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Exercise 1. 7.1

Proof. Check that the set forms a group and find that it is cyclic (it is generated
by 2). Example (iv) of chapter 7 shows that any finite cyclic group of order n
is isomorphic to Zn, so in this case this cyclic group of 6 elements must be Z6.
Or you can write down an explicit isomorphism.

Exercise 2. 7.2

Proof. As always, first check that this set actually forms a group under multi-
plication mod 20. Although this group has 8 elements it is not isomorphic to
Z8 because there is no one element that generates the entire group. To see this,
calculate the order of each of the elements 1, 3, 7, 9, 11, 13, 17, 19 to find that
they are 1, 4, 4, 2, 2, 4, 4, 2 respectively.

Exercise 3. 7.4

Proof. Let s be the reflection of the triangle about the axis through a vertex
and the opposite side, and let r be the rotation clockwise by 2π/3. Then define
the mapping φ by sending s to (12) and r to (123) is an explicit isomorphism.
Since s and r generate all of D3, we can extend the definition of φ to any ele-
ment of D3. More explicitly, φ maps the six elements of D3, e, r, r2, s, rs, r2s to
e, (123), (132), (12), (13), (23). This is a bijection, and check that this is indeed
a homomorphism (i.e. respects the group structures). Our choice to send s to
(12) can be viewed as labeling the vertices of the triangle such that s is the
reflection about the axis through the vertex 3 and the midpoint of the edge con-
necting 1 and 2. At this point, there is still a choice to be made as to whether
the vertices are labelled 3, 2, 1 when read clockwise, or 3, 1, 2. Choosing to send
r to (123) fixes this choice as a clockwise 3, 1, 2 labeling.

The same reasoning applies for if choose to send s to (23) or (13), both leading
to two other possibilities as to where to send r depending on the clockwise la-
beling. Therefore, there are a total of 3 · 2 = 6 explicit isomorphisms between
D3 and S3.

Exercise 4. 7.5



Proof. Let φ : G→ G be defined by φ(x) = x−1. Since every element of a group
has an inverse, this map is always a bijection. For it to be an isomorphism
we must check that it satisfies the homomorphism property. Thus, φ is an
isomorphism if and only if for all x, y ∈ G, φ(x)φ(y) = φ(xy), but this is true if
and only if for all x, y ∈ G

φ(x)φ(y) = φ(xy)

= (xy)−1

= y−1x−1

= φ(y)φ(x),

(i.e. if and only if for all x, y ∈ G, φ(x)φ(y) = φ(y)φ(x)). But since φ is a
bijection of G with G, this holds if and only if G is abelian.

Exercise 5. 7.8

Proof. Consider the group of integers Z under addition and its proper subgroup
2 · Z. Define the map φ : Z → Z by φ(n) = 2 · n. This is a bijection because
every even integer 2x satisfies φ(x) = 2x, and if 2x = φ(x) = φ(y) = 2y then
x = y. The map φ is a homomorphism because φ(x+y) = 2(x+y) = 2x+2y =
φ(x) + φ(y) for all x, y ∈ Z.

Exercise 6. 7.9

Proof. Suppose that x generates G, so that any element of G is of the form xn

for some integer n. Then once we know the image of x under φ, we know all of φ
because φ(xn) = φ(x)n. Since φ is an isomorphism, and in particular surjective,
every element of G can be written as φ(xn) = φ(x)n for some integer n, so φ(x)
also generates G.

To summarize, an isomorphism of G is completely determined once the im-
age of a generator is determined, and in particular the image of this generator
must also be a generator. Consider the generator 1 in Z. Once we define where
φ : Z→ Z maps 1, we have completely determined φ by the rule φ(n) = n ·φ(1).
The image, φ(1), must also be a generator, but there are only two generators of
Z, namely 1 and −1. Therefore, there are two isomorphisms of Z, the identity
isomorphism, and the one that sends every integer n to −n. We can even phrase
this result as, "the group of isomorphisms of Z with itself is isomorphic to Z2."

Similarly, list the generators of Z12, which are 1, 5, 7, 11 (see exercise 5, 10).
Then the generator 1 can be mapped to 1, 5, 7, or 11. In this case, the group
of isomorphisms of Z12 with itself is isomorphic to the Klein group. Do you see
why?

Exercise 7. 9.1



Proof. (a) Yes. The identity is in this set, the product of two diagonal matri-
ces is diagonal, and the inverse of a diagonal matrix

x1 0 . . . 0
0 x2 . . . 0

. . .
0 0 . . . xn

 is


1/x1 0 . . . 0
0 1/x2 . . . 0

. . .
0 0 . . . 1/xn

 .

(b) No, the product of two symmetric matrices need not be symmetric. In

fact,
(

1 1
1 1

)
is a symmetric matrix, but has determinant 0, so is not

even invertible.

(c) No. The inverse of a matrix may not have integer entries. For example(
2 0
0 1

)
is invertible, but its inverse is

(
1/2 0
0 1

)
.

(d) Yes, check the axioms for a group.

Exercise 8. 9.2

Proof. The determinant of such a matrix is ac − b · 0 = ac 6= 0, so the ma-

trices in this set are invertible. In particular, the inverse of
(
a b
0 c

)
is(

1/a −b/ac
0 1/c

)
, which is contained in this set of matrices. The identity ma-

trix is also in this set of matrices. Finally, check that the product of two such
matrices is again such a matrix.

Exercise 9. 9.3

Proof. The identity matrix has determinant 1 so is contained in this set. If A,B
are two matrices with integer entries such that det(A) = ±1 and det(B) = ±1,
then det(AB) = det(A) det(B) = ±1. The only thing left to check is that if A
is in the set, then so is the inverse A−1.

Let A be an integer matrix such that det(A) is 1 or −1. Recall the follow-
ing formula for the inverse, A−1 = 1

det(A) (adjugate of A), where the adjugate
of a matrix A is the transpose of the cofactor matrix of A. If A contains
only integer entries then each of its cofactors is an integer, so the cofactor
matrix and the adjugate contain only integer entries. Therefore, the inverse
A−1 = 1

det(A) (adjA) has integer entries since det(A) = ±1. Furthermore,
±1 = det(I) = det(AA−1) = det(A) det(A−1) implies that det(A−1) = ±1,
so the inverse A−1 is contained in this set of matrices. Therefore, this set forms
a group under matrix multiplication.

Exercise 10. 9.5



Proof. Each one of these four relations is a result of multiplying the two matrices
and applying the four cosine and sine formulas

cos(θ) cos(φ)± sin(θ) sin(φ) = cos(θ ∓ φ)
sin(θ) cos(φ)± sin(φ) cos(θ) = sin(θ ± φ)

(note the relative plus-minus signs).

Geometrically, AθAφ = Aθ+φ says that an anticlockwise rotation through φ
followed by an anticlockwise rotation through θ is the same as performing a
single anticlockwise rotation through angle θ + φ. The relation AθBφ = Bθ+φ
says that performing a reflection in the line at angle φ/2 to the positive x-axis
followed by an anticlockwise rotation through angle θ is the same as performing
a single reflection in the line at angle (θ + φ)/2. Similarly, rotating by φ and
then reflection in the line at angle θ/2 is the same as a single reflection in the
line at angle (θ − φ)/2. Finally, a reflection in the line with angle φ/2 followed
by a reflection in the line θ/2 is the same as a single rotation through angle
θ−φ. Note that the angles are understood mod 2π. Can you see directly from
geometry why these relations must be true?


