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Exercise 1. 11.2

Proof. Suppose g1H = g2H. Then g1 · e ∈ g1H = g2H implies g1 = g2h for
some h ∈ H. Then g−12 g1 = h ∈ H. Conversely, if g−12 g1 = h for some h ∈ H
then g1 = g2h ∈ g2H, which implies g1H and g2H have a common element and
thus are equal because the cosets form a partition.

Exercise 2. 11.3

Proof. IfH andK are subgroups ofG then their intersectionH∩K is a subgroup
of G and hence also of H and of K. Then the order of H ∩K must divide both
the order of H and the order of K, but these two numbers are relatively prime,
so | H∩K |= 1. Thus, H and K have only the identity element in common.

Exercise 3. 11.4

Proof. The order of any subgroup H must divide the order of the group | G |=
p · q where p and q are distinct primes. Since H is proper, | H |= 1, p, or q and
in each case H is cyclic by corollary 11.3 of the chapter.

Exercise 4. 11.5

Proof. This is similar to the proof of Lagrange’s theorem. In this case, since
we want the size of Y to divide the size of X, we will prove that the cosets
of Y partition X. The set Y is finite so write it as Y = {e, y2, y3, . . . , yn}
(Y contains e because it is a subgroup). To begin select an x1 ∈ X. Then
x1Y = {x1, x1y2, . . . , x1yn} ⊆ X by assumption. If x1Y = X then Y and X
have the same size, so certainly the size of X is a multiple of the size of Y . If not,
then there exists and x2 ∈ X \ x1Y . We claim that x1Y and x2Y are disjoint.
Suppose that they have a common element x1yi = x2yj . Then x1yiy−1j = x2,
which implies that x2 ∈ x1Y and contradicts our choice of x2. Thus, the two
cosets are disjoint. If X = x1Y ∪ x2Y then | X |= 2 | Y | and we are done.
Otherwise choose a new element x3 ∈ X \ (x1Y ∪ x2Y ) and repeat the process.
Since X is finite, this process will terminate, and X will be a disjoint union of
cosets x1Y ∪ · · · ∪ xlY . Thus, the size of X is a multiple of the size of Y .

Exercise 5. 11.7



Proof. As usual let s be a reflection element of Dn and r a rotation element by
2π/n of Dn. Suppose that m divides 2n. There are two cases. If m divides
n, then consider the element rn/m. This element has order m, so generates a
subgroup of order m. If m does not divide n evenly, then factor a 2 out of
m and write it as m = 2k (m must contain a factor of 2 because m divides
2n). Then 2k divides 2n implies that k divides n. Consider the subgroup gen-
erated by s and rn/k. The element rn/k has order k, so generates k elements
rn/k, r2n/k, . . . , r(k−1)n/k, rkn/k = e. Multiply each of these by s to get k more
distinct elements rn/ks, r2n/ks, . . . , r(k−1)n/ks, rkn/ks = s (recall chapter on di-
hedral groups).

We still have to check that there is no other elements in the subgroup gen-
erated by rn/k and s. To this end recall the relation sr = rn−1s and let z = n/k
to ease notation. Then razs · rbzs = razr(n−1)bzss = r(a+(n−1)b)z, which is an
element in the set generated by rz. Likewise, razrbzs = r(a+b)zs is in the sec-
ond set of elements listed above. Thus, these m = 2k elements are indeed the
distinct elements of this subgroup as desired.

Exercise 6. 11.9

Proof. Consider the following claim. If a and b are elements of G of orders x
and y respectively, then there is an element of order lcm(x, y). If this claim is
true, then the theorem is true because we can pick two elements g1 and g2 in G
of orders o1 and o2 and get an element of order m1 = lcm(o1, o2). Then we can
choose another element g3 ∈ G of order o3. If lcm(m1, o3) = m1 then continue
on to the next step. Otherwise, the claim says that there exists an element of
order m2 = lcm(m1, o3). Then pick g4 ∈ G, and so forth. This process must
terminate because G is a finite group.

To prove the claim, let a, b ∈ G have orders x and y respectively and let
m = lcm(x, y). Then (ab)m = abab · · · ab (m times) = ambm because G is
abelian. Since x divides m and y divides m, (ab)m = ambm = ee = e. Therefore
the order of ab must be at most m and must divide m. We would like to show
that the order is actually equal to m.

Suppose first that x and y are relatively prime, so that m = xy. Let r be
some number such that 0 < r < m and (ab)r = e. Then e = (ab)r = arbr

implies that a−1 = ar−1br. Since the order of a−1 is also x we have that

e = (a−1)x

= (ar−1br)x

= ax(r−1)b(xr)

= ebxr

= bxr.

This means that the order of b divides xr, i.e. y | xr. But since x and y are



relatively prime this means that y divides r, i.e. yk = r for some k. Therefore,
br = byk = (by)k = e and e = arbr = ar. From this we see that x also divides
r, and since both x and y divide r, their least common multiple m must also
divide r. Therefore, m is indeed the smallest integer such that (ab)m = 0, so ab
has order m.

Now suppose that x and y are not relatively prime, so that g = gcd(x, y) > 1.
Let x′ = x/g, so that ax/x

′
= ax/(x/g) = ag has order x′. Then x′ and y

are relatively prime so by the previous part there exists an element of order
lcm(x′, y) = x′y = xy

g = lcm(x, y) (recall lcm(x, y)gcd(x, y) = xy).

Exercise 7. 11.10

Proof. Consider S3 which has the identity of order 1, three elements of order 2,
and two elements of order 3. Thus, the lcm of the orders is 6, but S3 does not
have an element of order 6 (if it did then that element would generate all of S3

making it cyclic).

Exercise 8. 12.1

Proof. (a) Yes, check the three axioms.
Note that 0 is even because 2 divides it.

(b) Yes, check the three axioms.

(c) No, fails transitivity.
Let x = 1+

√
1, y = −

√
2 and z = 2+

√
2. Then x+ y = 1, y + z = 2, so

x is related to y and y is related to z, but x+ z = 3+ 2
√
2 is irrational so

x is not related to z.

(d) No, 5− 3 ≥ 0 but 3− 5 < 0, so fails symmetry.

Exercise 9. 12.3

Proof. Let G be S3 and consider the subgroup H = {e, (12)}. Then (123)(23) =
(12) ∈ H, but (23)(123) = (13) 6∈ H, so the relation fails symmetry.

Exercise 10. 12.6

Proof. Let x and x′ be two representatives of the same congruence class mod
n. Then there exists a k such that x = x′ + kn. Likewise, let y = y′ + ln. Then
x+ y = x′+ kn+ y′+ ln = x′+ y′+(k+ l)n, so x+ y and x′+ y′ are congruent
mod n and addition is well-defined. The identity in this group is [0], the inverse
of [x] is [−x], and the sum of two equivalence classes is an equivalence class
mod n, so this set forms a group. Since addition is commutative, this is an
abelian group. If we denote by Z′n as the group defined on page 12 of the book,
then φ : Z′n → Zn defined by φ(x) = [x] is an isomorphism. It is bijective and
φ(x+ y) = [x+ y] = [x] + [y] = φ(x) + φ(y).


