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Exercise 1. 5.7

Proof. The identity of G has order 1, so is contained in H. If a ∈ G has finite
order n, then an = e, so (a−1)n = (an)−1 = e−1 = e. Thus, the inverse of an
element of H has finite order, so is also in H. Now suppose that a, b ∈ H, i.e.
both have finite orders n and m respectively. Then let k = max (n,m). Since
G is abelian (ab)k = akbk, which is equal to the identity since k is at least as
big as the order of both a and b. Therefore, if a and b are in H, then so is ab.
Thus, H is a subgroup of G.

Exercise 2. 5.10

Proof. The elements of Z12 that generate the group are 1, 5, 7, 11. The elements
of Z5 that generate the group are 1, 2, 3, 4. The elements of Z9 that generate
the group are 1, 2, 4, 5, 7, 8. To prove these statements show that the order of
each of the elements listed is the order of the group. And remember to show
that the order of any other element has order strictly less than the order of
the group. In doing so you will discover the general rule. The general result
that this suggests is that an element a of Zn generates the group if and only if
gcd(a, n) = 1. (Also, see exercise 4.2 from HW3.)

Exercise 3. 5.12

Proof. The identity element is 0 = 0 ·a+ 0 · b, so is contained in H. The inverse
of any element λ · a+µ · b ∈ H is −λ · a+ (−µ) · b, which is also in H. The sum
of any two elements (λ1a+µ1b), (λ2a+µ2b) ∈ H is (λ1a+µ1b) + (λ2a+µ2b) =
((λ1 + λ2)a+ (µ1 + µ2)b), which is also in H.

Let d be the smallest positive number in the set λa + µb with λ and µ inte-
gers. Let d = λ1a + µ1b. Since 1 · a + 0 · b = a and 0 · a + 1 · b = b are in
the group H, d ≤ a and d ≤ b. Since gcd(a, b) divides a and b, for any λ, µ,
gcd(a, b) divides the sum λa + µb. Then in particular, gcd(a, b) divides d, so
d = l · gcd(a, b) for some positive integer l. If d divides both a and b, then it
can’t be strictly larger than gcd(a, b), in which case l = 1, d = gcd(a, b), and we
are done. So we must prove that d divides both a and b.

Since d ≤ a, the division algorithm says that there exist positive integers q



and r such that a = qd + r where 0 ≤ r < d, 0 < q. Rearranging gives
d = a−r

q . Plug this in to d = λ1a + µ1b to get a−r
q = λ1a + µ1b, which implies

r = (1 − qλ1)a + (−qµ1)b. If r > 0 then r is a positive member of H that
is strictly smaller than d, which cannot happen. Therefore, r must have been
equal to 0. The same reasoning applies for b. Thus, d must divide a and b, so
d = gcd(a, b).

Exercise 4. 10.1

Proof. If G × H is cyclic then there exists an element (g, h) ∈ G × H such
that for any other element (g′, h′) ∈ G × H there exists a power n such that
(gn, hn) = (g′, h′). Then in particular this says that for any g′ ∈ G there exists
an n such that gn = g′, so g generates G. Likewise, h generates H.

Exercise 5. 10.4

Proof. First prove that given three groups G,H,K that G×H×K makes sense
without parentheses. In other words, G× (H ×K) is the same as (G×H)×K.
To do so, just check that φ : G × (H × K) → (G × H) × K defined by
(g, (h, k)) 7→ ((g, h), k) is an isomorphism of groups.

From theorem 10.1 of this chapter we know that Z3 × Z2 is really the cyclic
group Z6 because 2 and 3 are relatively prime. Then

Z3 × V = Z3 × (Z2 × Z2)
∼= (Z3 × Z2)× Z2

∼= Z6 × Z2.

Exercise 6. 10.5

Proof. The identity element (e, e) is contained in the diagonal. Given an element
(g, g) in the diagonal, the inverse (g−1, g−1) is in the diagonal. Given two
elements (g, g) and (h, h) in the diagonal, their product (g, g)(h, h) = (gh, gh)
is in the diagonal. Thus, the diagonal ∆ = {(x, x) | x ∈ G} forms a subgroup of
G×G. Consider the homomorphism φ : G→ ∆ defined by g 7→ (g, g). This is
a group homomorphism because φ(gh) = (gh, gh) = (g, g)(h, h) = φ(g)φ(h) for
any two elements g, h ∈ G. The image of φ is all of ∆ because for any (g, g) ∈ ∆,
φ(g) = (g, g). Finally, φ is one-to-one because if (g, g) = φ(g) = φ(h) = (h, h)
then g = h. Thus, φ is an isomorphism of groups.

Exercise 7. 10.6

Proof. The element (eG, eH) is contained in A×B because eG ∈ A and eH ∈ B
because A and B are themselves subgroups of G and H respectively. Similarly
for any (a, b) ∈ A×B the inverse (a, b)−1 = (a−1, b−1) ∈ A×B because A and
B are subgroups. And for any two elements (a, b), (a′, b′) ∈ A×B we have that



aa′ ∈ A and bb′ ∈ B, so (aa′, bb′) ∈ A×B.

A subgroup that does not occur in this way is the diagonal subgroup (from
the previous question), ∆ = {(n, n) | n ∈ Z}.

Exercise 8. 10.7

Proof. These groups are all distinct, despite all having the same order. There
may be many different ways to prove this.

The group Z24 is cyclic so for it to be isomorphic to some other group G, it
must be that G is cyclic. But none of the other groups on the list are cyclic.
To see this note that since 12 and 2 are not relatively prime, Z12 × Z2 is not
cyclic. Furthermore, any dihedral group Dn is not even abelian, so D12, D4×Z3

and Z2×D6 are all nonabelian because they contain a copy of a dihedral group
as a subgroup. Recall that A4 is the symmetry group of the tetrahedron not
including reflections (exercises in chapter 1) and that it is nonabelian. Since S4

and A4×Z2 both contain A4 as a subgroup, they are both nonabelian. To sum
up thus far, Z24 is the only cyclic group, so it is in its own isomorphism class in
our list. Out of the remaining groups, Z12 × Z2 is the only abelian group, so it
is in its own isomorphism class as well.

Now we are left with D4 × Z3, D12, A4 × Z2,Z2 × D6, and S4. Let’s count
the number of elements of order 2 in each group. Recalling exercise 4.1 from
HW2, the group D12 has 13 elements of order 2.

Similarly, D6 has 7 elements of order 2, which implies Z2 × D6 has 15 ele-
ments of order 2 (these are (0, d), (1, d), and (1, e) where d is order 2 in D6).

The group D4 has 5 elements of order 2, and since Z3 has no elements of
order 2, the group D4 × Z3 has 5 elements of order 2. The group A4 has the
three elements (12)(34), (13)(24), (14)(23) of order 2 (which if you recall the
exercises of chapter 1 correspond to the rotation of the tetrahedron about the
axis through opposite edges). Thus, the group A4×Z2 has 7 elements of order 2.

Finally, S4 can be checked directly to have the following 9 elements of order
2,

(12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23).

Thus, each group has a different number of elements of order 2, so they cannot
possibly be isomorphic.

Exercise 9. 10.10

Proof. For any groups A,B, the products A×B and B ×A are isomorphic via
the obvious isomorphism (a, b) 7→ (b, a). Thus, G × Z is the same as Z × G.



Consider the map φ : G→ Z×G defined by

(a1, a2, a3, a4 . . .) 7→ (a1, (a2, a3, a4, . . .)) .

This map is certainly well-defined. It is a homomorphism because

φ((a1, a2, a3, a4 . . .) + (b1, b2, b3, b4 . . .)) = φ((a1 + b1, a2 + b2, a3 + b3, a4 + b4 . . .))

= (a1 + b1, (a2 + b2, a3 + b3, a4 + b4, . . .))

= (a1 + b1, (a2, a3, a4, . . .) + (b2, b3, b4, . . .))

= (a1, (a2, a3, a4, . . .)) + (b1, (b2, b3, b4, . . .))

= φ((a1, a2, a3, a4 . . .)) + φ((b1, b2, b3, b4 . . .)).

It is one-to-one because if (a1, (a2, a3, . . .)) = (b1, (b2, b3, . . .)), then certainly
(a1, a2, a3, . . .) = (b1, b2, b3, . . .). Finally it is surjective because any element
(a1, (a2, a3, . . .)) in Z×G gets mapped to by (a1, a2, a3, . . .) in G.

Now consider the map ψ : G→ G×G defined by (a1, a2, a3, a4, . . .) 7→ ((a1, a3, a5, . . .), (a2, a4, a6, . . .)).
Again check that this is a homomorphism, that it is surjective, and injective.
Checking these is similar to what we just did with G× Z.

Exercise 10. 10.12

Proof. Let G = {e, g1, g2, g3} where the gi are distinct and not equal to the
identity. If G = {e, g1, g2, g3} is not cyclic, then the order of each element has
to be strictly less than 4. The element e has order 1, while none of the ele-
ments g1, g2, g3 can have order 1 because if gi has order 1 then gi = e. But we
are assuming thatG is a group of 4 elements. Thus, each gi can have order 2 or 3.

We claim that the order of each element g1, g2, g3 is two. To get a contra-
diction, suppose that one of them, say g1 has order 3. Then g21 6= e, so g21 is
equal to either g2 or g3. Without loss of generality, suppose that g21 = g2. Then
e = g31 = g1g

2
1 = g1g2, so g2 is the inverse of g1 and vice versa. Recall that for

any group, multiplication by an element on the left is a bijection of the group
with itself. In other words, multiplying on the left by g1 must permute the 4
elements of G. So far, we have

g1 · e = g1,

g1 · g1 = g2,

g1 · g2 = e,

thus for g1 to permute the elements, it must be that g1 ·g3 = g3. But this implies
that g1 = e, which is a contradiction. Since we would arrive at this same contra-
diction no matter which gi we assumed to have order 3, it follows that each gi
has order 2. (In Chapter 11, we will see that the order of an element always di-
vides the order of the group. In this case the order of the group is 4, so we would
have been able to directly conclude that order of every nonidentity element is 2.)



With this information we can fill in a portion of the multiplication table for
our group G.

e g1 g2 g3
e e g1 g2 g3
g1 g1 e
g2 g2 e
g3 g3 e

Now consider the product g1g2. Since the row corresponding to g1 has to per-
mute the elements of G, this product g1g2 can be either g2 or g3. If g1g2 = g2,
then by taking inverse g1 = e, which cannot happen. Thus, g1g2 = g3. By
similar reasoning we can fill in all of the remaining spots in the table to get.

e g1 g2 g3
e e g1 g2 g3
g1 g1 e g3 g2
g2 g2 g3 e g1
g3 g3 g2 g1 e

This is precisely the group table for the Klein four groups Z2 × Z2 under the
homomorphism g1 7→ (1, 0), g2 7→ (0, 1), g3 7→ (1, 1).


