Groups and Symmetry HW7 Solutions

November 7, 2014

Exercise 1. 11.2

Proof. Suppose $g_{1} H=g_{2} H$. Then $g_{1} \cdot e \in g_{1} H=g_{2} H$ implies $g_{1}=g_{2} h$ for some $h \in H$. Then $g_{2}^{-1} g_{1}=h \in H$. Conversely, if $g_{2}^{-1} g_{1}=h$ for some $h \in H$ then $g_{1}=g_{2} h \in g_{2} H$, which implies $g_{1} H$ and $g_{2} H$ have a common element and thus are equal because the cosets form a partition.

Exercise 2. 11.3
Proof. If H and K are subgroups of G then their intersection $H \cap K$ is a subgroup of G and hence also of H and of K. Then the order of $H \cap K$ must divide both the order of H and the order of K, but these two numbers are relatively prime, so $|H \cap K|=1$. Thus, H and K have only the identity element in common.

Exercise 3. 11.4

Proof. The order of any subgroup H must divide the order of the group $|G|=$ $p \cdot q$ where p and q are distinct primes. Since H is proper, $|H|=1, p$, or q and in each case H is cyclic by corollary 11.3 of the chapter.

Exercise 4. 11.5

Proof. This is similar to the proof of Lagrange's theorem. In this case, since we want the size of Y to divide the size of X, we will prove that the cosets of Y partition X. The set Y is finite so write it as $Y=\left\{e, y_{2}, y_{3}, \ldots, y_{n}\right\}$ (Y contains e because it is a subgroup). To begin select an $x_{1} \in X$. Then $x_{1} Y=\left\{x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right\} \subseteq X$ by assumption. If $x_{1} Y=X$ then Y and X have the same size, so certainly the size of X is a multiple of the size of Y. If not, then there exists and $x_{2} \in X \backslash x_{1} Y$. We claim that $x_{1} Y$ and $x_{2} Y$ are disjoint. Suppose that they have a common element $x_{1} y_{i}=x_{2} y_{j}$. Then $x_{1} y_{i} y_{j}^{-1}=x_{2}$, which implies that $x_{2} \in x_{1} Y$ and contradicts our choice of x_{2}. Thus, the two cosets are disjoint. If $X=x_{1} Y \cup x_{2} Y$ then $|X|=2|Y|$ and we are done. Otherwise choose a new element $x_{3} \in X \backslash\left(x_{1} Y \cup x_{2} Y\right)$ and repeat the process. Since X is finite, this process will terminate, and X will be a disjoint union of cosets $x_{1} Y \cup \cdots \cup x_{l} Y$. Thus, the size of X is a multiple of the size of Y.

Exercise 5. 11.7

Proof. As usual let s be a reflection element of D_{n} and r a rotation element by $2 \pi / n$ of D_{n}. Suppose that m divides $2 n$. There are two cases. If m divides n, then consider the element $r^{n / m}$. This element has order m, so generates a subgroup of order m. If m does not divide n evenly, then factor a 2 out of m and write it as $m=2 k$ (m must contain a factor of 2 because m divides $2 n$). Then $2 k$ divides $2 n$ implies that k divides n. Consider the subgroup generated by s and $r^{n / k}$. The element $r^{n / k}$ has order k, so generates k elements $r^{n / k}, r^{2 n / k}, \ldots, r^{(k-1) n / k}, r^{k n / k}=e$. Multiply each of these by s to get k more distinct elements $r^{n / k} s, r^{2 n / k} s, \ldots, r^{(k-1) n / k} s, r^{k n / k} s=s$ (recall chapter on dihedral groups).

We still have to check that there is no other elements in the subgroup generated by $r^{n / k}$ and s. To this end recall the relation $s r=r^{n-1} s$ and let $z=n / k$ to ease notation. Then $r^{a z} s \cdot r^{b z} s=r^{a z} r^{(n-1) b z} s s=r^{(a+(n-1) b) z}$, which is an element in the set generated by r^{z}. Likewise, $r^{a z} r^{b z} s=r^{(a+b) z} s$ is in the second set of elements listed above. Thus, these $m=2 k$ elements are indeed the distinct elements of this subgroup as desired.

Exercise 6. 11.9

Proof. Consider the following claim. If a and b are elements of G of orders x and y respectively, then there is an element of order $\operatorname{lcm}(x, y)$. If this claim is true, then the theorem is true because we can pick two elements g_{1} and g_{2} in G of orders o_{1} and o_{2} and get an element of order $m_{1}=\operatorname{lcm}\left(o_{1}, o_{2}\right)$. Then we can choose another element $g_{3} \in G$ of order o_{3}. If $\operatorname{lcm}\left(m_{1}, o_{3}\right)=m_{1}$ then continue on to the next step. Otherwise, the claim says that there exists an element of order $m_{2}=l c m\left(m_{1}, o_{3}\right)$. Then pick $g_{4} \in G$, and so forth. This process must terminate because G is a finite group.

To prove the claim, let $a, b \in G$ have orders x and y respectively and let $m=l c m(x, y)$. Then $(a b)^{m}=a b a b \cdots a b(m$ times $)=a^{m} b^{m}$ because G is abelian. Since x divides m and y divides $m,(a b)^{m}=a^{m} b^{m}=e e=e$. Therefore the order of $a b$ must be at most m and must divide m. We would like to show that the order is actually equal to m.

Suppose first that x and y are relatively prime, so that $m=x y$. Let r be some number such that $0<r<m$ and $(a b)^{r}=e$. Then $e=(a b)^{r}=a^{r} b^{r}$ implies that $a^{-1}=a^{r-1} b^{r}$. Since the order of a^{-1} is also x we have that

$$
\begin{aligned}
e & =\left(a^{-1}\right)^{x} \\
& =\left(a^{r-1} b^{r}\right)^{x} \\
& =a^{x(r-1)} b^{(x r)} \\
& =e b^{x r} \\
& =b^{x r} .
\end{aligned}
$$

This means that the order of b divides $x r$, i.e. $y \mid x r$. But since x and y are
relatively prime this means that y divides r, i.e. $y k=r$ for some k. Therefore, $b^{r}=b^{y k}=\left(b^{y}\right)^{k}=e$ and $e=a^{r} b^{r}=a^{r}$. From this we see that x also divides r, and since both x and y divide r, their least common multiple m must also divide r. Therefore, m is indeed the smallest integer such that $(a b)^{m}=0$, so $a b$ has order m.

Now suppose that x and y are not relatively prime, so that $g=\operatorname{gcd}(x, y)>1$. Let $x^{\prime}=x / g$, so that $a^{x / x^{\prime}}=a^{x /(x / g)}=a^{g}$ has order x^{\prime}. Then x^{\prime} and y are relatively prime so by the previous part there exists an element of order $\operatorname{lcm}\left(x^{\prime}, y\right)=x^{\prime} y=\frac{x y}{g}=\operatorname{lcm}(x, y)($ recall $\operatorname{lcm}(x, y) \operatorname{gcd}(x, y)=x y)$.
Exercise 7. 11.10
Proof. Consider S_{3} which has the identity of order 1, three elements of order 2, and two elements of order 3. Thus, the lcm of the orders is 6 , but S_{3} does not have an element of order 6 (if it did then that element would generate all of S_{3} making it cyclic).

Exercise 8. 12.1
Proof. (a) Yes, check the three axioms.
Note that 0 is even because 2 divides it.
(b) Yes, check the three axioms.
(c) No, fails transitivity.

Let $x=1+\sqrt{1}, y=-\sqrt{2}$ and $z=2+\sqrt{2}$. Then $x+y=1, y+z=2$, so x is related to y and y is related to z, but $x+z=3+2 \sqrt{2}$ is irrational so x is not related to z.
(d) No, $5-3 \geq 0$ but $3-5<0$, so fails symmetry.

Exercise 9. 12.3
Proof. Let G be S_{3} and consider the subgroup $H=\{e,(12)\}$. Then (123)(23) $=$ $(12) \in H$, but $(23)(123)=(13) \notin H$, so the relation fails symmetry.

Exercise 10. 12.6
Proof. Let x and x^{\prime} be two representatives of the same congruence class mod n. Then there exists a k such that $x=x^{\prime}+k n$. Likewise, let $y=y^{\prime}+\ln$. Then $x+y=x^{\prime}+k n+y^{\prime}+l n=x^{\prime}+y^{\prime}+(k+l) n$, so $x+y$ and $x^{\prime}+y^{\prime}$ are congruent $\bmod n$ and addition is well-defined. The identity in this group is [0], the inverse of $[x]$ is $[-x]$, and the sum of two equivalence classes is an equivalence class $\bmod n$, so this set forms a group. Since addition is commutative, this is an abelian group. If we denote by \mathbb{Z}_{n}^{\prime} as the group defined on page 12 of the book, then $\phi: \mathbb{Z}_{n}^{\prime} \rightarrow \mathbb{Z}_{n}$ defined by $\phi(x)=[x]$ is an isomorphism. It is bijective and $\phi(x+y)=[x+y]=[x]+[y]=\phi(x)+\phi(y)$.

