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Newton’s reference frames

Figure : Isaac Newton
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Newton’s three laws

1. Law of inertia An object either is at rest or moves at a
constant velocity, unless acted upon by an external force.

2. Law of motion The acceleration of a body is directly
proportional to the force acting on the body, and inversely
proportional to its mass. In mathematical terms,

F = ma.

3. Law of action-reaction For every action there is an equal and
opposite reaction.
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About Newton’s first law

Newton’s first law says that there is a reference frame (that is
there is a system of coordinates) on which Newton’s first law
holds.

Any such a frame is called an inertial frame.

Although this statement may seem obvious, it is not clear at all
how to choose such a reference frame in the universe.
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Example
If we use a fixed point on earth to define a reference frame, then
we would obtain an example of a non inertial frame.

In this frame
the centrifugal force and the Coriolis force (which is responsible
for the formation of hurricanes) violate Newton’s first law.
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Systems of particles

Now assume that we have a system of N particles with position
ri and mass mi.

Then Newton’s second law reads:

Fi = mi ai.

Decompose Fi as
Fi = ∑

j 6=i
Fi j +Fexti ,

where Fi j is the force on the i-th particle due to the j-th particle.
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Decompose Fi as
Fi = ∑

j 6=i
Fi j +Fexti ,

where Fi j is the force on the i-th particle due to the j-th particle.

Suming over all the i’s we get

∑
i

Fi = ∑
i, j, j 6=i

Fi j +∑
i

Fexti

= ∑
i< j

(Fi j +F ji)+∑
i

Fexti .

But according to Newton’s third law, Fi j =−F ji, hence

∑
i

Fi = ∑
i

Fexti =: Fext,

where Fext is the total exterior force acting on the system.
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We define the total mass of the system to be

M = ∑
i

mi,

and the center of mass to be

R =
∑i mi ri

M
.

Then, if A is the second derivative of R with respect to time, we
have that

Fext = MA.

In a system where there are no external forces (like the universe)
this equation says that fixing the origin at the center of mass
gives you an inertial reference frame.
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Example
Let

r1 = (0,0) r2 = (3,6) r3 = (8,2),

and assume that

F12 = (1,2) F13 = (2,1/2) F23 = (0,0).

The we obtain the following picture:

u
r1

�
���F12
���:

F13

u r2
�
���

F21

u r3���9
F31
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Absolute vs. relative point of view

Figure : Gottfried Leibniz
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Classical Electromagnetism

Figure : James Clerk Maxwell
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Maxwell equations (1862)
Let E, B and J be the electric field, magnetic field and current
density, respectively, and let ρ be a charge distribution in R3.
1. Gauss law.

∇ ·E = ρ/ε0.

2. Gauss law for magnetism.

∇ ·B = 0.

3. Fadaray Law.
∇×E =−∂B

∂ t
.

4. Ampère circulation law (with Maxwell correction.)

∇×B = µ0

(
J+ ε0

∂E
∂ t

)
.

where ε0 and µ0 are the electric and magnetic constants.
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Maxwell correction to Faraday’s law is critical in that it predicts
the existance of electromagnetic waves.

More precisely, if ρ = 0, then Maxwell equations are equivalent to
the system of equations:

∂ 2E
∂x2 +

∂ 2E
∂y2 +

∂ 2E
∂ z2 −

∂ 2E
∂ t2 = 0

and
∂ 2B
∂x2 +

∂ 2B
∂y2 +

∂ 2B
∂ z2 −

∂ 2B
∂ t2 = 0,

plus a condition relating E and B.
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Electromagnetic waves

Maxwell was able to solve his equations in the vacuum, and
predicted the existance of electromagnetic waves.

In particular, he was able to calculate the speed at which his
predicted electromagnetic waves should travel.

The value Maxwell obtained, using the known values at the time
of the constants ε0 and µ0, was essentially the same as the speed
of light as measured at that time.

Based on this observation, Maxwell predicted that light was just
an example of an electromagnetic wave.
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Maxwell predictions created considerable problems ammong the
physics community of the time. The main issues were:

1. On earth, waves always propagate through a medium, they
can’t exist in the vacuum.

2. Maxwell calculated the speed of the electromagnetic waves,
but this was the speed with respect to what exactly?

Trying to kill two birds with one stone, they proposed the
existance of an essentially indetectible substance called
luminiferous aether.

This was supposed to be the medium through which
electromagnetic waves propagated. The speed calculated by
Maxwell was then the speed of light with respect to this medium.
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The Michelson Morley experiment

So in 1887, Albert Michelson and Edwartd Morley designed an
experiment to measure the velocity of the earth with respect to
the surrounding aether.

The result however, was totally unexpected. The speed of light
was the same in every direction!
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Figure : Albert Einstein
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Space-time coordinates

To simplify calculations, from now on we will only consider
universes with one spatial dimension.

That is, we will consider events in the universe by a space
coordinate and a time coordinate.

Observe that if r(t) represents the position of a particle at time t,
then we can describe its position as a point in R2 using the
coordinates (t,r(t)).
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The Minkowski metric

Figure : Hermann Minkowski
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The Minkowski metric
Is it possible to define a concept of distance between different
events in the universe?

For example, we can say:“The homecoming fireworks were
lighted up last Friday at Schoellkopf Field.”

To express this event in coordinates we would need three spacial
coordinates and one temporal coordinate.

But if we ask about the distance between this moment and the
homecoming event, we only need two numbers: Schoellkopf Field
is half a mile from here, and it’s been four days since Friday.

Can we combine this 2 numbers to get a notion of “distance”
between this two events?
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It may seem natural to simply consider the time as another
coordinate and use the Pythagorean theorem to compute the
“distance” between events.

Unfortunately this is not very useful because the laws of physics
are not invariant under the action of SO(4,R).

For example, if we write Maxwell equations and then we
transform everything using an element of SO(4,R) we get an
equation that looks very different.
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This is clear if we look at the wave equation in one dimension:

∂ 2u
∂x2 −

∂ 2u
∂ t2 = 0.

Looking at this equation suggest a different way of calculating
the “distance” between 2 events.

Definition
Let v1 = (t1,x1) and v2 = (t2,x2) be two vectors in R2. We define
the Minkowski product of v1 and v2 by

v1 ◦ v2 = t1t2− x1x2.
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Definition
Let v1 = (t1,x1) and v2 = (t2,x2) be two vectors in R2. We define
the Minkowski product of v1 and v2 by

v1 ◦ v2 = t1t2− x1x2.

Using this inner product, we can define a new “norm” (or rather
its square) by

N(v)2 = v◦ v,

and using this norm we can define the Minkowski “metric”

d(v1,v2)
2 = N(v1− v2)

2.

Intro to special relativity Raul Gomez (gomez@cornell.edu)



3 Special relativity 3.2 The Minkowski metric 22/31

Definition
Let v1 = (t1,x1) and v2 = (t2,x2) be two vectors in R2. We define
the Minkowski product of v1 and v2 by

v1 ◦ v2 = t1t2− x1x2.

Using this inner product, we can define a new “norm” (or rather
its square) by

N(v)2 = v◦ v,

and using this norm we can define the Minkowski “metric”

d(v1,v2)
2 = N(v1− v2)

2.

Intro to special relativity Raul Gomez (gomez@cornell.edu)



3 Special relativity 3.2 The Minkowski metric 22/31

Definition
Let v1 = (t1,x1) and v2 = (t2,x2) be two vectors in R2. We define
the Minkowski product of v1 and v2 by

v1 ◦ v2 = t1t2− x1x2.

Using this inner product, we can define a new “norm” (or rather
its square) by

N(v)2 = v◦ v,

and using this norm we can define the Minkowski “metric”

d(v1,v2)
2 = N(v1− v2)

2.

Intro to special relativity Raul Gomez (gomez@cornell.edu)



3 Special relativity 3.2 The Minkowski metric 23/31

and using this norm we can define the Minkowski “metric”

d(v1,v2)
2 = N(v1− v2)

2.

The name “metric” here is a little misleading because the
number I’m getting on the right may very well be negative, in
which case, taking the square root is not really well defined.

However the Minkowski product of a vector in R2 with itself is
well defined and is a very useful quantity as we will see soon.
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Special relativity

The point of the Minkowski inner product is that Maxwell
equations (and in general the equations of physics) are preserved
under the action of SO(1,1).

That is, I can use SO(1,1) to change my reference frame and
still get the same physics laws.

As we will see shortly, this is extremely useful.
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Let’s start by considering the points in R2 such that v◦ v = 0.

This are called the light rays, precisely because they describe the
trajectory of light coming up from the origin.

Intro to special relativity Raul Gomez (gomez@cornell.edu)



3 Special relativity 3.3 Special relativity 25/31

Let’s start by considering the points in R2 such that v◦ v = 0.

This are called the light rays, precisely because they describe the
trajectory of light coming up from the origin.

Intro to special relativity Raul Gomez (gomez@cornell.edu)



3 Special relativity 3.3 Special relativity 25/31

Let’s start by considering the points in R2 such that v◦ v = 0.

This are called the light rays, precisely because they describe the
trajectory of light coming up from the origin.

Intro to special relativity Raul Gomez (gomez@cornell.edu)



3 Special relativity 3.3 Special relativity 26/31

The rest of the plane gets divided into two regions, the time-like
directions:

{v ∈ R2 |v◦ v > 0},

and the space-like directions:

{v ∈ R2 |v◦ v < 0}.
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Observe now that the set

{v ∈ R2 |v◦ v = 1},

describes an hyperbola. This are the points that, in a sense, are
at “distance” 1 from the origin.
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Now we will consider two particles, r1 and r2 traveling at
constant speed from the origin and whose graph in R2 are given
by the parametric equations: t 7→ (t,0), t 7→ (t coshα, t sinhα).
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If we transform this picture using the element

g(−α) =

[
coshα −sinhα

−sinhα coshα

]
,

we obtain:

Observe that this means that for both observers their relative
velocities are the same, and the speed of light is the same with
respect to both observers!
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How can this be possible?

This is because the events that occur at the “same time” depend
on the observer!
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We will try to ilustrate this phenomenom with the following
example:

Suppose that we have an observer that is traveling inside a ship,
and we have a second observer watching him through a window
in the coast.

There is a lamp in the middle of the room, and observer 1 turns
the lamp on.

For the first observer the light will reach all the walls in the room
at the same time.

However, the observer at the coast will see the light arriving to
the different walls at different times.
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