y = x+ y − 1 = 0. Therefore, the inverse to x is 1− x,
which satisfies 0 < 1− x < 1 when 0 < x < 1. Thus, the group operation turns
this set into a group, and since addition is abelian, the group is abelian.

Every rational number 0 ≤ x < 1 can be written in the form x = a/b where
a, b ∈ Z and a < b. Furthermore, we may assume that a/b is in simplest
form, i.e. if a, b share a prime factor p then divide both of them by p to get
new integers a′, b′ such that x = a/b = a′/b′. Continuing on in this way we
can get rid of all common factors, so we may assume from the beginning that
x = a/b where a < b and a, b are relatively prime. Let k be the smallest in-
teger such that ka > b. Then applying the group operation repeatedly gives
a/b+G a/b = 2a/b, 2a/b+G a/b = 3a/b, and so forth, until we reach the point
(k − 1)a/b + a/b = ka/b > 1, in which case (k − 1)a/b +G a/b = (ka − b)/b,
which is the same as reducing ka mod b (note that ka ≥ 2b could never hold
since a < b). Therefore, repeatedly adding the same rational number a/b under
this group operation is equivalent to repeatedly adding the number a to itself
mod b. Since a and b are relatively prime, we know from previous exercises that
a has finite order. In fact, it’s order is b.

Exercise 6. 4.8

Proof. We prove by induction that (gxg−1)n = gxng−1. For the base case when
n = 2, compute (gxg−1)2 = gxg−1gxg−1 = gxxg−1 = gx2g−1, as desired. Now
suppose that the result holds for n− 1, i.e. (gxg−1)n−1 = gxn−1g−1. Then

(gxg−1)n = (gxg−1)n−1gxg−1

= gxn−1g−1gxg−1 by the inductive hypothesis

= gxng−1,

as desired. Suppose that xk = e, then (gxg−1)k = gxkg−1 = gg−1 = e. Notice
that this has only proved that the order of gxg−1 is at most the order of x! Now
we prove the other direction, i.e. that the order of x is at most the order of x.
If (gxg−1)k = e, then e = (gxg−1)k = gxkg−1 =⇒ g−1g = xk =⇒ e = xk.
Thus, xk is the identity exactly when (gxg−1)k is the identity, so their orders
coincide.

To see that xy and yx have the same order, observe that x(yx)x−1 = xy and
apply the previous part of the exercise.

Exercise 7. 5.1



Proof. Each example contains the trivial subgroup consisting of only the identity
element. I am being brief here, but you are expected to prove that the subgroups
you find are indeed subgroups and to prove that there are no others. If you don’t
convince yourself with a proof, then you will probably miss some subgroups or
identify ones that aren’t subgroups.

(a) The only nontrivial proper subgroup of Z4 is the group generated by the
element 2, which is just the set {0, 2}.

(b) There are no nontrivial proper subgroups of Z7 because each element other
than 0 generates the group.

(c) There is one subgroup of order 6 generated by 2, one subgroup of order 3
generated by 4, one subgroup of order 4 generated by 3, and one subgroup
of order 2 generated by 6.

(d) The dihedral group D4 has five subgroups of order 2 each generated re-
spectively by s, r2, rs, r2s, r3s. There are also three subgroups of order 4,
one a cyclic subgroup generated by r. The second was is generated by s
and r2. The third and final one is generated by rs and r2.

(e) The dihedral group D5 has a single subgroup of order 5 generated by r
(also generated by r2, or r3, or r4). It also contains 5 distinct subgroups
of order 2, each one generated respectively by s, rs, r2s, r3s, r4s.

Exercise 8. 5.2

Proof. If m is a divisor of n, then we may write n = m · a (where a = n/m).
The order of the element a in Zn is m (recall the general formula is n/ gcd(n,m)
where in this case gcd(n,m) = m). Them elements {a, 2a, 3a, . . . , (m−1)a,ma =
0} form a subgroup of Zn, and the elements are all distinct because the order
of a is m. The inverse of k · a is (m− k) · a, which is in the set, the set contains
the identity, and adding any two elements in the set again gives an element of
the set. Thus, this is a subgroup of order m.

Suppose there is some other subgroup of order m. Then by Theorem 5.3 (a) this
subgroup must be cyclic, i.e. it is generated by some element x, and the sub-
group consists of the m elements {x, 2x, . . . , (m− 1)x,mx = 0}. Since mx ≡ 0
mod n, it follows that mx = nk for some integer k. Then mx = nk = mak, im-
plies x = ak. Thus, a divides x, so ab = x for some number b, which implies that
x is contained in the subgroup generated by a, {a, 2a, · · · , (m − 1)a,ma = 0}.
Since x also generates a subgroup of m elements all of which must be contained
in the subgroup generated by a, these two subgroups coincide.

Exercise 9. 5.3



Proof. Recall the identity sr = rn−1s or equivalently srs = rn−1. Then
(r2s)(rs) = rr(srs) = r2rn−1 = r, so we can get r using the two specified
elements, and therefore also rn−1. Then using the two elements also gives
rn−1(rs) = s, so the two elements generate both r and s so they generate the
Dihedral group Dn.

Exercise 10. 5.5

Proof. ( =⇒ ) If H is a subgroup then xy belongs to H whenever x, y ∈ H.
( ⇐= ) Suppose that H is finite and nonempty subset of G such that for all
x, y ∈ H we have that xy ∈ H. Since H is nonempty there exists an element
x ∈ H. Since x ∈ H, xx = x2 ∈ H. Likewise, taking x and y = x2 both in
H, we have that x3 ∈ H. Consider the powers x, x2, x3, x4, . . . all of which are
in H. Since H is finite, this list cannot have infinitely many distinct elements.
Let n be the smallest number such that xn = xk for some k < n. Then taking
inverses gives xn−k = e, but xn−k appears in the list because n− k > 0. Thus
the list, and hence H, contains e. Furthermore, x(xn−k−1) = e, so x has an
inverse in the list, and hence x has an inverse in H. Since x was an arbitrary
element of H, the same reasoning can be applied to any element to show that it
has an inverse. Therefore, H is closed under the group operation, contains the
identity and contains inverses, so is itself a subgroup.


