Groups and Symmetry HW8 Solutions

November 19, 2014

Exercise 1. 15.1
Proof. Suppose that $H J=J H$. We will show that $H J$ is a subgroup. The identity element is in $H J$. If $h_{1} j_{1}, h_{2} j_{2} \in H J$, then there exists some $h^{\prime} \in H, j^{\prime} \in J$ such that $j_{1} h_{2}=h^{\prime} j^{\prime}$, which implies $h_{1} j_{1} h_{2} j_{2}=h_{1} h^{\prime} j^{\prime} j_{2} \in H J$, so $H J$ is closed under multiplication. If $h j \in H J$, then $(h j)^{-1}=j^{-1} h^{-1} \in J H=H J$, so $H J$ is a sungroup.

Conversely, suppose that $H J$ is a subgroup. Let $h \in H$ and $j \in J$. Then since $h j \in H J$, the inverse $j^{-1} h^{-1}=(h j)^{-1}$ is in HJ. Thus, there exist $h^{\prime} \in H, j^{\prime} \in J$ such that $j^{-1} h^{-1}=h^{\prime} j^{\prime}$. This implies $j h=\left(j^{\prime}\right)^{-1}\left(h^{\prime}\right)^{-1} \in J H$. Since h and j were arbitrary, this shows that $H J \subseteq J H$ and likewise $J H \subseteq H J$.

Exercise 2. 15.2
Proof. (a) The proper normal subgroups of $D_{4}=\left\{e, r, r^{2}, r^{3}, s, r s, r^{2} s, r^{3} s\right\}$ are $\left\{e, r, r^{2}, r^{3}\right\},\left\{e, r^{2}, s, r^{2} s\right\},\left\{e, r^{2}, r s, r^{3} s\right\}$, and $\left\{e, r^{2}\right\}$. To see this note that s is conjugate to $r^{2} s$ (conjugate by r), so if a subgroup contains s for it to be normal it must contain $r^{2} s$. But if it contains s and $r^{2} s$ then it must also contain r^{2}. Check that these four elements indeed form a subgroup, and since this subgroup has index 2 is normal.

Likewise, $r s$ is conjugate to $r^{3} s$, so if a subgroup contains one of them it must contain both to be normal. But then the subgroup must also contain r^{3} srs $=r^{2}$. Check that $\left\{e, r s, r^{3} s, r^{2}\right\}$ also forms a subgroup. It is also normal because it has index 2 .

If a subgroup contains r then it contains the subgroup generated by r which has index 2 , so is normal.

Finally, r^{2} commutes with every other element, so $\left\{e, r^{2}\right\}$ is a normal subgroup. These exhaust all of the possibilities for proper normal subgroups, as you can verify (note that once you have strictly more than 4 elements, the subgroup cannot be proper because it's order has to divide 8).
(b) The only proper normal subgroup of $D_{5}=\left\{e, r, r^{2}, r^{3}, r^{4}, s, r s, r^{2} s, r^{3} s, r^{4} s\right\}$ is $\langle r\rangle$. To see this let's analyze the general case of D_{n}. Conjugating s we see that $\left(r^{a} s\right) s\left(r^{a} s\right)^{-1}=r^{a} s s s r^{-a}=r^{a} s r^{-a}=r^{2 a} s$. Therefore, s is conjugate to $r^{2 a} s$ for every integer a (i.e. all even powers of r times s). Conjugating by just a power of r gives $r^{a} s r^{-a}=r^{2 a} s$ as well. Therefore, the set

$$
E=\left\{r^{2 a} s \mid a \in \mathbb{Z} / n \mathbb{Z}\right\}
$$

is a conjugacy class. Similarly, conjugating rs gives $\left(r^{a} s\right) r s\left(r^{a} s\right)^{-1}=$ r^{a} srssr $^{-a}=r^{a} s r^{-a+1}=r^{2 a-1} s$ and $r^{a} r s r^{-a}=r^{2 a+1} s$ (i.e. all odd powers of r times s). Therefore,

$$
O=\left\{r^{2 a+1} s \mid a \in \mathbb{Z} / n \mathbb{Z}\right\}
$$

is a conjugacy class as well. However, if n is odd, then these conjugacy classes coincide and $E=O=\left\{r^{a} s \mid a \in \mathbb{Z} / n \mathbb{Z}\right\}$.

Any element of the form r^{a} is conjugate only to r^{n-a} (check!), so the sets $R_{a}=\left\{r^{a}, r^{n-a}\right\}$ are conjugacy classes. Therefore, the obvious proper normal subgroups are the subgroups generated by r^{a} where a is a divisor of n (and $a \neq 1$), since for any $r^{a k}$ in $\left\langle r^{a}\right\rangle, r^{n-a k}$ is also in $\left\langle r^{a k}\right\rangle$. This coincides with us finding that $\left.<r^{2}\right\rangle$ is a normal subgroup of D_{4} but not of D_{5} and that $\langle r\rangle$ is a normal subgroup in both D_{4} and D_{5}.

If n is odd, then $E=O$ and this conjugacy class contains n elements. Together with the identity this make $n+1$ elements, so it cannot possible be a proper subgroup (because its order has to divide $2 n$). Therefore, if n is odd, there are no other proper normal subgroups.
Now suppose n is even and that the conjugacy class E is contained in some potentially normal subgroups N. Then since s and $r^{2} s$ are in this subgroup, so is r^{2}. Since n is even, r^{2} does not generate all of $\left\{e, r, r^{2}, \ldots, r^{n-1}\right\}$, but just the subgroup of $\left.<r^{2}\right\rangle$. Check that $E \cup<$ $r^{2}>$ does indeed form a subgroup (i.e. the elements don't generate anything outside of this list of elements). The subgroup $\left\langle r^{2}\right\rangle$ is also a union of conjugacy classes, so $E \cup<r^{2}>$ is a proper normal subgroup.

Now suppose that the conjugacy class O is contained in some potentially normal subgroup N. Then since $r s$ and $r^{3} s$ are in O, r^{2} is again in the subgroup N. Again since n is even, check that $O \cup<r^{2}>$ indeed forms a subgroup, which is again normal since it is a union of conjugacy classes.

To summarize, D_{n} always has the proper normal subgroups $<r^{a}>$ where a is a divisor of n. If n is odd then these are all of them. If n is even then D_{n} also has $E \cup<r^{2}>$ and $O \cup<r^{2}>$ as proper normal subgroups (check this against what we got for D_{4} and D_{5}).

Exercise 3. 15.5
Proof. Let $G=D_{4}, H=\left\{e, s, r^{2}, r^{2} s\right\}$, which is normal in G because it has index 2. Let $J=\{e, s\}$, which is normal in H because it has index 2. However, J is not normal in G because $r^{-1} s r=r^{-2} s=r^{2} s$, which is not in J.

Exercise 4. 15.6
Proof. Let $x \in H$ and $y \in J$. Since J is normal, $x y x^{-1} \in x J x^{-1}=J$, which implies that $x y x^{-1} y^{-1}$ is in J. Likewise, since H is normal, $y x^{-1} y \in y^{-1} H y=$ H, which implies that $x y x^{-1} y^{-1} \in H$. Therefore $x y x^{-1} y^{-1}$ is in both H and J, but they only have the identity element in common, so $x y x^{-1} y^{-1}=e$ implies $x y=y x$.

Exercise 5. 15.8
Proof. The commutator subgroup of A_{4} is $\{e,(12)(34),(13)(24),(14)(23)\}$ as can be checked by direct computation.

Now consider A_{n} for $n \geq 5$. Recall that A_{n} is generated by all of the 3-cycles, so if we can show that $\left[A_{n}, A_{n}\right]$ contains every 3 -cycle then we are done. Let ($a b c$) be an arbitrary 3 -cycle, so that a, b, c are distinct numbers between 1 and n. We would like to write it in the form $g h g^{-1} h^{-1}$ for two elements $g, h \in A_{n}$. Rewrite $(a b c)=(a c b)(a c b)=(a b)(a c)(a b)(a c)$. Now choose two distinct numbers x, y that are different from a, b, and c. This is possible since $n \geq 5$, so note that this proof fails for A_{4} as we know it should. Then

$$
\begin{aligned}
(a b c) & =(a c b)(a c b) \\
& =(a b)(a c)(a b)(a c) \\
& =(x y)(x y)(x y)(x y)(a b)(a c)(a b)(a c) \\
& =(x y)(a b)(x y)(a c)(x y)(a b)(x y)(a c)
\end{aligned}
$$

where we can commute ($x y$) with both ($a b$) and ($a c$) because they are disjoint cycles. Setting $g=(x y)(a b) \in A_{n}, h=(x y)(a c) \in A_{n}$ we have written ($a b c$) as $g h g^{-1} h^{-1}$. Therefore, every 3 -cycle is contained in the commutator subgroup, and therefore all of A_{n} is contained in the commutator subgroup, so $\left[A_{n}, A_{n}\right]=$ A_{n} for $n \geq 5$.

Exercise 6. 16.1
Proof. (a) Yes. Let $z=a+b i$ and $w=x+y i$. Then $z w=a x-b y+(a y+b x) i$, so $\phi(z w)=a x-b y-(a y+b x) i=(a-b i)(x-y i)=\phi(z) \phi(w)$, so ϕ is a homomorphism.
(b) Yes. We have $\phi(z w)=(z w)^{2}=z^{2} w^{2}=\phi(z) \phi(w)$.
(c) No. We have $\phi(1 \cdot i)=-1$, but $\phi(1) \phi(i)=i \cdot-1=-i$, and in fact the identity 1 does not map to the identity.
(d) Yes. Compute $\phi(z w)=\sqrt{(a x-b y)^{2}+(a y+b x)^{2}}=\sqrt{a^{2}+b^{2}} \sqrt{x^{2}+y^{2}}=$ $\phi(z) \phi(w)$.

Exercise 7. 16.2

Proof. (a) No. For matrices $A, B, \phi(A B)=(A B)^{t}=B^{t} A^{t}=\phi(B) \phi(A)$, and there certainly exist matrices in $G L_{n}(\mathbb{C})$ that do not commute so there are matrices such that $\phi(A B)=\phi(B) \phi(A) \neq \phi(A) \phi(B)$.
(b) Yes. We have $\phi(A B)=\left((A B)^{-1}\right)^{t}=\left(B^{-1} A^{-1}\right)^{t}=\left(A^{-1}\right)^{t}\left(B^{-1}\right)^{t}=$ $\phi(A) \phi(B)$.
(c) No. For matrices $A, B, \phi(A B)=(A B)^{2}=A B A B$, which is not always equal to $A^{2} B^{2}$.
(d) No. We have $\phi(A B)=(A B)^{*}=B^{*} A^{*}$ which is not equal in general to $A^{*} B^{*}$ where recall A^{*} denotes the adjoint of A.

Exercise 8. 16.3

Proof. Define the map $\phi: G \times H \rightarrow H$ by $\phi((g, h))=h$. This map is surjective onto H. If $\phi((g, h))=e$, then $h=e$, which shows that the elements of $\operatorname{ker} \phi$ are of the form (g, e). Furthermore, for any $g \in G, \phi((g, e))=e$ so in fact all such elements are in the kernel, i.e. $\operatorname{ker} \phi=G \times\{e\}$. Kernel's are always normal and by the isomorphism theorem in the text, $G \times H /(G \times\{e\}) \cong H$.

Exercise 9. 16.4
Proof. Consider the homomorphism $\phi: G \times H \rightarrow(G / A) \times(H / B)$ defined by $\phi((g, h))=(g A, h B)$. This is a homomorphism because $\phi\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right)=$ $\phi\left(\left(g_{1} g_{2}, h_{1} h_{2}\right)\right)=\left(g_{1} g_{2} A, h_{1} h_{2} B\right)=\left(g_{1} A, h_{1} B\right)\left(g_{2} A, h_{2} B\right)=\phi\left(\left(g_{1}, h_{1}\right)\right) \phi\left(\left(g_{2}, h_{2}\right)\right)$. The kernel of ϕ is any element (g, h) such that $g \in A$ and $h \in B$, which is $A \times B$. Therefore, $A \times B$ is a normal subgroup of $G \times H$ and $G \times H / A \times B \cong$ $G / A \times H / B$.

Exercise 10. 16.8

Proof. Suppose that ϕ is a homomorphism. Let $H=\{(g, \phi(g)) \mid g \in G\} \subseteq$ $G \times G^{\prime}$ and let $(h, \phi(h)),(g, \phi(g)) \in H$. Then

$$
\begin{aligned}
(h, \phi(h))(g, \phi(g))^{-1} & =(h, \phi(h))\left(g^{-1}, \phi(g)^{-1}\right) \\
& =\left(h g^{-1}, \phi(h) \phi(g)^{-1}\right),
\end{aligned}
$$

and since ϕ is a homomorphism this is equal to $\left(h g^{-1}, \phi\left(h g^{-1}\right)\right) \in H$. Thus, H is a subgroup.

Conversely, suppose that H is a subgroup. Then let $g, h \in G$. Since H is a subgroup, $(g, \phi(g))=(h, \phi(h))=(g h, \phi(g) \phi(h))$ must be some element $(x, \phi(x)) \in H$. This implies $x=g h$, so that $(g h, \phi(g) \phi(h))=(g h, \phi(g h))$. Thus, $\phi(g h)=\phi(g) \phi(h)$ and ϕ is a homomorphism.

