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Exercise 1. 15.1

Proof. Suppose that HJ = JH. We will show that HJ is a subgroup. The iden-
tity element is in HJ. If hy1j1, hojo € HJ, then there exists some h' € H,j' € J
such that jyho = h'j’, which implies hyji1hajs = hih'j’ jo € HJ, so HJ is closed
under multiplication. If hj € HJ, then (hj)~* = *h~' € JH = HJ, so HJ

is a sungroup.

Conversely, suppose that HJ is a subgroup. Let h € H and j € J. Then since
hj € HJ, the inverse j~'h~1 = (hj)~! is in HJ. Thus, there exist b’ € H,j’ € J
such that j~th~! = h/j’. This implies jh = (')~ 1(h/)~! € JH. Since h and j
were arbitrary, this shows that HJ C JH and likewise JH C HJ. O

Exercise 2. 15.2

Proof. (a) The proper normal subgroups of Dy = {e,r,r% 13 s,7s,7%s,1r%s}

are {e,r, 72,13}, {e,7?,s,r%s}, {e,r% rs,r3s}, and {e,7?}. To see this note
that s is conjugate to 72s (conjugate by 7), so if a subgroup contains s
for it to be normal it must contain r2s. But if it contains s and r2s then
it must also contain 2. Check that these four elements indeed form a

subgroup, and since this subgroup has index 2 is normal.

Likewise, rs is conjugate to r3s, so if a subgroup contains one of them
it must contain both to be normal. But then the subgroup must also con-
tain 73srs = r2. Check that {e,rs,r3s,7?} also forms a subgroup. It is

also normal because it has index 2.

If a subgroup contains r then it contains the subgroup generated by r
which has index 2, so is normal.

Finally, r* commutes with every other element, so {e,7?} is a normal
subgroup. These exhaust all of the possibilities for proper normal sub-
groups, as you can verify (note that once you have strictly more than 4
elements, the subgroup cannot be proper because it’s order has to divide
8).



(b) The only proper normal subgroup of Dy = {e,r, 72,13 14 5,175,725, r3s,r4s}

is < r >. To see this let’s analyze the general case of D,,. Conjugating s
we see that (7%s)s(r?s)~! = r%sssr~® = r¢sr—% = r2%s. Therefore, s is
conjugate to r??s for every integer a (i.e. all even powers of r times s).
Conjugating by just a power of r gives r®sr~® = r2®s as well. Therefore,

the set
E={r*s|acZ/nZ}

is a conjugacy class. Similarly, conjugating rs gives (r®s)rs(r®s)~! =
risrssr—® = rosr=atl = p2a=lg and rirsr=® = r2¢tls (ie. all odd
powers of r times s). Therefore,

O = {r***s|acZ/nZ}

is a conjugacy class as well. However, if n is odd, then these conjugacy
classes coincide and E = O = {r%s | a € Z/nZ}.

Any element of the form r® is conjugate only to r™~% (check!), so the
sets R, = {r®, 7"~} are conjugacy classes. Therefore, the obvious proper
normal subgroups are the subgroups generated by r* where a is a divisor
of n (and a # 1), since for any %% in < r® >, r"~% is also in < r** >.
This coincides with us finding that < 72 > is a normal subgroup of Dy
but not of D5 and that < r > is a normal subgroup in both D, and Ds.

If n is odd, then £ = O and this conjugacy class contains n elements.
Together with the identity this make n + 1 elements, so it cannot possible
be a proper subgroup (because its order has to divide 2n). Therefore, if
n is odd, there are no other proper normal subgroups.

Now suppose n is even and that the conjugacy class F is contained in
some potentially normal subgroups N. Then since s and r2s are in
this subgroup, so is r?. Since n is even, > does not generate all of
{e,7,7%,..., 7"~ 1}, but just the subgroup of < r? >. Check that EU <
r2 > does indeed form a subgroup (i.e. the elements don’t generate any-
thing outside of this list of elements). The subgroup < 72 > is also a union

of conjugacy classes, so EU < 2 > is a proper normal subgroup.

Now suppose that the conjugacy class O is contained in some potentially
normal subgroup N. Then since s and 73s are in O, r? is again in the
subgroup N. Again since n is even, check that OU < 2 > indeed forms a
subgroup, which is again normal since it is a union of conjugacy classes.

To summarize, D,, always has the proper normal subgroups < r® > where
a is a divisor of n. If n is odd then these are all of them. If n is even
then D,, also has EU < 72 > and OU < r2 > as proper normal subgroups
(check this against what we got for Dy and D).

O



Exercise 3. 15.5

Proof. Let G = D4, H = {e,s,r? r%s}, which is normal in G because it has
index 2. Let J = {e, s}, which is normal in H because it has index 2. However,

J is not normal in G because r~'sr = r~2s = r2s, which is not in J. O

Exercise 4. 15.6

Proof. Let x € H and y € J. Since J is normal, xyz~! € 2Jx~! = J, which
implies that xyz~1y~! is in J. Likewise, since H is normal, yz~ly € y ' Hy =
H, which implies that zyz~'y~! € H. Therefore zyz~'y~! is in both H and J,
but they only have the identity element in common, so zyz~'y~' = e implies
Ty = yx. O

Exercise 5. 15.8

Proof. The commutator subgroup of A4 is {e, (12)(34), (13)(24), (14)(23)} as
can be checked by direct computation.

Now consider A,, for n > 5. Recall that A,, is generated by all of the 3-cycles, so
if we can show that [A,,, A, ] contains every 3-cycle then we are done. Let (abc)
be an arbitrary 3-cycle, so that a, b, c are distinct numbers between 1 and n. We
would like to write it in the form ghg—'h™! for two elements g, h € A,,. Rewrite
(abe) = (acb)(ach) = (ab)(ac)(ab)(ac). Now choose two distinct numbers z,y
that are different from a, b, and ¢. This is possible since n > 5, so note that this
proof fails for A4 as we know it should. Then

(abc) = (acb)(ach)

= (ab)(ac)(ab)(ac)
= (zy)(zy)(zy)(zy)(ab)(ac)(ab)(ac)
= (zy)(

zy)(ab)(zy)(ac)(zy)(ab)(zy)(ac)

where we can commute (zy) with both (ab) and (ac) because they are disjoint
cycles. Setting g = (zy)(ab) € A,, h = (zy)(ac) € A,, we have written (abc) as
ghg~th~1. Therefore, every 3-cycle is contained in the commutator subgroup,
and therefore all of A,, is contained in the commutator subgroup, so [A4,, A,] =
A, for n > 5. O

Exercise 6. 16.1

Proof.  (a) Yes. Let z = a+bi and w = z+yi. Then zw = ax —by+ (ay+bx)i,
so ¢(zw) = ax — by — (ay + bx)i = (a — bi)(z — yi) = ¢(2)p(w), so ¢ is a
homomorphism.

(b) Yes. We have ¢(zw) = (2w)? = 22w? = ¢(2)d(w).

(¢) No. We have ¢(1-17) = =1, but ¢(1)¢(i) = i-—1 = —i, and in fact the
identity 1 does not map to the identity.



(d) Yes. Compute ¢(zw) = \/(ax — by)2 + (ay + bx)2 = Va? + b2 /22 + y2 =
¢(2)p(w). -

Exercise 7. 16.2

Proof. (a) No. For matrices A, B, $(AB) = (AB)! = B'A! = ¢(B)¢(A), and
there certainly exist matrices in GL,,(C) that do not commute so there

are matrices such that ¢(AB) = ¢(B)p(A) # ¢(A)d(B).

(b) Yes. We have ¢(AB) = ((AB)™!)t = (B7!A71)! = (A HYB 1) =
P(A)o(B).

(c) No. For matrices A, B,, ¢(AB) = (AB)? = ABAB, which is not always
equal to A2B2.

(d) No. We have ¢(AB) = (AB)* = B*A* which is not equal in general to
A*B* where recall A* denotes the adjoint of A.
O

Exercise 8. 16.3

Proof. Define the map ¢ : G x H — H by ¢((g,h)) = h. This map is surjective
onto H. If ¢((g,h)) = e, then h = e, which shows that the elements of ker ¢ are
of the form (g, e). Furthermore, for any g € G, ¢((g,€e)) = e so in fact all such
elements are in the kernel, i.e. ker ¢ = G x {e}. Kernel’s are always normal and
by the isomorphism theorem in the text, G x H/(G x {e}) = H. O

Exercise 9. 16.4

Proof. Consider the homomorphism ¢ : G x H — (G/A) x (H/B) defined by
?((g,h)) = (9A,hB). This is a homomorphism because ¢((g1,h1), (g2, ha)) =
?((9192, hih2)) = (91924, hiha B) = (914, hi B)(924, haB) = ¢((g1, h1))9((92, h2))-
The kernel of ¢ is any element (g,h) such that ¢ € A and h € B, which is
A x B. Therefore, A X B is a normal subgroup of G x H and G x H/A x B =
G/A x H/B. O

Exercise 10. 16.8

Proof. Suppose that ¢ is a homomorphism. Let H = {(g,¢(g9)) | g € G} C
G x G" and let (h,¢(h)),(g,¢(g)) € H. Then

(h, p(R))(g9,0(9)) " = (h,p(h)) (g™, d(9) ")
= (hg™ ", 0(h)(g9)™"),

and since ¢ is a homomorphism this is equal to (hg™1, ¢(hg~')) € H. Thus, H
is a subgroup.

Conversely, suppose that H is a subgroup. Then let g,h € G. Since H
is a subgroup, (g,¢(g)) = (h,¢(h)) = (gh,#(g9)¢(h)) must be some element
(z,¢(x)) € H. This implies z = gh, so that (gh, #(g)¢(h)) = (gh, ¢(gh)). Thus,
o(gh) = &(g)¢(h) and ¢ is a homomorphism. O



