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Exercise 1. 15.1

Proof. Suppose that HJ = JH. We will show that HJ is a subgroup. The iden-
tity element is in HJ . If h1j1, h2j2 ∈ HJ , then there exists some h′ ∈ H, j′ ∈ J
such that j1h2 = h′j′, which implies h1j1h2j2 = h1h

′j′j2 ∈ HJ , so HJ is closed
under multiplication. If hj ∈ HJ , then (hj)−1 = j−1h−1 ∈ JH = HJ , so HJ
is a sungroup.

Conversely, suppose that HJ is a subgroup. Let h ∈ H and j ∈ J . Then since
hj ∈ HJ , the inverse j−1h−1 = (hj)−1 is in HJ. Thus, there exist h′ ∈ H, j′ ∈ J
such that j−1h−1 = h′j′. This implies jh = (j′)−1(h′)−1 ∈ JH. Since h and j
were arbitrary, this shows that HJ ⊆ JH and likewise JH ⊆ HJ .

Exercise 2. 15.2

Proof. (a) The proper normal subgroups of D4 = {e, r, r2, r3, s, rs, r2s, r3s}
are {e, r, r2, r3}, {e, r2, s, r2s}, {e, r2, rs, r3s}, and {e, r2}. To see this note
that s is conjugate to r2s (conjugate by r), so if a subgroup contains s
for it to be normal it must contain r2s. But if it contains s and r2s then
it must also contain r2. Check that these four elements indeed form a
subgroup, and since this subgroup has index 2 is normal.

Likewise, rs is conjugate to r3s, so if a subgroup contains one of them
it must contain both to be normal. But then the subgroup must also con-
tain r3srs = r2. Check that {e, rs, r3s, r2} also forms a subgroup. It is
also normal because it has index 2.

If a subgroup contains r then it contains the subgroup generated by r
which has index 2, so is normal.

Finally, r2 commutes with every other element, so {e, r2} is a normal
subgroup. These exhaust all of the possibilities for proper normal sub-
groups, as you can verify (note that once you have strictly more than 4
elements, the subgroup cannot be proper because it’s order has to divide
8).



(b) The only proper normal subgroup ofD5 = {e, r, r2, r3, r4, s, rs, r2s, r3s, r4s}
is < r >. To see this let’s analyze the general case of Dn. Conjugating s
we see that (ras)s(ras)−1 = rasssr−a = rasr−a = r2as. Therefore, s is
conjugate to r2as for every integer a (i.e. all even powers of r times s).
Conjugating by just a power of r gives rasr−a = r2as as well. Therefore,
the set

E = {r2as | a ∈ Z/nZ}

is a conjugacy class. Similarly, conjugating rs gives (ras)rs(ras)−1 =
rasrssr−a = rasr−a+1 = r2a−1s and rarsr−a = r2a+1s (i.e. all odd
powers of r times s). Therefore,

O = {r2a+1s | a ∈ Z/nZ}

is a conjugacy class as well. However, if n is odd, then these conjugacy
classes coincide and E = O = {ras | a ∈ Z/nZ}.

Any element of the form ra is conjugate only to rn−a (check!), so the
sets Ra = {ra, rn−a} are conjugacy classes. Therefore, the obvious proper
normal subgroups are the subgroups generated by ra where a is a divisor
of n (and a 6= 1), since for any rak in < ra >, rn−ak is also in < rak >.
This coincides with us finding that < r2 > is a normal subgroup of D4

but not of D5 and that < r > is a normal subgroup in both D4 and D5.

If n is odd, then E = O and this conjugacy class contains n elements.
Together with the identity this make n+1 elements, so it cannot possible
be a proper subgroup (because its order has to divide 2n). Therefore, if
n is odd, there are no other proper normal subgroups.
Now suppose n is even and that the conjugacy class E is contained in
some potentially normal subgroups N . Then since s and r2s are in
this subgroup, so is r2. Since n is even, r2 does not generate all of
{e, r, r2, . . . , rn−1}, but just the subgroup of < r2 >. Check that E∪ <
r2 > does indeed form a subgroup (i.e. the elements don’t generate any-
thing outside of this list of elements). The subgroup < r2 > is also a union
of conjugacy classes, so E∪ < r2 > is a proper normal subgroup.

Now suppose that the conjugacy class O is contained in some potentially
normal subgroup N . Then since rs and r3s are in O, r2 is again in the
subgroup N . Again since n is even, check that O∪ < r2 > indeed forms a
subgroup, which is again normal since it is a union of conjugacy classes.

To summarize, Dn always has the proper normal subgroups < ra > where
a is a divisor of n. If n is odd then these are all of them. If n is even
then Dn also has E∪ < r2 > and O∪ < r2 > as proper normal subgroups
(check this against what we got for D4 and D5).



Exercise 3. 15.5

Proof. Let G = D4, H = {e, s, r2, r2s}, which is normal in G because it has
index 2. Let J = {e, s}, which is normal in H because it has index 2. However,
J is not normal in G because r−1sr = r−2s = r2s, which is not in J .

Exercise 4. 15.6

Proof. Let x ∈ H and y ∈ J . Since J is normal, xyx−1 ∈ xJx−1 = J , which
implies that xyx−1y−1 is in J . Likewise, since H is normal, yx−1y ∈ y−1Hy =
H, which implies that xyx−1y−1 ∈ H. Therefore xyx−1y−1 is in both H and J ,
but they only have the identity element in common, so xyx−1y−1 = e implies
xy = yx.

Exercise 5. 15.8

Proof. The commutator subgroup of A4 is {e, (12)(34), (13)(24), (14)(23)} as
can be checked by direct computation.

Now consider An for n ≥ 5. Recall that An is generated by all of the 3-cycles, so
if we can show that [An, An] contains every 3-cycle then we are done. Let (abc)
be an arbitrary 3-cycle, so that a, b, c are distinct numbers between 1 and n. We
would like to write it in the form ghg−1h−1 for two elements g, h ∈ An. Rewrite
(abc) = (acb)(acb) = (ab)(ac)(ab)(ac). Now choose two distinct numbers x, y
that are different from a, b, and c. This is possible since n ≥ 5, so note that this
proof fails for A4 as we know it should. Then

(abc) = (acb)(acb)

= (ab)(ac)(ab)(ac)

= (xy)(xy)(xy)(xy)(ab)(ac)(ab)(ac)

= (xy)(ab)(xy)(ac)(xy)(ab)(xy)(ac)

where we can commute (xy) with both (ab) and (ac) because they are disjoint
cycles. Setting g = (xy)(ab) ∈ An, h = (xy)(ac) ∈ An we have written (abc) as
ghg−1h−1. Therefore, every 3-cycle is contained in the commutator subgroup,
and therefore all of An is contained in the commutator subgroup, so [An, An] =
An for n ≥ 5.

Exercise 6. 16.1

Proof. (a) Yes. Let z = a+bi and w = x+yi. Then zw = ax−by+(ay+bx)i,
so φ(zw) = ax− by − (ay + bx)i = (a− bi)(x− yi) = φ(z)φ(w), so φ is a
homomorphism.

(b) Yes. We have φ(zw) = (zw)2 = z2w2 = φ(z)φ(w).

(c) No. We have φ(1 · i) = −1, but φ(1)φ(i) = i · −1 = −i, and in fact the
identity 1 does not map to the identity.



(d) Yes. Compute φ(zw) =
√

(ax− by)2 + (ay + bx)2 =
√
a2 + b2

√
x2 + y2 =

φ(z)φ(w).

Exercise 7. 16.2

Proof. (a) No. For matrices A,B, φ(AB) = (AB)t = BtAt = φ(B)φ(A), and
there certainly exist matrices in GLn(C) that do not commute so there
are matrices such that φ(AB) = φ(B)φ(A) 6= φ(A)φ(B).

(b) Yes. We have φ(AB) = ((AB)−1)t = (B−1A−1)t = (A−1)t(B−1)t =
φ(A)φ(B).

(c) No. For matrices A,B,, φ(AB) = (AB)2 = ABAB, which is not always
equal to A2B2.

(d) No. We have φ(AB) = (AB)∗ = B∗A∗ which is not equal in general to
A∗B∗ where recall A∗ denotes the adjoint of A.

Exercise 8. 16.3

Proof. Define the map φ : G×H → H by φ((g, h)) = h. This map is surjective
onto H. If φ((g, h)) = e, then h = e, which shows that the elements of kerφ are
of the form (g, e). Furthermore, for any g ∈ G, φ((g, e)) = e so in fact all such
elements are in the kernel, i.e. kerφ = G×{e}. Kernel’s are always normal and
by the isomorphism theorem in the text, G×H/(G× {e}) ∼= H.

Exercise 9. 16.4

Proof. Consider the homomorphism φ : G × H → (G/A) × (H/B) defined by
φ((g, h)) = (gA, hB). This is a homomorphism because φ((g1, h1), (g2, h2)) =
φ((g1g2, h1h2)) = (g1g2A, h1h2B) = (g1A, h1B)(g2A, h2B) = φ((g1, h1))φ((g2, h2)).
The kernel of φ is any element (g, h) such that g ∈ A and h ∈ B, which is
A×B. Therefore, A×B is a normal subgroup of G×H and G×H/A×B ∼=
G/A×H/B.

Exercise 10. 16.8

Proof. Suppose that φ is a homomorphism. Let H = {(g, φ(g)) | g ∈ G} ⊆
G×G′ and let (h, φ(h)), (g, φ(g)) ∈ H. Then

(h, φ(h))(g, φ(g))−1 = (h, φ(h))(g−1, φ(g)−1)

= (hg−1, φ(h)φ(g)−1),

and since φ is a homomorphism this is equal to (hg−1, φ(hg−1)) ∈ H. Thus, H
is a subgroup.

Conversely, suppose that H is a subgroup. Then let g, h ∈ G. Since H
is a subgroup, (g, φ(g)) = (h, φ(h)) = (gh, φ(g)φ(h)) must be some element
(x, φ(x)) ∈ H. This implies x = gh, so that (gh, φ(g)φ(h)) = (gh, φ(gh)). Thus,
φ(gh) = φ(g)φ(h) and φ is a homomorphism.


