MATH 6210 HOMEWORK 6

1. Let X be a set, and let $\mathscr{C} \subset \mathscr{P}(X)$ be a σ -algebra generated by a collection of sets \mathscr{E} . Then \mathscr{C} is the union of the σ -algebras generated by \mathscr{F} as \mathscr{F} ranges over all countable subsets of \mathscr{E} . (Hint: Show that the latter object is a σ -algebra.)

2. If (X, \mathscr{C}, μ) is a measure space and $E, F \in \mathscr{C}$, then

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

3. Let (X, \mathscr{C}, μ) be a finite measure space. (That is, $\mu(X) < \infty$.) Given $E, F \in \mathscr{C}$ we define its symmetric difference to be the set $E\Delta F = (E \cap F^c) \cup (E^c \cap F)$.

a) If $E, F \in \mathscr{C}$ and $\mu(E\Delta F) = 0$, then $\mu(E) = \mu(F)$.

- **b)** We say that $E \sim F$ if $\mu(E\Delta F) = 0$; then \sim is an equivalence relation on \mathscr{C} .
- c) For $E, F \in \mathscr{C}$, define $\rho(E, F) = \mu(E\Delta F)$. Then, if $E, F, G \in \mathscr{C}$,

$$\rho(E,G) \le \rho(E,F) + \rho(F,G),$$

and hence ρ defines a metric on the space \mathscr{C}/\sim of equivalence classes.

4. Let \mathscr{M} be the σ -algebra of Lebesgue measurable sets in \mathbb{R} . If $E \in \mathscr{M}$ and $\mu(E) > 0$ (where μ is the Lebesgue measure) then for any $\alpha < 1$ there is an open interval I such that

$$\mu(E \cap I) > \alpha \mu(I).$$

5. If $E \in \mathcal{M}$ and $\mu(E) > 0$, the set

$$E - E = \{x - y : x, y \in E\}$$

contains an interval centered at 0. (Hint: If I is as in exercise 4 with $\alpha > \frac{3}{4}$, then E - E contains the open interval $(-\frac{1}{2}\mu(I), \frac{1}{2}\mu(I))$