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Abstract

Cheetahs and beetles run, dolphins and salmon swim, and bees and
birds fly with grace and economy surpassing our technology. Evolu-
tion has shaped the breathtaking abilities of animals, leaving us the
challenge of reconstructing their targets of control and mechanisms
of dexterity. In this review we explore a corner of this fascinating
world. We describe mathematical models for legged animal locomo-
tion, focusing on rapidly running insects, and highlighting achieve-
ments and challenges that remain. Newtonian body-limb dynamics are
most naturally formulated as piecewise-holonomic rigid body mechan-
ical systems, whose constraints change as legs touch down or lift off.
Central pattern generators and proprioceptive sensing require models
of spiking neurons, and simplified phase oscillator descriptions of en-
sembles of them. A full neuro-mechanical model of a running animal
requires integration of these elements, along with proprioceptive feed-
back and models of goal-oriented sensing, planning and learning. We
outline relevant background material from neurobiology and biome-
chanics, explain key properties of the hybrid dynamical systems that
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underlie legged locomotion models, and provide numerous examples of
such models, from the simplest, completely soluble ‘peg-leg walker’ to
complex neuro-muscular subsystems that are yet to be assembled into
models of behaving animals.

1 Introduction

The question of how animals move may seem a simple one. They push
against the world, with legs, fins, tails, wings or whole bodies, and the rest
is Newton’s third and second laws. A little reflection reveals, however, that
locomotion, like other animal behaviors, emerges from complex interactions
among animals’ neural, sensory and motor systems, their muscle-body dy-
namics, and their environments [DFF+00]. This has led to three broad
approaches to locomotion. Neurobiology emphasizes studies of central pat-
tern generators (CPGs): networks of neurons in spinal cords of vertebrates
and invertebrate thoracic ganglia, capable of generating muscular activity
in the absence of sensory feedback (e.g. [Get88, CRE88, Pea00]). CPGs
are typically studied in preparations isolated in vitro, with sensory inputs
and higher brain ‘commands’ removed [CRE88, Gri99], and sometimes in
neonatal animals. A related, reflex-driven approach concentrates on the
role of proprioceptive1 feedback in shaping locomotory patterns [Pea93].
Finally, biomechanical studies focus on body-limb-environment dynamics
(e.g. [Ale03]) and usually ignore neural detail. No single approach can en-
compass the whole problem, although each has amassed vast amounts of
data.

We believe that mathematical models, at various levels and complexities,
can play a critical role in synthesizing parts of these data by developing uni-
fied neuromechanical descriptions of locomotive behavior, and that in this
exercise they can guide the understanding of other biological systems, as well
as bio-inspired robots. This review introduces the general problem, and, tak-
ing the specific case of rapidly running insects, describes models of varying
complexity, outlines analyses of their behavior, compares their predictions
with experimental data, and identifies a number of specific mathematical
questions and challenges.

Guided by previous experience with both mathematical and physical
(robot) models, we postulate that successful locomotion depends upon a hi-
erarchical family of control loops. At the lowest end of the neuromechanical

1Proprioceptive: activated by, related to, or being stimuli produced within the organism
(as by movement or tension in its own tissues) [Gov85]; thus: sensing of the body, as
opposed to extreoceptive (sensing of the external environment.
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hierarchy, we hypothesize the primacy of mechanical feedback or preflexes2:
neural clock-excited and tuned muscles acting through chosen skeletal pos-
tures. Here biomechanical models provide the basic description, and we
are able to get quite far using simple models in which legs are represented
as passively sprung, massless links. Acting above and in concert with this
bottom layer, we hypothesize sensory, feedback-driven reflexes that further
increase an animal’s stability and dexterity, by suitably adjusting the CPG
and motoneuron outputs. Here modelling of neurons, neural circuitry and
muscles is central. At the highest level, goal-oriented behaviors such as
foraging or predator-avoidance employ environmental sensing and operate
on a stride-to-stride timescale to ‘direct’ the animal’s path. More abstract
notions of connectionist neural networks and information and learning the-
ory are appropriate at this level, which is perhaps the least well-developed
mathematically.

Some personal history may help to set the scene. This paper, and
some of our recent work on which it draws, has its origins in a remark-
able IMA workshop on gait patterns and symmetry held in June 1998,
that brought together biologists, engineers and mathematicians. At that
workshop, one of us (RJF) pointed out that insects can run stably over
rough ground at speeds high enough to challenge the ability of proprio-
ceptive sensing and neural reflexes to respond to perturbations ‘within a
stride.’ Motivated by his group’s experiments on, and modeling of, the
cockroach Blaberus discoidalis [FT90, FT91b, TBF94, KF99], and by the
suggestion of Brown and Loeb that, in rapid movements, ‘detailed’ neural
feedback (reflexes) might be partially or wholly replaced by largely me-
chanical feedback (preflexes) [BSL95, LBC99, BL00], we formulated simple
mechanical models within which such hypotheses could be made precise and
testable. Using these models, examples of which are described in §5 below,
we confirmed the preflex hypothesis by showing that a simple, energetically-
conservative model with passive elastic legs can produce asymptotically sta-
ble gaits [SH00b, SH00a, SGR+02]. This prompted ‘controlled impulse’ per-
turbation experiments on rapidly running cockroaches [JF02] that strongly
support the preflex hypothesis in Blaberus, as well as our current develop-
ment of more realistic models incorporating actuated muscles.

Workshop discussions in which we all took part also inspired the creation
of RHex, a six-legged robot whose unprecedented mobility suggests that en-

2Brown and Loeb [BL00, Section 3] define a preflex as ‘the zero-delay, intrinsic re-
sponse of a neuromusculoskeletal system to a perturbation’ and they note that they are
programmable via preselection of muscle activation.
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gineers can aspire to achieving the capabilities of such fabulous runners as
the humble cockroach [SBK01]. In turn, since we know (more or less) their
ingredients, such robots can help us better understand the animals that in-
spired them. Mathematical models allow us to translate between biology
and engineering, and our ultimate goal is to produce a model of a ‘behav-
ing insect’ that can also inform the design of novel legged machines. More
specifically, we envisage a range of models, of varying complexity and ana-
lytical tractability, that will allow us to pose and probe, via simulation and
physical machine and animal experimentation, the mechanisms of locomo-
tive control.

Biology is a broad and rich science, collectively producing vast amounts
of data that may seem overwhelming to the modeller. (In [Ree04], Michael
Reed provides a beautifully clear perspective directed to mathematicians
in general, sketching some of the difficulties and opportunities.) Our ear-
lier work has nonetheless convinced us that simple models, which, in an
exercise of creative neglect, ignore or simplify many of these data, can be
invaluable in uncovering basic principles. We call such a model, containing
the smallest number of variables and parameters that exhibits a behavior
of interest, a template [FK99]. In robotics applications, we hypothesize
the template as an attracting invariant submanifold on which the restricted
dynamics takes a form prescribed to solve the specific task at hand (e.g.
[BK90, RK94, NFK00, WGK03]). In both robots and animals, we imagine
that templates are composed [KK02] to solve different tasks in various ways
by a supervisory (CNS) controller. The spring-loaded inverted pendulum
(SLIP), introduced in §2.2 and described in more detail in §4.4, is a classical
locomotion template that represents the center of mass behavior of diverse
legged animals [CHT77, BF93].

Most of the models developed below are templates, but we shall describe
at least some of the ingredients of a more complete and biologically-realistic
model: an anchor in the terminology of [FK99]. A model representing the
neural circuitry of a CPG, motoneurons, muscles, individual limb segments
and joints, and ground contact effects, would exemplify an anchor. In spite
of such complexity, it is a fact that, under suitable conditions, animals with
diverse morphologies and leg numbers, and many mechanical and yet more
neural degrees of freedom, run as if their mass centers were following SLIP
dynamics [CHT77, BF93, FF00]. Part of our challenge is to explain how
their preflex and reflex control circuits make their complex anchors appear
to behave like this simple template, and to understand why nature should
exercise such a mathematically attractive reduction of complexity: a process
sketched in Fig. 1. To whet the appetites of dynamical systems aficionados:
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Figure 1: Templates and anchors. Schematic adapted from Full [?].

reduction to a center or inertial manifold does not alone explain this, but
such ideas are central to the development of these ideas in robotics and also
seem likely to play a helpful role in elucidating biological principles.

Legged locomotion appears to be more tractable than swimming or fly-
ing, especially at moderate or high Reynolds numbers, since discrete reac-
tion forces from a (relatively) rigid substrate are involved, rather than fluid
forces requiring integration of the unsteady Navier-Stokes equations (but
see the comments on foot-contact forces in §2.3). Nonetheless, even at the
simplest level, legged locomotion models have unusual features. Idealizing
to a rigid body with massless elastic legs, or to a linkage of rigid elements
with torsional springs at the joints, we produce a mechanical system, but
these systems are not classical. As feet touch down and lift off, the con-
straints defining the Lagrangians change. The resulting ordinary differen-
tial equations of motion describe piecewise-holonomic mechanical systems,
examples of more general hybrid dynamical systems [BGM93], in which evo-
lution switches among a finite set of vector fields, driven by event-related
rules determined by the location of solutions in phase space. We shall meet
our first example in §2.1, and we discuss some properties of these systems
in more detail in §§4-5.

This paper’s contents are as follows. §2 reviews earlier work on loco-
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motion and movement modeling, introducing relevant mechanical, biome-
chanical, neurobiological, and robotics background, and §3 summarises key
experimental work on walking and running animals that inspires and in-
forms previous and current modeling efforts. In §4 we digress to describe an
important class of hybrid dynamical systems that are central to locomotion
models, and we describe some features of their analytical description, and
numerical issues that arise in simulations, ending with a sketch of the clas-
sical SLIP model. §5 concentrates on models of horizontal plane dynamics
of sprawled-posture animals, insects in particular. We start with a simple
model of passive bipedal walking, special cases of which are (almost) soluble
in closed form. We successively add more realistic features, culminating in
our current hexapedal models that include CPG, motoneuron and muscle
models, and demonstrating throughout that the basic features of stable pe-
riodic gaits, possessed by the simplest templates, persist. We summarise
and outline some major challenges in §6.

We shall draw on a broad range of ‘whole animal’ integrative biology,
biomechanics, and neurobiology, as well as control and dynamical systems
theory, including perturbation methods. We introduce relevant ideas from
these disparate fields as they are needed, mostly via simple explicit examples.
Unlike genomics, locomotion studies are relatively mature: recent progress
in neurophysiology, biomechanics, and nonlinear control and systems theory
has poised us to unlock how complex, dynamical, musculosketelal systems
create effective behaviors, but a substantial task of synthesis remains. We
believe that the language and methods of dynamical systems theory in par-
ticular, and mathematics in general, can assist that synthesis. Thus, our
main goal is to introduce an emerging field in biology to applied mathemati-
cians, drawing on relatively simple models both as examples of successful
approaches and sources of interesting mathematical problems, some of which
we highlight as Questions. Our presentation therefore differs from that of
many Surveys and Reviews appearing in this journal in that we focus on
modelling issues rather than mathematical methods per se. The models are,
of course, formulated with the tools available for their analysis in mind, we
sketch results that these tools afford, and we provide an extensive bibliog-
raphy wherein mathematical results and details may be found.

We hope that this article will encourage the sort of multi-disciplinary
collaboration that we – a biologist, two applied mathematicians, and an
engineer – have enjoyed over the past five years, and that it will stimulate
others to go beyond our own efforts.
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2 Three traditions: biomechanics, neurobiology

and robotics

In developing our initial locomotion models, we discovered some relevant
parts of three vast literatures. The following selective survey may assist the
reader who wishes to acquire working background knowledge.

2.1 Holonomic, nonholonomic, and piecewise-holonomic me-

chanics

Before introducing a key locomotion model in §2.2, the SLIP, we recall some
basic facts concerning conservative mechanical and Hamiltonian systems.
Holonomically constrained mechanical systems, such as linkages and rigid
bodies, admit canonical Lagrangian and Hamiltonian descriptions [Gol80].
(Holonomic constraints are equalities expressed entirely in terms of config-
uration – position – variables; nonholonomic constraints involve velocities
in an essential – ‘non-integrable’ – manner, or are expressed via inequali-
ties). The symplectic phase spaces [Arn78] of holonomic systems strongly
constrain the possible stability types of fixed points and periodic orbits:
eigenvalues of the linearized ODEs occur in pairs or quartets [Arn78, AM85]:
if λ is an eigenvalue, then so are −λ, λ̄ and −λ̄, where ·̄ denotes complex
conjugate. Thus, any ‘stable’ eigenvalue in the left-hand complex half-plane
has an ‘unstable’ partner in the right-hand half-plane. Similar results hold
for symplectic (Poincaré) mappings obtained by linearizing around closed
orbits: an eigenvalue λ within the unit circle implies a partner 1/λ out-
side. Hence holonomic, conservative systems can at best exhibit neutral
(Liapunov) stability.

2.1.1 Nonholonomic constraints and partial asymptotic stability

Nonholonomic constraints, in contrast, can lead to partial asymptotic stabil-
ity. The Chaplygin sled [NF72] is an instructive example that also introduces
other ideas that will recur. Consider an ‘ice-boarder’: a two-dimensional
rigid body of mass m and moment of inertia I, free to move on a friction-
less horizontal plane, equipped with a skate blade C, at a distance ` from
the center of mass (COM) G, that exerts a force normal to the body axis:
Fig. 2(a). The velocity vector at C is thereby constrained to lie along the
body axis (vC = vê2), although the body may turn about this point and v
may take either sign (the skate can reverse direction). The angle θ specifies
orientation in the inertial plane and the absolute velocity of G in terms of
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Figure 2: (a) The Chaplygin sled and (b) a piecewise-holonomic pegleg
walker. Schematic adapted from Ruina [Rui98]. Fig needs fixing, body
coord basis vectors renaming, etc.!!!

the body coordinate system is vG = v ê2 − `θ̇ ê1.
Using the relations ˙̂e1 = θ̇ ê2, ˙̂e2 = −θ̇ ê1, we balance first linear mo-

mentum:
F = Fc ê1 = m(−θ̇v − `θ̈) ê1 +m(v̇ − `θ̇2) ê2 ; (1)

and then angular momentum about C ′, the non-accelerating point in an
inertial frame instantaneously coincident with C:

0 = m`(vθ̇ + `θ̈) + Iθ̈ . (2)

These three (scalar) equations determine the constraint force and the equa-
tions of motion:

Fc = −m(θ̇v + `θ̈) , (3a)

ṡ = v , θ̇ = ω , (3b)

v̇ = lω2 , ω̇ =
−m`vω
m`2 + I

, (3c)

where s denotes arclength (distance) travelled by the skate and ω is the
body angular velocity. (Equations (3) can be derived in a Lagrangian frame-
work [BKMR96], but the Newtonian force and moment balances given here
appear simpler.)

Eqns. (3) have a three-parameter family of constant speed straight-line
motion solutions: q̄ = {s̄+ v̄t, θ̄, v̄, 0}T . Linearizing (3) at q̄ yields eigenval-

ues λ1−3 = 0 and λ4 = −
(

m`v̄
m`2+I

)

. The first three correspond to a family
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Figure 3: A phase portrait for the Chaplygin sled.

of solutions parameterized by starting point s̄, velocity v̄ and heading θ̄; λ4
indicates asymptotic stability for `v̄ > 0 and instability for `v̄ < 0: stable
motions require that the mass center preceed the skate.

The global behavior is perhaps best appreciated via a phase portrait in
the reduced phase space (v, ω) of linear and angular velocity: Fig. 3. Noting
that total kinetic energy,

T =
mv2

2
+
Iω2

2
, (4)

is conserved (since the constraint force Fc ê1 is normal to vC and does no
work), solutions of equations (3c) lie on the (elliptical) level sets of (4).
The direction of the vector field, towards positive v, follows from the first
of (3c). Explicit solutions as functions of time may be found in [CH99].
Taking ` > 0 (skate behind COM), the line of fixed points (v̄, 0) with v̄ < 0
are unstable, while those with v̄ > 0 are stable. Typical solutions start
with nonzero angular velocity, which may further grow, but which eventually
decays exponentially as the solution approaches a fixed point on the positive
v-axis. Angular momentum about the mass center G is not conserved since
the constraint force exerts moments about G.

Fig. 3 also shows that the v̄ > 0 equilibria are only partially asymptot-
ically stable; as noted above, they belong to a continuum of such equilib-
ria and the eigenvalue with eigenvector in the v̄ direction is zero. Indeed,
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the system is invariant under the group SE(2) of planar translations and
rotations, and COM position xG = (x, y) and orientation θ are cyclic co-
ordinates [Gol80]3. This accounts for the other two directions of neutral
stability: s̄ and θ̄. Such translation and rotation invariance will be a recur-
ring theme in our analyses of horizontal plane motions.

The full three-degree-of-freedom dynamics may be reconstructed from
solutions (v(t), ω(t)) of the reduced system (3c) by integration of (3b) to
determine (s(t), θ(t)), followed by integration of

ẋ = −v sin θ , ẏ = −v cos θ (5)

to determine the path in inertial space.

2.1.2 Piecewise-holonomic constraints: peg-leg walking

While the details of foot contact and joint kinematics, involving friction,
deformation, and possible slipping, are extremely complex and poorly un-
derstood, one may idealize limb-body dynamics within a stance phase as
a holonomically constrained system. As stance legs lift off and swing legs
touch down the constraint geometry changes; hence, legged locomotion mod-
els are piecewise-holonomic mechanical systems. Here we decribe perhaps
the simplest example of such a system.

Ruina [Rui98] devised a discrete analog of Chaplygin’s sled, in which the
skate is replaced by a peg, fixed in the inertial frame and moving along a
slot of length d, whose front end lies a distance a behind the COM. When
it reaches one end of the slot, it is removed and instantly replaced at the
other. Fig. 2(b) shows the geometry: the coordinate system of 2(a) is re-
tained. Ruina was primarily interested in the limit in which d → 0 and
the system approaches the continuous Chaplygin sled, but we noticed that
the device constitutes a rudimentary and completely soluble, single-leg lo-
comotion model: a peg-leg walker [CH99, SH00b]. The stance phase occurs
while the peg is fixed, and (coincident) liftoff and touchdown correspond
to peg removal and insertion. During stance the peg may slide freely, as
in Ruina’s example [Rui98], move under prescribed forces or displacements
l(t), or move in response to an attached spring [SH00b]. Here we take the
simplest case, supposing that l(t) is prescribed and increases monotonically
(the peg moves backward relative to the body, thrusting it forward). The
models of §§4-5 will include passive springs and active muscle forces; also
see [SH00b, §2].

3However, Noether’s theorem [Arn78] does not apply here: due to the constraint force
neither linear nor angular momenta are conserved
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Pivoting about the (fixed) peg, the body’s kinetic energy may be written
as

T =
1

2
m(l̇2 + l2θ̇2) +

1

2
Iθ̇2 , (6)

so the Lagrangian is simply L = T , and since l(t) is prescribed, there is
but one degree of freedom. Moreover, θ is a cyclic variable and Lagrange’s
equation simply states that

pθ =
∂L

∂θ̇
= (ml2 + I) θ̇ = const. : (7)

angular momentum is conserved about P during each stride. However, at
peg insertion, pθ may suffer a jump due to the resulting angular impulse.
Indeed, letting θ̇(n−) and θ̇(n+) denote angular velocities at the end of
the (n− 1)’st and beginning of the n’th strides, and performing an angular
momentum balance about the new peg position at which the impulsive force
acts, we obtain the angular momentum in the n’th stride as:

pθn = (ma2 + I) θ̇(n+) = ma(a+ d) θ̇(n−) + I θ̇(n−) .

Here the last expression includes the moment of linear momentum of the
mass center at the end of the (n−1)’st stride, computed about the new peg
position: a×m(a+ d) θ̇(n−). Replacing angular velocities by momenta via
(7), this gives

pθn =

[

ma(a+ d) + I

m(a+ d)2 + I

]

pθn−1
def
= Apθn−1 . (8)

Thus, angular momentum changes from stride to stride, unless pθ = 0, in
which case the body is moving in a straight line along its axis. The change
in body angle during the n’th stride is obtained by integrating (7):

θ((n+ 1)−) = θ(n+) + pθn

∫ τ

0

dt

(ml2(t) + I)

def
= θ(n+) +Bpθn , (9)

where τ is the stride duration.
Equations (8-9) form the (linear) stride-to-stride Poincaré map:

(

θn+1

pθn+1

)

=

[

1 B
0 A

](

θn
pθn

)

, (10)

whose eigenvalues are simply the diagonal matrix elements. Echoing the
ODE example of equations (3c) above, with its zero eigenvalue, one eigen-
value is unity, corresponding to rotational invariance, and asymptotic be-
havior is determined by the second eigenvalue A: if |A| < 1, pθn → 0 as
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n→∞ and θ approaches a constant value: the body tends towards motion
in a straight line at average velocity v = 1

τ

∫ τ
0 l̇(t)dt = d, with final orienta-

tion θ determined by the initial data. From (8), A < 1 for all I,m, d > 0
and a > −d, and A > −1 provided that I > md2/16; for a < −d, A > 1.
Hence, if the back of the slot lies behind G and the body shape and mass
distribution are ‘reasonable’, we have |A| < 1 (e.g., a uniform elliptical body
with major and minor axes b, c, has I = m(b2+c2)/16 and b > d is necessary
to accommodate the slot, implying that I > md2/16).

Unlike the original Chaplygin sled, this discrete system is not conser-
vative: energy is lost due to impacts at peg insertion (except in straight
line motion), and energy may be added or removed by the prescribed dis-
placement l(t). However, regardless of this, the angular momentum changes
induced by peg insertion determine stability with respect to angular veloc-
ity, and, if |A| < 1, the discrete sled asymptotically ‘runs straight.’ We shall
see similar behavior in the energetically conservative models of §4.4 and
§5.1. Also, here the stance dynamics is trivially summarized by conserva-
tion of angular momentum (7), and the stride-to-stride angular momentum
mapping (8) determines stability. In more complex models, combinations
of continuous dynamics within stance and touchdown/liftoff switching or
impact maps are involved, resulting in higher-dimensional Poincaré maps,
e.g. [McG90, GCRC98] and see §5.

2.2 Mechanical models and legged machines

As noted in the Introduction, diverse species that differ in leg number and
posture, while running fast, exhibit center of mass (COM) motions approx-
imating that of a spring-loaded inverted pendulum (SLIP) in the sagittal
(vertical) plane [Bli89, MC90, BF93, FF00]. The same model also describes
the gross dynamics of legged machines such as RHex [AMK+01, AKH04a],
and as we shall show in §5, a second template model inspired by SLIP, the
lateral leg spring (LLS) [SH00b, SGR+02] accounts equally well for horizon-
tal plane dynamics. We shall briefly describe the SLIP and summarise some
of the relevant mathematical work on it, returning to it in more detail in §4.
Futher details of the biological data summarised below can be found in §3.

At low speeds animals walk by vaulting over stiff legs acting like in-
verted pendula, exchanging potenital and kinetic energy. At faster speeds,
they bounce like pogo sticks, exchanging potenital and kinetic energy with
elastic strain energy. In running humans, dogs, lizards, cockroaches and
even centipedes, the COM falls to its lowest position at midstance as if
compressing a virtual or effective leg spring, and rebounds during the sec-
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Figure 4: Center of mass dynamics for running animals with two to eight
legs. Groups of legs act in concert so that the runner is an effective biped,
and mass center falls to its lowest point at midstride. Stance legs shown
shaded, with qualitative vertical and fore-aft force patterns at bottom cen-
ter. The spring-loaded inverted pendulum (SLIP), which describes these
dynamics, is shown in the center of the figure. Summarized and adapted
from papers cited below each panel. Remove 3B, Fix refs in standard
form!
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ond half of the step as if recovering stored elastic energy. In species with
more than a pair of legs, the virtual spring represents the set of legs on
the ground in each stance phase: typically two in quadrupeds, three in
hexapods such as insects, and four in octopods such as crabs [Ful89, FF00]:
Fig 4. This prompts the idealized mechanical model for motion in the sag-
gital (fore-aft/vertical) plane shown in the center of Fig 4, consisting of
a massive body contacting the ground during stance via a massless elastic
spring-leg [Bli89, MC90] (a point mass is sometimes added at the foot). The
SLIP generalizes an earlier, simpler model: a rigid inverted pendulum, the
‘compass-walker’ [MM80, MM81], cf. [McM84], which is more appropiate to
low-speed walking. In running, a full stride divides into a stance phase, with
one foot on the ground, and an entirely airborne flight phase. The model
employs the same single leg to represent both left and right stance support
legs.

Although the SLIP has appeared widely in the locomotion literature,
we have found precise descriptions and mathematical analyses elusive. This
prompted some of our own studies [SK97, Sch98, SK00], including a re-
cent paper in which we proved that the ‘uncontrolled’ SLIP has stable
gaits [GAHK03]. This fact was simultaneously, and independently, dis-
covered via numerical simulation by Seyfarth et al. [SGGB02], who also
matched SLIP parameters to human runners and proposed control algo-
rithms [SG02, SGBH02, SGH03]. We shall therefore spend some time set-
ting up this model and sketching its analysis in §4.4 both to exemplify issues
involved in integrating hybrid dynamical systems, and to prepare for more
detailed accounts of LLS models in §5. Here we informally review the main
ideas.

In flight, the equations of ballistic motion are trivially integrated to yield
the parabolic COM trajectory, assuming that resistance forces are negligible
at the speeds of interest. Moreover, as we show in §4.4, if the spring force
developed in the leg dominates gravitational forces during stance, we may
neglect the latter and reduce the two-degree-of-freedom point mass SLIP
to a single-degree-of-freedom system that may also be integrated in closed
form. However, even in this approximation, the quadrature integrals typ-
ically yield special functions that are difficult to use, and asymptotic or
numerical evaluations are required [SK00].

No matter how the stance phase trajectories are obtained, they must
be matched to appropriate flight phase trajectories to generate a full stride
Poincaré return map P . One then seeks fixed and periodic points of P which
correspond to steady gaits, and investigates their bifurcations and stability.
It is often possible to invoke bilateral (left-right) symmetry; for example in
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seeking a symmetric period one gait of a biped modeled by a SLIP, it suffices
to compute a fixed point of P , since although P includes only one stance
phase, both right and left phases satisfy identical equations. However, there
may be additional reflection- and time-shift-symmetric periodic orbits that
would correspond to period two points of P .

More realistic models of legged locomotion, with extended body and
limb components requiring rotational as well as translational degrees of
freedom, generally demand entirely numerical solution, and even deriving
their Lagrangians may be a complex procedure, requiring intensive com-
puter algebra. Nonetheless, almost fifteen years ago McGeer [McG90] de-
signed, built and (with numerical assistance) analysed passive walking ma-
chines with rigid links connected by knee joints, in which the dynamics
was restricted to the sagittal plane. More recently, Ruina and his col-
leagues have carried out rather complete studies of simplified models of
these machines [CCR97, GCRC98], as well as of a three-dimensional ver-
sion, which they have shown is dynamically stable but statically unsta-
ble [CR98, CGMR01].

In the robotics literature there are very many numerical and a growing
number of empirical studies of legged locomotion, incorporating varying de-
grees of actuation and sensory feedback to achieve increasingly useful gaits.
Slow walking machines whose limited kinetic energies cannot undermine
their quasi-static stability (i.e., with gaits designed to insure that the mass
center always projects within the convex hull of a tripod of legs) have been
successfully deployed in outdoor settings for years [WV84]. The first dy-
namically stable machines were SLIP devices built by Raibert two decades
ago [Rai86], but their complexity limited initial stability analyses to sin-
gle degree-of-freedom simplifications [KB91]. The more detailed analysis
of SLIP stability that we will pursue in §4.1 is directly relevant to these
machines. More recently, in laboratory settings, completely actuated and
sensed mechanisms have realised dynamical gaits whose stability can be es-
tablished and tuned analytically [WGK03], using inverse dynamics control4.
However, such ideas are are likely to have limited relevance to rapid run-
ning, since they require a very high degree of control authority. In contrast,
our ‘low-affordance’ controlled robot RHex, introduced in §1, is the first
autonomous, dynamically-stable, legged machine to successfully run over
rugged and broken outdoor terrain [SBK01].

4Inverse dynamics employs high power joint actuators to inject torques computed as
functions of the complete sensed state, together with an accurate kinematic and dynamical
model and high speed computation to cancel the natural dynamics and replace them with
more analytically-tractable terms designed to yield desired closed loop behavior.
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Extensions of the analysis introduced in §4.2 are relevant to RHex’s be-
havior [AKH04b, AKH04a], but a gulf remains between the performance
we can elicit empirically and what mathematical analyses or numerical sim-
ulations can explain. Modeling is still too crude to offer detailed design
insights for dynamically stable autonomous machines in physically interest-
ing settings. For example, in even the most anchored models, complicated
natural foot-ground contacts are typically idealised as frictionless pin joints
or smooth surfaces that roll without slipping. Similarly, in the models cited
above and later in this paper, motion typically occurs over idealized hori-
zontal or uniformly-sloping flat terrain.

Accounting for inevitable foot slippage and loss of contact on level ground
is necessary for simulations relevant to tuning physical robot controls [SK03],
but far from sufficient for gaining predictive insight into the likely behavior
of real robots travelling on rough terrain. It is still not even clear which
details of internal leg and actuator mechanics must be included in order
to achieve predictive correspondence with the physical world. For exam-
ple, numerical studies of more realistically underactuated and incompletely
sensed autonomous runners, similar to RHex, fail to predict gait stability
even in the laboratory, if motor torque and joint compliance models are
omitted [PSB04]. Modeling foot contacts over more complex topography
in a manner that is computationally-feasible and physically-revealing is an
active area of mechanics research [Wri02] that does not yet seem ripe for
exploitation in robot controller design, much less amenable to mathematical
analysis. In any case, since the bulk of this paper is confined to template
models such as the SLIP, we shall largely ignore these issues.

We regard the SLIP and similar templates as passive systems, since
energy is neither supplied nor dissipated, although in practice some effort
must be expended to repoint the leg during flight. In the case of McGeer’s
and Ruina’s walkers, energy lost in foot impacts and friction is replaced by
gravitational energy supplied as the machine moves down a slight incline.
As noted above, more aggressively active hopping robots have been built
by Raibert and colleagues [Rai86, KB91]. In that work, however, it was
generally assumed that state variable feedback would be needed, not just
to replace lost energy, but to achieve stable motions at all. The studies
of [SGGB02] and [GAHK03], summarized above, and a recent numerical
study of an actuated leg-body linkage [MLBS02], suggest that this is not
necessary.

The nature of directly sensed information required for stabilization –
the so-called ‘static output feedback stabilization’ problem – is a traditional
question of acknowledged importance in control theory that is in general
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algorithmically intractable even for linear, time-invariant dynamical sys-
tems [BT97]. In the very low dimensional setting of present interest, where
algorithmic issues hold less sway, two complications still impede the cor-
responding local analysis. First, the representation of physical sensors in
abstracted SLIP models does not seem to admit an obvious form, so that
alternative ‘output maps’ relative to which stabilizability might nominally
be assessed are missing. Second, neither the hybrid Poincaré map nor even
its Jacobian matrix (respecting which the local stabilizability properties are
computed) can be derived in closed form. We have recently been able to
show [AKH04b] that deadbeat stabilization is impossible in the absence of
an inertial frame sensor, but the question of sensory burden required for
SLIP stabilization remains open.

Nonetheless, the SLIP is a useful model on which to build, and so we close
this section by summarizing the common ground among animals, legged ma-
chines, and SLIP in Fig. 5, which also introduces the symbols for neural and
mechanical oscillators that we shall use again below. While the sources and
mechanisms of leg movements range from CPG circuits, motoneurons and
muscles to rotary motors synchronised by proportional derivative controllers,
the net behavior of the body and coordinated groups of legs in both animals
and legged machines approximates a mass bouncing on a passive spring.

2.3 Neural circuitry and central pattern generators

Animal locomotion is not, of course, a passive mechanical activity. Muscles
supply energy lost to dissipation and foot impacts; they may also remove
energy: retarding and managing inertial motions (e.g. in downhill walking),
or in agonist-antagonist phasic relationships, e.g. [FSAJ98]. The timing of
muscular contractions, driven by a central pattern generator, shapes overall
motions [ADO97, Pea00, Mar00a], but in both vertebrates [CRE88, Swi02]
and invertebrates [ABGB01], motor patterns arise through coordinated in-
teraction of distributed, reconfigurable [Mar00b] neural processing units in-
corporating proprioceptive and environmental feedback and goal-oriented
‘commands.’

Whereas classical physics can guide us through the landscape of mechan-
ical locomotion models as reviewed in §2.1-2.2, there is no obvious recourse
to first principles in the thicket of neural modeling. Rather, one must choose
an appropriate descriptive level and adopt a suitable formal representation,
often phenomenological in nature. In this section we introduce models at
two different levels that address the rhythm generation, coordination and
control behaviors to be reviewed in §2.4 and taken up again in technical
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Figure 5: The spring-loaded inverted pendulum (SLIP) as a model for the
center of mass dynamics of animals and legged machines. Left panel shows
the cockroach Blaberus discoidalis with schematic diagrams of thoracic gan-
glia, containing the central pattern generator (CPG), legs and muscles. Cen-
tral panel shows the robot RHex, with motor driven springy legs, and right
panel shows SLIP. Single circles denote neural oscillators or ‘clocks,’ double
circles denote mechanical oscillators. Lower panels show typical vertical and
fore-aft forces experienced during rapid running. Remove ‘Somewhere
...’ !
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detail in §5.

2.3.1 Single neuron models and phase reduction

Neurons are electrically active cells that maintain a potential difference
across their membranes, modulated by the transport of charged ions through
gated channels in the membrane. They fire action potentials (spikes), both
spontaneously and in response to external inputs, and they communicate via
chemical synapses and direct electrical contact. Neurons admit descriptions
at multiple levels. They are spatially complex, with extensive dendritic trees
and axonal processes. Synaptic transmission involves release of neurotrans-
mitter molecules from the presynaptic cell, their diffusion across distributed
synaptic clefts, and complex receptor biochemistry within the postsynaptic
cell. Texts such as [JW95, DA01] provide extensive backgounds on experi-
mental and theoretical neuroscience.

These complexities pose wonderful mathematical challenges, but here
they will be subsumed into the single compartment ODE description pio-
neered by Hodgkin and Huxley [HH52]. This assumes spatial homogeneity
of membrane voltage within the cell, and treats the distributed membrane
transport processes collectively as ionic currents, determined via gating vari-
ables that describe the fraction of open channels. See [Abb94, KS98] for good
introductions to such models, which take the form:

Cv̇ = −Iion(v, w1, . . . , wn, c) + Iext(t) (11a)

ẇi =
γi
τi(v)

(wi∞(v)− wi) ; i = 1, . . . , N. (11b)

Equation (11a) describes the voltage dynamics, with C denoting the cell
membrane capacitance, Iion the multiple ionic currents, and Iext(t) synaptic
and external inputs. Equations (11b) describe the dynamics of the gating
variables wi, each of which represents the fraction of open channels of type
i, and γi is a positive temperature-like parameter. At steady state, gating
variables approach voltage-dependent limits wi∞(v), usually described by
sigmoidal functions:

wi∞(v; ki0 , vith) =
1

1 + e−ki0 (v−vith )
, (12)

where ki0 determines the steepness of the transition occurring at a threshold
potential vith . Gating variables can be either activating (ki0 > 0), with
wi∞ ≈ 1 for depolarized voltages v > vith and wi∞ ≈ 0 for hyperpolarized
levels v < vith , or inactivating (ki0 < 0), with wi∞ ≈ 1 when hyperpolarised

19



and wi∞ ≈ 0 when depolarised. The time scale τi is generally described by
a voltage-dependent function of the form:

τi(v; ki0 , vith) = sech (ki0(v − vith)) . (13)

The term Iion in (11a) is the sum of individual ionic currents Iα, each of
which takes the form

Iα(v,w) = ḡαw
a
i w

b
j (v − Eα) , (14)

where Eα is a (Nernstian) reversal potential, ḡα is the maximal conductance
for all channels open, and the exponents a, b can be thought of as repre-
senting the number of subunits within a single channel necessary to open
it. Hodgkin and Huxley’s model [HH52, KS98] of the giant axon of squid
included a sodium current with both activating and inactivating gating vari-
ables (m,h) and a potassium current with an activating variable alone (n),
and they fitted sigmoids of the form (12) to space-clamped experimental
data. Many other currents, including calcium, chloride, calcium-activated
potassium, etc. have since been identified and fitted, and a linear leakage
current IL = ḡL (v − EL) is usually also included.

The presence of several currents, each necessitating one or two gating
variables, makes models of the form (11) analytically intractible. However,
often several of the gating variables have fast dynamics, i.e. γi/τi(v) is
relatively large in the voltage range of interest: such variables can then
be set at their equilibrium values wj = wj∞(v) and their dynamical equa-
tions dropped. Likewise, functionally related variables with similar time
scales may be lumped together [RE99]. This reduction process, pioneered
in FitzHugh’s polynomial reduction of the Hodgkin-Huxley model [Fit60,
Fit61], cf. [HR84, RH89, KS98], may be justified via geometric singular
perturbation theory [Jon94]. We shall appeal to it in deriving a three-
dimensional model for bursting neurons in §5.4.

A deeper geometrical fact underlies this procedure and allows us to go
further. Spontaneously spiking neuron models typically possess hyperbolic
(exponentially) attracting limit cycles [GH90]. Near such a cycle, Γ0, of
period T0, the (N + 1)-dimensional state space of (11) locally splits into
a phase variable φ along Γ0, and a foliation of transverse isochrons: N -
dimensional manifoldsMφ with the property that any two solutions starting
on the same leaf Mφ0 are mapped by the flow to another leaf Mφ1 and
approach Γ0 with the same asymptotic phase [Guc75]. Writing (11) in the
form

ẋ = f(x) + εg(x, . . .) (15)
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Figure 6: (a) Phase space structure for a repetitively spiking Rose-
Hindmarsh model, showing attracting limit cycle and isochrons. The thick
dashed and dash-dotted lines are nullclines for v̇ = 0 and ẇ = 0, respec-
tively, and squares show points on the perturbed limit cycle, equally spaced
in time, under a small constant input current Iext. (b) PRCs for the Rose-
Hindmarsh model; the asymptotic form z(φ) ∼ [1 − cosφ] is shown solid,
and numerical computations near the saddle node bifurcation on the limit
cycle yield the dashed result. For details see [BMH+03], from which these
figures are taken. Need to redo variables v, w! Remove dots and
dot-dash!

where g(x, . . .) represents external (synaptic) inputs, choosing the phase
coordinate such that φ̇ = ω0 = 2π/T0 and employing the chain rule, we
obtain the scalar oscillator equation:

φ̇ = ω0 + ε
∂φ

∂x
· g(x(φ), . . .) |Γ0(φ) . (16)

Here we implicitly assume that coupling and external influences are weak
(ε¿ 1), and that Γ0 perturbs to a nearby hyperbolic limit cycle Γε, allowing
us to compute the scalar phase equation by evaluating along Γ0. For neural
models in which inputs and coupling enter only via the first equation (11a),

the vector ∂φ
∂x contains only a single nonzero component ∂φ

∂v
def
= z(φ). This

phase response curve (PRC) describes the sensitivity of the system to inputs
as a function of phase on the cycle. It may be computed asymptotically,
using normal forms, near local and global bifurcations at which periodic
spiking begins: see [Erm96, BMH04].

Figure 6 shows an example of isochrons and PRCs computed for a two-
dimensional reduction due to Rose and Hindmarsh [RH89] of a multi-channel
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model. Here the gating variables have been collapsed to a single scalar w,
and so isochrons are one-dimensional arcs. Note that these arcs, equally-
spaced in time, are bunched in the refractory region in which the nullclines
almost coincide and flow is very slow.

The phase reduction method was originally devloped by Malkin [Mal49,
Mal56], and independently, with biological applications in mind, by Win-
free [Win01]; also see [Erm96]. It has recently been applied to study the
response of populations of neurons to stimuli [BMH04, BMH+03]. We shall
use it below, followed by the averaging theorem [GH90, EK86, Kop88, HI97],
to simplify the CPG model of §5.4.

2.3.2 Integrate-and-fire oscillators

We shall shortly return to phase descriptions, but first we mention another
common simplification. Since action potentials are typically brief (∼ 1 msec)
and stereotyped, the major effect of inputs is in modulating their timing, and
this occurs during the refractory period as the membrane potential v recovers
from post-spike hyperpolarization. Integrate-and fire models [Abb94, DA01]
neglect the details of channel dynamics and consider the membrane potential
alone, subject to the leakage current and inputs:

v̇ = ḡL(v∞ − v) +
∑

i,j

A(t− ti,j). (17)

Thus, v increases towards a limit v∞ and when (and if) it crosses a preset
threshold vThres it is reset to 0 (another example of a hybrid system). In
this model postsynaptic (external) influences on the cell are characterised
by a function A(t) (often of the type tk exp(−kjt)), summed over input cells
j and the times ti,j at which they spike.

2.3.3 Networks of phase oscillators

Phase oscillators have the advantage of mathematical tractibility – along
with integrate and fire models they are perhaps the prime templates of math-
ematical neuroscience – but they have rarely been anchored in biophysically-
based models such as those of §2.3.1. Indeed, in many cases the precise neu-
ral circuitry remains unknown, although there are exceptions (e.g. [CBD+97]),
and in §5.4 we shall summarise current work [GH04] in which phase reduc-
tions and averaging are used to derive oscillator networks from (relatively)
detailed Hodgkin-Huxley type models. Nonetheless, phase descriptions are
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useful as phenomenological models of CPGs even when little or incomplete
information on neuron types, numbers, or connectivity is available.

In such models, each phase variable may represent the state of one cell
or, more typically, a group of cells, including interneurons and motoneu-
rons, constituting a quasi-independent, internally sychronous subunit of the
CPG. This was the approach adopted in early work on the lamprey no-
tocord [CHR82, CRH88], in which each oscillator describes the output of
a spinal cord segment, or a pair of oscillators, mutually inhibiting and
thus in antiphase, describe the left and right halves of a segment. In re-
ality, there are probably O(100) active neurons per segment, and the ar-
chitectures of individual ‘oscillators’ can extend over as many as four seg-
ments [CW80, CHR82]. Murray’s book [Mur01] introduces and summarises
some of this work.

Since we will return to them in §5.4, it is worth describing phase models
for networks of oscillators in more detail. They take the general form:

φ̇i = fi(φ1, φ2, . . . , φN ) ; i = 1, . . . , N , (18)

where the fi are periodic in each variable; such a system defines a flow
on an N -dimensional torus. In many cases a special form is assumed in
which each uncoupled unit rotates at constant speed and coupling enters
only in terms of phase differences φj − φk. As noted in §2.3.1 and outlined
for an insect CPG example of §5.4, this form may be justified by assuming
that each underlying ‘biophysical’ unit has a normally hyperbolic attracting
limit cycle [GH90], that coupling is sufficiently weak, and by appeal to the
averaging theorem: see [HI97, EK86, EK91] for more details.

In the simplest possible case of two oscillators, symmetrically coupled,
we obtain ODEs whose right hand sides contain only the phase difference
φ1 − φ2:

φ̇1 = ω1 + f(φ1 − φ2) , φ̇2 = ω2 + f(φ2 − φ1) ; (19)

note that we allow the uncoupled frequencies ωj to differ, but here the
functions fi = f are supposed identical. Letting θ = φ1−φ2 and subtracting
Eqns (19), we obtain the scalar equation

θ̇ = (ω1 − ω2) + f(θ)− f(−θ) . (20)

A fixed point θ̄ of (20) corresponds to a phase locked solution of (19)
with frequency

ω̄ = ω1 + f(θ̄) = ω2 + f(−θ̄) ,
as may be seen by considering the differential equation for the phase sum
φ1 + φ2. In the special case that f is an odd function and f(−θ) = −f(θ),
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the resulting frequency is the average (ω1 + ω2)/2 of the uncoupled fre-
quencies. For smooth functions, stability is determined by the derivative
f ′(θ) − f ′(−θ)|θ=θ̄ – negative (resp. positive) for stability (resp. instabil-
ity) – and stability types alternate around the phase difference circle. Fixed
points appear and disappear in saddle-node bifurcations [GH90], which occur
when the value of a local maximum or minimum of f(θ)− f(−θ) coincides
with ω1 − ω2. The number of possible fixed points is bounded above by
the number of local maxima and minima of this function, but hyperbolic
fixed points must always occur in stable and unstable pairs, since they lie
at neighboring simple zeros of f(θ)− f(−θ).

Coupling typically imposes a relation between the oscillator phases, de-
termined by inverting the fixed point relation

f(θ)− f(−θ) = ω2 − ω1 , (21)

and vector equations analogous to (21) emerge in the case of a chain of N
oscillators with nearest-neighbor coupling [CHR82]. The original lamprey
model of [CHR82] took the simplest possible odd function f(θ) = −α sin(θ)
(the negative sign being chosen so that ‘excitatory’ coupling would have a
positive coefficient). In this case, a stable solution with a nonzero phase lag,
corresponding to the traveling wave propagating from head to tail responsi-
ble for swimming, requires a nonzero frequency difference ωi−ωi+1 > 0 from
segment to segment. At the time of the original study [CHR82], evidence
from isolated sections taken from different parts of spinal cords suggested
that there was indeed a frequency gradient, with rostral (head) segments
oscillating faster in isolation than caudal (tail) segments. Subsequent ex-
periments showed this not to be the case: a significant fraction of animals
was found to have caudal frequencies exceeding rostral ones, and to account
for this Kopell and Ermentrout [EK86, Kop88] introduced non-odd, ‘synap-
tic,’ coupling functions with a ‘built-in’ phase lag. Indeed, as they pointed
out, although electrotonic (gap junction) coupling leads to functions that
vanish when membrane voltages are equal, the biophysics of synaptic trans-
mission implies that nonzero phase differences typically emerge even if the
cells fire simultaneously.

Regardless of oscillator details, rather powerful general conclusions may
be drawn regarding possible periodic solutions of symmetric networks of
oscillators using the group-theoretic methods of bifurcation with symme-
try [GS85, GSS88]. Golubitsky, Collins and their colleagues have applied
these ideas to CPG models, thereby finding network architectures that
support numerous gait types, especially those of quadrupeds [GSBC98,
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GSBC99], although Collins and Stewart also have a paper specifically on in-
sect gaits [CS93]. Here the symmetries are discrete, primarily the left-right
bilateral body symmetry, and (approximate) front-hind leg symmetries. In
§§2.1-2.2 and §§4-5, the continuous symmetry of planar translations and
rotations with respect to the environment plays a different role in biome-
chanical models.

2.4 On control and coordination

We have seen that CPGs, including the motoneurons that generate their out-
puts, acting in a feedforward manner through muscles, limbs and body, can
produce motor segments that might constitute a ‘vocabulary’ from which
goal-oriented locomotory behaviors are built. As we argue in §5.4-5.5, in-
tegrated, neuromechanical CPG-muscle-limb-body models are still largely
lacking, but the analysis of simple neural and mechanical oscillators, such
as the phase and SLIP models introduced above, can elucidate animal behav-
ior [KKK01] as well as suggesting coordination strategies for robots [KK02].
However, assembling these motor segments, and adapting them to environ-
mental demands, requires both reflexive feedback and supervisory control.
We therefore end this section with a discussion of control issues, focusing on
two specific questions.

How are the distributed neural processing units, referred to at the start
of §2.3, coordinated? What roles do they play in the selection, control or
modulation of the distributed excitable musculoskeletal mechanisms? Little
enough is presently known about these questions that motor science may
perhaps best be advanced by developing prescriptive, refutable hypothe-
ses. Here ‘prescriptive’ loosely denotes a control procedure that can be
shown mathematically (or perhaps empirically, in a robot) to be in a logical
relationship of necessity or sufficiency with respect to a specific behavior.
Refutable implies that the behavior admits biological testing. Before sketch-
ing our working version of such hypotheses for insect locomotion in §3 we
review parts of a vast relevant literature.

2.4.1 Mechanical organization: Collapse of dimension and pos-
ture principles

Empirical laws describing movement trajectories both in the inertial (world)
frame and within the body-limb frame have been formulated and their neu-
ral correlates sought. For example, a power law inversely relating speed to
path curvature, originally derived from observations of voluntary reaching
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movements [LTV83], has been proposed to describe diverse mammalian mo-
tor patterns, including walking [IGML02]. Moreover, primate motor cortex
recordings of voluntary arm movements [SM99] reveal a neural velocity ‘ref-
erence signal’ that precedes and predicts observed mechanical trajectories,
prescribing via variable time delay the power law of [LTV83]. This suggests
partition of a reference trajectory into modular constituents of a putative
motor vocabulary, and meshes with yet more prescriptive notions of opti-
mal trajectory generation whose cost functionals can be shown to generate
signals that respect such power laws [TJ98, RF02].

However, interpreting such descriptive patterns is challenging. Trajec-
tories generated by mere low frequency harmonic oscillations fit to motion-
capture data in joint space also respect a power law as an accidental artifact
of nonlinear kinematics [SS01]. Moreover, when these fitted oscillations grow
large enough in amplitude to violate the pure power law, they do so in a
punctuated manner, again apparently accidentally evoking a composed mo-
tor vocabulary. Moreover, in a critique of proposals addressing the role of
neural precursors to voluntary arm motion, Todorov [Tod00] has pointed
out that motor cortex signals have been correlated in various papers with
almost all possible physical task space signals: an array of correspondences
that could not be simultaneously realised. In sum, power law and other
empirical descriptions do not seem central to our aims. OK DAN?? I
thought we needed to ‘summarise’ this discussion.

The mechanical patterns of central concern in this review arise from a
collapse of dimension: the emergence of a low-dimensional attractive invari-
ant submanifold in a much larger state space. Apparently associated with
this dynamical collapse is a posture principle: the restriction of motion to
a low dimensional subspace within a high dimensional jointspace. A kine-
matic posture principle has been discovered in mammalian walking [LGZ99],
as demonstrated by planar covariation of limb elevation angles which persists
in the face of large variations in steady state loading conditions [IGML02].
More directly relevant to the models to be developed in this paper, a pre-
liminary study of kinematic posture in a running cockroaches using prin-
cipal components analysis [KFK03] also reveals very low-dimensional lin-
ear covariation in joint space (cf. [BBL96]). Such biomechanical discovery
of dimension collapse and posture principles complements increasing evi-
dence in both vertebrate [Bur99, GTM02, SWDA+01, Bur02] and inverte-
brate [Pea93] neuroscience that neural activation results in precise, kine-
matically selective synergies of muscle activation. Posture principles have
also proved useful in designing controllers for legged robots [SSK98, SK03].
In §§5.3-5.4 we will address the collapse of more complex models to the
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templates introduced earlier in §2.3 and to be described in §§5.1-5.2.
The question arises how to render such descriptive observations more

prescriptive by finding refutable hypotheses connected with them. The se-
lection of a motor control policy may be governed by energy costs, mus-
cle or bone stress or strain levels, stability criteria, or speed and dexterity
requirements. Gait changes in quadrupeds, especially horses, have been
shown to correlate with reductions in energy consumption as speeds in-
crease [Mar76, HT81, WHCM03]. Muscle and bone strain criteria have also
been suggested [FT91a, BT86]. With regard to stability, our own recent
work using the LLS model of §5 suggests that animal design and speed
selection might place gaits close to stability optima [SGR+02, FKS+02].
However, we are wary of the optimality framework, commonly employed
in engineering [BH75], as a foundation for the prescription of natural or
synthetic motion control, in part because it transfers the locus of parame-
ter tuning from plant loop parameters to the cost function, which largely
determines the quality of the resulting solution. Similarly, in biology, cost
function details can significantly modify the resulting solutions, potentially
shifting the phenomenology of describing the task to that of choosing the
right cost function5.

Instead, we prefer to examine and model locomotion dynamics in regimes
in which the laws of Newtonian mechanics dominate, and hence constrain
possible control mechanisms. Specifically, at high speeds, inertial effects
render passive mechanics an essential part of the overall dynamics, and
there are severe time constraints on reflex control pathways. Recent im-
pulsive perturbation experiments on running cockroaches in [JF02] reveal,
for example, that corrective motions are initiated within 10-15 msec, while
corrective neural and muscle activity is estimated to require 25-50 msec.
We shall therefore focus on regimes in which, even if control target trajecto-
ries are being selected by higher centers, they must conform to mechanical
constraints.

2.4.2 Neuromechanical coupling: Centralized and decentralized
coordination; feedforward and feedback control

However they are formed, mechanical synergies such as templates and pos-
ture principles offer the nervous system attractive points of influence over
the musculo-skeletal system’s interaction with its environment. Recent work
on the cellular and molecular basis of sensory-motor control [BM98], and the

5Optimization ideas can, of course, be useful in fitting model parameters if they cannot
be directly measured or estimated, e.g. [CBMWC98].
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use of non-invasive imaging to reveal specific brain regions active in learning
and the planning and execution of movements [Pea00, Kaw99, LPSB01], cor-
roborate a growing consensus within the animal neuromotor community that
control is organized in a distributed modular hierarchy [MI99]. In this view,
complex motor functions are governed by afferent-mediated [Pea95] networks
of variably-coupled [Bur99], feedforward, pattern-generating units [Gri85]
located remotely [BTSD00] from higher (brain) centers of function, and
which supply ‘motor program segments’ that may be combined in various
ways at cortical command. It is tempting to think of these segments as so-
lutions of coupled CPG-muscle-body-limb-environment dynamical systems,
excited by appropriately-shaped motoneuronal outputs and amplified by
appropriately-tuned muscles. Indeed, as we shall argue, cortical stimula-
tion of such dynamical models can parsimoniously account for many of the
observed correlations, and we offer the beginnings of a prescriptive interpre-
tation in §3.3.

In reading the motor coordination literature as well as in formulating
the hypotheses of §3.3 we have found it helpful to refer to the architectural
‘design space’ depicted in Fig. 7 as a two-dimensional coordination-control
plane whose axes represent the degree of centralization and the influence of
feedback. Adopting this view, we may divide the studies of motor rhythms
within distributed networks into three subgroups.

The first employs networks of biophysically-based, ion channel neuron
models of Hodgkin-Huxley [HH52] type, or reductions thereof [Fit61, HR84,
KS98], patterned closely upon the specific physiology of isolated tissues
such as lamprey notocord [GWBL91] or the arthropod stomato-gastric gan-
glion [SER+98, GGMA01]. These models, summarised in §2.3.1 above, and
the experiments on which they are based, typically isolate the CPG by re-
moving signals from sensory neurons, and lesioning ‘control’ inputs from
higher brain centers [Del80, CRE88, Gri99]. Fairly detailed neural architec-
tures and details of individual neuron types are required for their formula-
tion; hence they are most appropriate for ‘small’ systems. In this work the
spontaneous generation and stability of rhythms are studied, perhaps in the
presence of tonic excitation, but not their volitional control or translation
into physical motion.

The second group focuses on modeling the internal generation of rhyth-
mic CPG patterns in the vertebrate spinal and supraspinal nervous systems
by networks of coupled phase oscillators of the type introduced in §2.3.3.
Here the neurobiology is more complex and often less well-characterised,
so phenomenological models are more appropriate. The work on lamprey
CPG cited there [CHR82, CRH88], and substantial extensions and general-

28



Figure 7: The schematic two-dimensional space of control architectures.
Single circles represent CPG oscillators, double circles represent mechanical
oscillators such as limb components, and triangles represent neural control
elements (analogous to operational amplifiers).
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izations of it by Kopell, Ermentrout and others (e.g. [EK86, Kop88, EK90,
KE90, KEW91, CK93, KL94, JKC96]), provide examples of this approach.
As noted in §2.3.3, in going directly to phase oscillators representing pools
of neurons or local circuits containing several neuron types, one frequently
abstracts away from specific physiological identification, although important
information on coupling strengths along the cord can be derived by fitting
parameters in such models [KC98]. These models also typically exclude
muscles and mechanical aspects of the motor system and interactions with
its environment, although in [KEW91], for example, the effect of mechanical
forcing of a fish’s tail is modeled.

Their focus on the emergence of synchrony in distributed networks and
their necessary presumption of the primacy of neural excitation in eliliciting
motor activity places these two classes of models on the feedforward level
of Fig. 7, at various points along the centralized-decentralized axis. More-
over, in both of these approaches, the generation and stability of rhythms
are studied, but not their translation into physical motion. Indeed, in the
absence of a mechanical model, the relative influence of mechanical feedback
cannot be addressed.

Integrative neuromuscular models are beginning to appear. Simple cou-
pled models of the nervous system and its mechanical environment have
been developed by a third ‘ecological’ school [KFDC01, BPD02], follow-
ing the lead of the Haken-Kelso-Bunz (HKB) model of coordinated finger-
tapping [HHB85]. In these systems, (neural) phase oscillators are coupled
to phenomenological (generic mechanical) oscillators representing simplified
muscle-limb dynamics that may be interpreted as phase coordinate repre-
sentations of the hybrid templates introduced in §2.1-2.2. There appear
to be few comprehensive studies of specific locomotory systems, however,
with the exception of lamprey (anguilliform = eel-like) swimming, which
has been modelled by Ekeberg and Grillner [Eke93, EG99] and Bowtell,
Carling and Williams [BW91, BW94, CWB98]. In the former papers, bod-
ies composed of rigid links actuated by simplified spring/damper muscle
models are used and the fluid environment is represented by empirical drag
and lift forces applied along the body; a recent paper on salamander locomo-
tion considers both aquatic and terrestrial gaits [Ijs01] from a similar view-
point. In [BW91, BW94, CWB98], continuum body models coupled with the
Navier-Stokes equations of incompressible hydrodynamics are solved numer-
ically with a prescribed moving boundary representing the lamprey’s body.
Models of even the former (finite-dimensional) type are too complex to per-
mit substantial analysis, although sudies of linearized systems can be helpful,
even for continuum models [BW94], so this work relies heavily on numerical
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simulations. Analytical treatment of explicitly coupled neuro-mechanical
oscillators seems heretofore limited to very simple one degree of freedom
dynamical manipulation such as juggling [SSA96, SBK95].

As Fig. 7 illustrates, control architectures may also be described in terms
of their reliance on sensory feedback from body mechanics and the environ-
ment. For example, proprioceptive sensing of leg forces and joint angles may
directly influence CPG and motoneurons to maintain phase relationships in
a decentralized, peripheral manner [Pea72, PI72, BB98, RFRZ98], while vi-
sual and tactile sensing, or odor tracking, may require central processing
before appropriate feedback can be applied to adjust gaits or change direc-
tion [Gil97]. Alternatively, cockroach antennal sensing can induce turning at
high speeds with very short delays [CJ99], suggesting that fast direct path-
ways to the CPG may exist. In turn CPG activity and central commands
can modulate and even reverse the negative feedback typically exerted by
proprioceptive sensors such as the stretch reflex [CCR00].

More prescriptive versions of the power laws reviewed above emphasize
optimal feedforward trajectory generation, although feedback is known to
play an important role in both vertebrate [ZS99] and invertebrate [DCC00]
locomotion, and the importance of feedforward reference signals is by no
means generally accepted [Cru02]. The observation that certain degrees
of freedom exhibit significantly higher variability than others can be inter-
preted in the framework of stochastic optimal feedback control as a hedge
against noise [TJ02]. Depending on environmental demands, the full range
from pure feedback to pure feedforward control policies is probably employed
in animal motion. Indeed, the suggestion, based on linear systems theory,
that feedback should be preferred when internal models are uncertain or
unavailable, while feedforward strategies should be more appropriate in the
presence of significant sensor noise [Kuo02], seems very reasonable. The
extremes of this continuum are exemplified respectively by ‘mirror laws’ de-
veloped for juggling machines [BK90] and legged robots [SSK98, SK03], and
passive stabilization based on preflexes, as exhibited by the SLIP and LLS
models described in this paper. Overall, since centralised feedback circuits
imply greater time delays, as running speeds increase, we expect control to
emphasise decentralized modes, and increasingly rely on feedforward strate-
gies.
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Figure 8: A schematic illustration of the direct and comparative experimen-
tal approaches, with an example of investigation of the effects of moment of
inertia.

3 Experimental evidence: Comparative studies

Simple models of legged locomotion, such as the SLIP of §2.2, have emerged
from data collected using a powerful approach: the comparative method
[Wake, 19; Full and Farley, 1993?]. Direct experiments on individual animals
in which a single variable is manipulated are often effective in establishing
cause and effect relationships, but large parameter ranges can rarely be
probed without disrupting function elsewhere in a finely integrated system.
There are limits, for example, to how much an animal’s mass or moments of
inertia can be changed by the addition of weights, in studying their influence
on its dynamics.

The comparative approach takes advantage of nature’s diversity to en-
able the discovery of general principles as well as remarkable exceptions to
the rules. We can infer function by comparing among species that differ
widely in a variable of interest, rather than by direct experimental manipu-
lation of a single species. Effectively, we observe experiments performed by
nature, in which the ‘treatment’ has been evolution, and naturally-occuring
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Figure 9: Metabolic cost of locomotion vs. body mass for a broad range
of animals, showing an approximate power law relationship: cost ∝ m?.
From [Ful97]. BOB: Insert exponent!

variations in dependent variables permit investigation and isolation of mech-
anisms of interest in nearly-ideal settings of exceptional function. Fig. 8
illustrates the direct and comparative methods.

The largest variations are found in comparing animals that differ greatly
in size [Schmidt-Nielsen; Calder]. Fortunately, variation in dependent vari-
ables as a result of size often shows remarkably general correlations that can
be used to infer function and predict performance. For example, while the
metabolic cost of legged locomotion typically varies less than ten-fold when
speed, stride frequency, inclines or added loads are altered in individuals, it
naturally differs by over five orders of magnitude, while exhibiting a single
relationship, when all legged animals are compared: see Fig 9.

Equally important are those animals that demonstrate spectacular per-
formance and deviate from the general pattern. Large, measurable differ-
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ences have evolved over millions of years in diverse species with different
lifestyles or operating in extreme environments. Characterization of these
specialized systems can allow extrapolation to others in which the properties
of interest are not as extreme, but for which the principles of function are
the same. For example, hopping red kangaroos can increase speed without
increasing metabolic energy cost [Dawson and Taylor, 1973], and measure-
ments of ground reaction and muscle forces reveal substantial elastic strain
energy storage in the tendons of kangaroos and wallabies [Alexander and
Vernon, 1975, Alexander 1988; Biewener and Baudinette, 1995]. It is there-
fore reasonable to conclude, at least in large vertebrates such as humans,
that tendons serve a similar role, albeit to a lesser extent than in specialized,
bipedal hoppers.

Natural experiments are imperfect because they lack an appropriate
control: Fig. 8. Seldom do even closely-related species under comparison
differ only in the variable of interest. However, the comparative method
is strengthened by knowledge of evolutionary history or phylogeny [Huey,
1987; Garland and Adolph, 1994; Lauder, 2001]. Techniques in phylogenetic
analysis [Felsenstein, 1985; Garland et al., 1992] can remove the effects of
history or use them to hint at present function. If the process of interest has
severe functional or structural constraints or nearly complete adaptation has
taken place, then the potentially confounding effects of historical differences
may be of little consequence. If, however, constraint and adaptation have
been less than completely dominant, then the most parsimonious assump-
tion is that the process operates as it did in the ancestor. An evolutionary,
comparative approach can aid in answering mechanistic questions, but only
if each species is studied in sufficient depth to elucidate the mechanism and a
satisfactory phylogeny exists [Autumn et al 2002; Mangum and Hochachka,
19??]. Unfortunately, agreed-upon phylogenies are rare and in-depth studies
of many species can take years.

BOB: Sounds like you are criticising Comp method above, then
immediately going on to praise it again. Needs better connective
tissue between paras, or some textual tuning at end of previous
and beginning of next??

In-depth studies are often made possible by nature’s diversity. As Au-
gust Krogh remarked at the 13th International Congress of Physiology in
Boston in 1929: ‘For many problems there is an animal on which it can
be most conveniently studied’ [Krebs, 1975]. The selection of ‘choice’ or
model species is based on their amenablity to particular experimental pro-
cedures. The giant squid axon and the gastrocnemius muscle of frogs are
notable, relevant examples, although results from model species that are
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easy to study are not necessarily generalizable. Chances BOB: Do you
mean ChanGes?? are often greater at the lowest levels of organization
such as cell and molecular structures and genetic and biochemical networks.
In this regard, E. coli , nematodes and fruit flies have proved invaluable
model organisms. At the level of organs and organisms, careful selection us-
ing existing phylogeny of more basal species will more likely lead to general
discoveries. The nervous system of the lamprey has been argued to be such
an example [CRE88] [Grillner]; hence its use as a model to probe vertebrate
CPG architectures, as noted in §2.3.3. Alternatively, direct measurements
of performance for a wide range of species that differ in size can be invalu-
able for identifying possible generality. For example, the metabolic cost of
legged locomotion appears to be independent of leg number, leg design, type
of skeleton used and whether the animal is warm or cold-blooded (Fig. 9).
Phylogenetic effects that may limit the generality of conclusions are absent
from relationships such as these. It is therefore reasonable to assume that
discoveries in insects, as discussed here, will lead to general principles for all
legged locomotors.

3.1 Mass center mechanics of legged locomotion

Cavagna et al. [1964] provided early experimental evidence for the spring-
mass model of legged locomotion introduced in §2.2. The metabolic energy
cost of human running was determined by measuring oxygen consumption,
and mechanical energy estimated from the fluctuations in kinetic and po-
tential energy calculated from ground reaction forces measured with a force
platform. Efficiencies, much higher than estimated for muscle, supported
the use of leg springs. Similarly, using movie film and force platforms to
study jumping dogs and hopping kangaroos, Alexander [1974, 1975] calcu-
lated a substantial degree of elastic recoil in ankle extensor tendons. More
recently, Biewener et al. [1998] directly measured tendon force and muscle
length change in hopping wallabies and found that elastic strain energy stor-
age in ankle extensor tendons reduces total work by 45% during hopping at
the fastest speeds. BOB: I ran last 2 sentences together. OK? Was
this 45% the finding of Biewener et al.??

Alexander and Jayes [AJ83] proposed that dynamically similar legged lo-
comotors should exhibit equal ratios of inertial to gravitation forces (Froude
number, v/

√
gl) for equivalent gaits. This is based on the idea that the cen-

trifugal force acting on the body as it rotates over a (rigid) supporting limb
of length l must balance the ground reaction force on the limb. Animals as
diverse as dogs and camels all follow a single function when data on rela-
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Figure 10: Stride length s vs. speed and relative stride length s/l vs. Froude
number for various animals. From [AJ83]. BOB: Horiz axis is actually
Froude2! (conventional Froude No in fluid mech is v/

√
gl). How

best to fix this?

tive stride length is plotted as a function of Froude number: Fig 10. Froude
number is essentially the (square root of the) ratio of kinetic to potential en-
ergy and is often viewed as a dimensionless speed; it will play an important
role in nondimensionalizing the models of §5. Moreover, and remarkably,
mammals with different evolutionary histories change gait from a walk to a
trot at Froude numbers of 0.3 to 0.5, and from a trot to a gallop between 2
and 3.

BOB: Their argument seems to assume rigid leg - like compass
walker - see my insert ‘a (rigid) supporting limb’. Does this require
a comment to relate to our springy leg models, in wch we also have
ELASTIC energy storage. cf. my nondiml param k̃ = mv2/kl2, also
a Froude2, for LLS??
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3.1.1 Walking and running data viewed in the sagittal plane

In 1977 Cavagna et al. [CHT77] collected ground reaction force data on two
and four-legged mammals in an effort to explain the general energetic rela-
tionship of Fig. 9. Their data supported two basic mechanisms for minimiz-
ing energy: an inverted pendulum, and a mass atop a spring. Walking was
proposed to be an energy-conserving mechanism analogous to an inverted
pendulum, much like an egg rolling end over end [CTZ76, CHT77] [Heglund
et al. 1982] (cf. the compass walker described by McMahon [McM84]).
Kinetic energy and gravitational potential energy fluctuate in anti-phase
in such a mechanism, allowing exchange of energy as the animal’s center of
mass rises and falls during each step. Vaulting over a stiffened leg in humans
was once argued to conserve up to 70% of the energy that must otherwise
be provided by muscles and tendons [CTZ76], but recent models including
a double support phase and collision losses question the extent of exchange
[Donelan et al., 2002].

At faster speeds, animals behaved more like a mass atop a springy
leg [CHT77], in which kinetic and gravitational energy remain in phase, but
fluctuate in antiphase with the elastic energy stored in the spring. Cavagna
et al. [1997] hypothesized that kinetic and gravitational potential energy
lost during the first half of the stance phase were stored as elastic strain en-
ergy at midstance and then returned as the animal’s center of mass rose and
accelerated forward. As noted in §2.2, the inverted pendulum and spring-
mass mechanisms have been combined into a single model: the spring-loaded
inverted pendulum (SLIP) [Sch98], which limits on the inverted pendulum
or compass walker as stiffness increases.

3.1.2 Evidence for a general spring-loaded inverted pendulum
(SLIP) model

Blickhan and Full [BF87] discovered that SLIP behavior was far more general
than imagined and not restricted to upright-posture birds and mammals.
Force platform data showed that 8-legged sideways-moving crabs can use
a pendulum-like mechanism during walking, recovering as much as 55% of
the energy otherwise supplied by muscles. At faster speeds, ghost crabs
change gait from a walk to a bouncing trot. Full and Tu [FT90, FT91b]
used a miniature force platform to show that the most prevalent taxon on
earth, Insecta, bounce dynamically as they run over a wide range of speeds.
Indeed, the SLIP describes the center of mass dynamics during locomotion
in animals ranging in body size from a cockroach (0.001 kg) to a horse (135
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Figure 11: Relative individual leg stiffness vs. body mass for various animals
and for the hexapedal robot RHex. From [BF93]. BOB: Is this the
correct citation?

kg), a five decade range: Fig. 11.
The effective spring stiffness can be estimaated as the ratio of the peak

ground reaction force to maximal leg compression at midstance. If Fvert de-
notes the vertical whole-body ground reaction force and ∆l the compression
of the whole body leg spring, then the absolute SLIP spring stiffness (k) is:

k =
Fvert
∆l

. (22)

Force platform data on mammals from Farley et al., [1993] show that larger
animals have stiffer SLIPs: a trotting horse has a SLIP stiffness 100-fold
greater than a rat. Comparison of mammals over a thousandfold range of
body mass m shows that the SLIP stiffness increases as m

2
3 .

To compare leg stiffnesses of diverse animals, allowances for both size
and leg number must be made [BF93]. A dimensionless stiffness relative
to size is required to correct for body weight and length differences. Such
a relative SLIP stiffness krel can be calculated by dividing the peak whole
body ground reaction force at midstance, normalized for body weight, mg,
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by the compression normalized by hip height, l:

krel =
Fvert/mg

∆l/l
. (23)

The number of legs supporting the body during stance that sum to pro-
duce SLIP behavior varies from one in running bipeds to four in trotting
crabs (see Fig. 4 above). For example, insects trotting in a double tripod
gait compress their SLIPs by one third relative to bipedal runners. Be-
cause the relative force is the same as in bipedal runners, the SLIP stiffness
of the insect is three-fold greater than for bipeds. Since the SLIP stiff-
ness is determined by the number of legs supporting body weight, a rela-
tive individual-leg stiffness krel,ind can be estimated by dividing the relative
SLIP stiffness by this number (e.g. for an insect krel,ind = krel/3, and for
a trotting quadruped or a hopper such as the kangaroo krel,ind = krel/2).
Relative individual-leg stiffness is surprisingly similar in trotters, runners
and hoppers using from one to four legs in stance: the data summarised in
Fig 11 indicates krel,ind ≈ 10. Thus, relative individual-leg force is about ten-
fold greater than relative compression in six-legged trotters (cockroaches),
four-legged trotters (dogs, horses), 2-legged runners (humans, birds) and
two-legged hoppers (kangaroos).

3.2 Dynamics of sprawled postures and many legs: Running

insects

Insects have become model organisms for the study of locomotion, as ev-
idenced by advances in areas such as neurobiology [PI70, PI71, Pea72,
PI72, Del80, Del85, Del91, Cru02, Bur80, BS83, TR00a, TR00b] [Cruse,
Pearson, Dickinson, Burrows, Laurent, Delcomyn, Ritzmann], muscle func-
tion [FSAJ98, WR98a, WR98b] [Josephson; Full] and biomechanics [FT90,
FT91b]. Insects can exhibit extraordinary locomotor performance, are inex-
pensive, hearty and abundant, have experimentally-tractable neuro-muscular
systems, and often follow remarkably general relationships, encompassing
both invertebrates and vertebrates (cf. Figs 9 and 11).

BOB: Based on the names you cited I picked out some refs from
my bibliog database. Pls check and add/subtract. We probably
only need a representative sampling here.

3.2.1 Evidence for equivalent gaits

Cockroaches exhibit bouncing gaits over 85% of their speed range Even at
lower speeds they do not walk like inverted pendula [FT90, FT91b], and
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Figure 12: Stride frequency vs. speed for cockroaches, crabs and dogs, and
stride frequency vs mass for a range of animals. From [?]. BOB: Pls
provide citations!

although their energy recovery averages only 6-15%, their dynamics suggest
that arthropods with exoskeletons can use springs and bounce during run-
ning much like mammals. Equivalent gaits may exist among legged runners
that differ greatly in morphology. Further evidence of this equivalence comes
from examining relationships between stride frequency and running speed,
examples of which are shown in Fig. 12.

In quadrupedal mammals, stride frequency increases linearly with speed
during trotting [?, HT88] [Heglund et al. 1974; Heglund and Taylor, 1988],
but becomes nearly independent of speed as mammals switch to a gallop,
higher speeds being obtained by increasing stride length. Similar relation-
ships have been found in cockroaches and ghost crabs [FT90, BF87]: as speed
increases stride frequency attains a maximum. Comparison of maximum
sustainable stride frequency and the speed at which it is attained in crabs
and cockroaches with data from mammals [?, HT88] suggests the possibility
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of equivalent gait transitions in two-, four- six- and eight-legged animals.
Surprisingly, when the size effect is removed, legged animals attain a similar
maximum sustainable stride frequency at a similar speed [Ful89, Ful91] [Full,
1989, 1991]. For example, a crab and a mouse of the same mass change gait
at the same stride frequency (9 Hz) and speed (0.9 m sec−1) [BF87]. Pro-
posed causes for the trot to gallop transition include a decrease in metabolic
energy cost [HT81] and a reduction in musculo-skeletal strain [FT91a].
Blickhan et al. [?] [1993] placed strain gauges on ghost crab legs and found
an abrupt change at the trot-gallop transition, but strain increased five-fold
rather than decreased. Until the recent modeling efforts reported in §5.3 (see
Fig. 32 below), no explanation was available for the proposed gait change in
cockroaches.

3.2.2 Individual leg function

Trotting quadrupedal mammals, such as dogs, produce nearly the same
ground reaction force pattern with each leg [CHT77, AJ78] [Jayes and
Alexander, 1978] BOB: Alexander-Jayes 1978 OK?, much like SLIP
ground reaction forces. In fact successful trotting quadrupedal robots have
been designed that produce similar forces on each leg, differing only in rel-
ative phase [Rai86] [Raibert et al. 1986]. However, individual leg ground
reaction forces, measured using a miniature force platform [FBT91] and
photo-elastic gelatin [FYJ95] show that hexapedal runners do not behave
like quadrupeds with an added set of legs. At constant average running
speed, each contralateral leg pair of the cockroach is characterized by a
unique ground reaction force pattern, as indicated in the left column of
Fig. 13. The front leg decelerates the center of mass in the fore-aft direc-
tion throughout a step, the hind leg accelerates it, and the middle leg does
both, initial deceleration being followed by acceleration, much like legs of
bipedal runners and quadrupedal trotters. Peak vertical ground reaction
forces for each leg are equal in magnitude, and significant lateral ground re-
action forces are directed toward the body. Nonetheless, differing individual
leg forces in insects combine to produce net forces on the body COM in the
sagittal plane similar to those of the single leg of a bipedal runner.

One important consequence of the large lateral and opposing leg ground
reaction forces involves muscle force production. In the cockroach, peak
ground reaction forces are oriented toward the coxal joints (analogous to
bipedal hips) that articulate with the body. This tends to minimize joint
moments and muscle forces [FBT91]. Legs of animals do not generate verti-
cally directed ground reaction forces that result in large torques about the
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Figure 13: Left column: the double tripod gait of insects, showing typical
individual foot force vectors near beginning, at middle, and near end of
each stance phase. Right column: the rigid body prescribed force model of
Kubow and Full [KF99]. From [KF99].

‘hip’ as do some legged robots, nor do they operate under the horizontal,
zero-foot force criterion used in some robot designs [Wal86]. Insect legs
push against one another, but force vectors are aligned approximately along
the legs, and directed largely toward joint centers of rotation, much as in
upright-posture birds and mammals. Hence, sprawled posture locomotion
of arthropods, amphibians and reptiles does not necessarily result in large
joint moments or muscle forces. This appears consistent with data showing
that the minimum metabolic costs of locomotion in species that differ in
posture can be similar [Ful91] [Full, 1991], cf. Fig 9.

To discover if individual insect legs can function as springs, Dudek and
Full [67] oscillated legs dynamically with a computer-controlled lever. Cock-
roach legs, in particular, have the potential to function as passive exoskeletal
springs in the sagittal plane because of their more vertically oriented joint
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axes. Stiffness, damping, and resilience were measured during vertical oscil-
lations orthogonal to the plane of joint rotations [68, 69]. Leg resilience was
high, ranging from 65-85%, and was independent of oscillation frequency.
Dudek and Full [68] estimated a damping ratio using the stiffness and damp-
ing coefficients from a Voigt model, assuming the body rests on a support
tripod of legs during stance phases in running. Values predict that the tri-
pod of legs used by running cockroaches is under-damped, thus permitting
some energy storage and recovery.

BOB: What is (leg) ‘resilience’? Stiffness? Inverse of stiffness?
stiffness divided by damping?? Also I need the refs that you give
only as numbers [67,68,69] and more appearing below!

3.2.3 Static and dynamic stability

The springy legs of insects radiating from their mass centers almost cer-
tainly provide performance advantages beyond energy storage and return.
A sprawled-posture bestows a wide base of support and low center of mass,
both of which reduce overturning moments. Additionally, most insects use
an alternating tripod gait over a broad range of speeds (Fig. 13); indeed,
Hughes [1952] stated that the six-legged condition is the ‘end-product of
evolution,’ because the animal can always be statically stable.

However, while Ting et al. [TBF94] found that running deaths head cock-
roaches Blaberus discoidalis do keep their centers of mass within a tripod of
support over a wide range of speeds, these insects are statically unstable at
their fastest speeds. Their percent stability margin (the shortest distance
from COM to the boundaries of support normalized by the maximum possi-
ble stability margin) was found to decrease with increasing speed from 60%
at 10 cm s−1 to negative values (implying static instability) at speeds faster
than 50 cm s−1. Certainly, the fastest gait of the American cockroach Peri-
planeta americana cannot be statically stable, for at 1.5 m sec−1 – nearly
50 body lengths per second – this species runs bipedally [FT91b]. In both
animals, dynamic stability is maintained throughout.

Discoveries of spring-mass behavior, static instability in a fast tripod
gait, and dynamically stable bipedal running such as those summarised
above suggest that energy use in insects might not be minimized, but rather
managed , to ensure dynamic stability. Moreover, preliminary studies on
cockroaches also show that preferred speed is maintained during rapid run-
ning over rough terrain [59]. A fractal arrangement of blocks reaching up to
three times higher than the COM offers little resistance: animals do not step
carefully over it or adopt a follow-the-leader gait like those of some legged
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robots, but continue to use the same alternating tripod gait observed on
flat terrain. Simple feedforward motor output appears to be effective in the
negotiation of such rough terrains when used in concert with a mechanical
system that may be tuned to stabilize passively.

Overall, these data lead to the hypothesis that dynamic stability and a
conservative motor program allow many-legged, sprawled posture animals
to miss-step and collide with obstacles, but suffer little loss in performance.
Rapid disturbance rejection appears to be an emergent property of the mus-
culoskeletal mechanical system.

3.2.4 Self-stabilization in the horizontal plane

To develop a more precise hypothesis on the mechanical system’s role in
stabilizing running, Kubow and Full [KF99] created a feed-forward, three-
degree-of-freedom dynamic model of a hexapod, representing a sprawled-
posture insect in the horizontal plane: see the righthand column of Fig. 13.
Vertical motions and gravity were excluded, yaw and translation instabilities
being assumed to be more critical than the insect flipping over or falling and
striking its abdomen. The model, a rigid body with six massless legs, was
formulated with direct biomechanical data taken from deaths-head cock-
roaches, including body mass and inertia, individual leg ground reaction
forces, and foot positions relative to the body [FT90, FBT91, BF93, TBF94,
FYJ95, KWF97, 01]. Stereotyped periodic force inputs were prescribed at
foot positions fixed in inertial space throughout each step, but force vector
directions were allowed to rotate with the body. The model was driven by
a this feed-forward signal with no equivalent of neural feedback among any
of the components.

Bob: You had:‘Forces stayed fixed relative to the ground for the
duration of a step. Leg forces were generated relative to the body
using the same pattern during every step.’ These two sentence
seem contradictory. I thought you allowed the stereotyped force
patterns to rotate with the body. Is my rewrite above correct?

The model’s forward, lateral and rotational velocities were similar to
those measured in the animal at its preferred velocity. More surprisingly,
the model self-stabilized on a biologically-relevant time scale following in-
stantaneous velocity perturbations acting on its center of mass. The rate of
recovery depended on the orientation of the perturbation. Recovery from
lateral perturbations took multiple strides, whereas recovery from rotational
velocity perturbations occurred within one step. Recovery to 63% from fore-
aft velocity perturbations was very slow, taking almost 50 strides. Heading
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(i.e. the compass direction of COM) never recovered from lateral velocity
perturbations. Recovery was dynamically coupled such that perturbations in
one velocity component necessarily changed the others. Perturbated COM
positions and body angles relative to the fixed feet provided ‘mechanical
feedback’ by altering leg moment arms. This ‘anchored’ model inspired the
LLS templates that we discuss in §5, and both it and they motivated the
following experiments.

Jindrich and Full [JF02] perturbed rapidly running insects to experi-
mentally test the self-stabilization hypothesis. An apparatus was mounted
onto the thorax of a cockroach and positioned to propel a projectile later-
ally, delivering a specific impulse in linear momentum near the the animal’s
COM. The apparatus used chemical propellants to accelerate a small metal
ball, producing impulsive reaction forces less than 10 ms in duration, but
yielding an almost ten-fold increase in lateral velocity relative to maxima
observed during unperturbed locomotion. Lateral velocity began to recover
within 13 ms after initiation of the perturbation. This recovery duration is
comparable to all but the fastest reflex responses measured in insects [72]
and is likely shorter than a neurally-mediated correction when the delays
of the musculo-skeletal system response are considered. Cockroaches recov-
ered completely in 27 ms and did not require step transitions to recover from
imposed lateral perturbations. The animal’s center of mass response exhib-
ited viscoelastic behavior in the lateral direction with leg spring stiffnesses
similar to those estimated for unperturbed running. This rapid onset of re-
covery from lateral perturbations supports the hypothesis that mechanical
preflexes augment or even dominate neural stabilization by reflexes during
high-speed running.

3.3 Towards a theory of locomotion: templates, anchors, and

some hypotheses

* Describe the four hypotheses H1-4 from NISFFIBR Propl.
* Could be some repetition of ideas introduced in §§ 1- 2.
** DAN will supply. How do we prevent this form being redundant with

sections one and two?

4 Hybrid dynamical systems

The models of legged locomotion considered in this paper are more compli-
cated than classical (smooth) mechanical systems. Due to impacts, ground
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reaction forces, and changing stance patterns, the governing equations de-
fine hybrid systems in which the continuous-time vector fields describing
evolution change at discrete times or events. Indeed, since the constraints
that define these vector fields depend on the number and identity of legs in
contact with the ground, even the dimension of the governing vector field
may change at an event, and different coordinate systems may be called
for. While various definitions have been proposed for hybrid systems, we
shall follow one similar to that introduced by Back, Guckenheimer and My-
ers [BGM93]. Their approach is predicated upon four requirements: (1) ex-
istence of solutions in a general setting, (2) straightforward implementation
of simulations, (3) inclusion of systems drawn from a wide range of applica-
tions and (4) amenability to analysis using tools from singularity theory and
the theory of smooth dynamical systems. From a computational perspec-
tive, however, there are some differences between the present situation and
that of [BGM93] in that, due to the piecewise-holonomic constraints noted
in §2.1, the equations of motion are typically differential-algebraic equations
(DAEs) rather than purely differential equations.

4.1 Introductory examples

There are several mathematical and computational obstacles to formulating
a fully satisfactory definition of hybrid systems. The basic idea of following
a vector field until an event occurs, then ‘jumping’ to a new initial condition
for a new vector field and continuing to flow from there is clear, but it seems
impossible to fully maintain the basic properties of existence and continuous
dependence of solutions of ordinary differential equations on initial data. We
illustrate this with a pair of two-dimensional examples.

Consider first a piecewise constant vector field f defined by f(x, y) =
(1,−1) if y ≥ 0 and f(x, y) = (1, 1) if y ≤ 0, assigning different discrete
states to the upper and lower half planes. When a trajectory arrives at the
x-axis, the event changes its discrete state but leaves its location unchanged.
It is evident that there is no solution of the system with initial condition on
the x-axis. Trajectories in the upper half plane point into the lower half plane
and those in the lower half plane point into the upper half plane. The state is
stuck on the attracting line y = 0, on which the vector field is multi-valued,
perhaps ‘wanting’ to switch back and forth between the two discrete states
infinitely often. This chattering conundrum is well known in engineering,
and two strategies have been developed to address it. The ‘thermostat’
strategy derives from the desire to turn heat on when temperature is below
a set point T0 and off when it exceeds T0. Indeterminacy at T0 is overcome
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by overlapping the regions in which the heat is on and off. An offset δ is
defined and switches from on to off are made at T0+ δ and from off to on at
T0−δ, producing hysteretic cycling, whose rate can be adjusted by changing
δ.6

The second strategy for dealing with chattering is to try to constrain
the system to lie along the boundary between the two states. This is not
feasible for the thermostat, but in mechanical devices we often wish to main-
tain such a constraint. The theory of sliding modes, based upon differential
inequalities, achieves this [Utk77]. In the context of motor control, imag-
ine a situation in which two muscles with nearby insertion points can be
contracted to achieve motion of a limb. Since forces from the two muscles
add, a suitable linear combination of contraction can be applied to enforce
the desired constraint. Both of these strategies are clearly relevant and
appropriate to biomechanical systems. In terms of hybrid systems theory,
we regard sliding modes as distinct discrete states in their own right, with
differential-algebraic equations defining the vector field which maintains a
constraint.

A second example shows that conflicting choices between ‘target’ states
seems unavoidable in hybrid systems. Consider a two-dimensional vector
field describing discrete state 1 of a system. When a trajectory in the first
quadrant reaches the x-axis, we assume that there is a transition to discrete
state 2, and when a trajectory reaches the y-axis, there is a transition to
a distinct discrete state 3. When a trajectory reaches the origin, a deci-
sion must be made between transitions to states 2 and 3 or the origin must
be regarded as a further discrete state. Whichever choice is made, we lose
continuous dependence of solutions on initial data. Whether this is reason-
able in the example depends on the underlying ‘physics.’ The situation is
reminiscent of what happens in a locomotion model when two feet make
simultaneous ground contact. In the analogous problem of triple collisions
in the three body problem [McG75], it is known that no ‘regularization’ is
possible and that solutions do not depend continuously on initial conditions
(in contrast, double collisions are regularizable).

Issues such as these leave us in a quandary regarding formal definitions
of hybrid systems. More restrictive definitions yield stronger results on ex-
istence, uniqueness and continuous dependence on initial data, while less

6A second approach to the thermostat problem is to define a minimum time that the
heat remains off or on. Theoretically, we regard this approach as undesirable for two
reasons: it introduces ‘delays’ into the system that complicate the theory, and the choice
of off/on state at temperature T0 is not really resolved: two different trajectories are
allowed from the same initial point.
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restrictive ones encompass a larger set of examples. We adopt the princi-
ple that computational simulation of models is a priority: without simu-
lation, it is difficult to extract useful information about model behaviors.
Consequently, we choose definitions that ease the implementation of simu-
lations. With this in mind, we turn to the definition proposed by Back et
al. [BGM93].

4.2 Formal definitions

The state space of a hybrid system is a union

V =
⋃

α∈I

Vα ,

where I is a finite index set and each Vα is a connected open set in Rnα .
The Vα are called charts. Note that the dimension of the charts may depend
upon α. A state of the system consists of an index α together with a point in
the chart Vα. We assume that a continuous time dynamical system is defined
on each chart. If these systems are defined by DAEs rather than ODEs, we
regard the chart as the set of points satisfying the algebraic constraints and
suppose that the system is (uniquely) solvable at each point of the chart.
Inside each chart Vα, we assume that there is a patch Uα, an open set whose
closure Ūα ⊂ Vα lies in the chart. We assume that the boundary of the patch
is a finite union of level sets of smooth boundary functions hα,i : Vα → R. We
further assume that there are transition maps Tα : ∂Uα → V ×I that apply a
change of states to points of the patch boundaries. Depending upon context,
we may want to leave the transition maps undefined on (small) subsets of
the patch boundaries where the evolution of the system is not determined
by underlying physics. We assume that the images of the transition maps
lie at states that are initial points for a continuous time trajectory inside
the closure of a patch. Intersection of a continuous time trajectory with a
patch boundary is called an event .

Global evolution of the system consists of concatenation of flows along
continuous time trajectories to events, followed by applications of the tran-
sition map at the event point. More precisely, a trajectory defined on the
time interval [t0, tn] with events at times t1 < . . . < tn−1 consists of dis-
crete states α0, . . . , αn−1 and smooth curves γi : [ti, ti+1] → Vαi with the
properties that

• γi is a trajectory of the continuous time dynamical system on Vαi , and

• Tαi(γi(ti+1) = γi+1(ti+1).
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We call the time intervals [ti, ti+1] epochs.
Steady gaits in locomotion are represented by periodic orbits in models.

This prompts us to examine carefully the stability properties of periodic
orbits in hybrid systems. For generic systems and periodic orbits, a Jaco-
bian for the Poincaré return map can be constructed as the composition of
derivatives of the flow maps during each epoch, interleaved with derivatives
of the transition maps between the epochs. The fact that flow maps along
the epochs lead to variable event times, determined by when trajectories hit
patch boundaries, makes this computation somewhat subtle. The derivative
of the map along the flow to the event surface is not simply the derivative
of the flow map at a prespecified time, but must be computed as follows.

Let ẋ = f(x, t) be an n-dimensional vector field with flow Φ(x, t) : Rn ×
R → Rn, and let g : Rn → R be a smooth function whose level set g = c
defines the patch boundary hit by trajectories with initial conditions near
x0. We assume that the level set of g is transverse to the vector field:
Dg · f 6= 0, at the point where the event occurs. We denote the time of
an event along the trajectory with initial condition x by τ(x), a function
determined implicitly by g(Φ(x, τ(x)) = c. We define Ψ : Rn → Rn to be
the map that sends x to the intersection of its trajectory with the surface
g = c; i.e., Ψ(x) = Φ(x, τ(x)). Thus g ◦Ψ is constant, Ψ is singular and

DΨ(x) = DxΦ+DtΦDxτ . (24)

Differentiating the equation g(Φ(x, τ(x)) = c gives

Dxg · (DxΦ+DtΦ ·Dxτ) = 0 . (25)

Now DtΦ = (x, τ) by the flow property and Dxg · f 6= 0, so (25) implies that
Dxτ = −(Dxg · f)−1 ·Dxg ·DxΦ. Using this, we compute from (24):

DxΨ = DxΦ− (Dxg · f)−1 · f ·Dxg ·DxΦ . (26)

These formulae are used in the numerical computations of periodic orbits
and their eigenvalues, to be described next.

4.3 Numerical Methods

Models of legged locomotion are hybrid dynamical systems in which the
continuous-time vector fields are constrained Lagrangian mechanical sys-
tems. These differ from generic ODEs in two substantive ways, both of
which must be addressed to achieve accurate simulation.
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• Events encountered by trajectories must be detected and computed
accurately.

• The differential-algebraic equations have index 3.

With regard to the second point, a DAE has differential index k if k
differentiations of the original system are required to obtain a system of
ordinary differential equations whose trajectories coincide with solutions of
the DAE [HW91]. Mechanical systems with holonomic constraints can be
written in the form

q̇ = u ,

M(q)u̇ = f(q ,u)−GT (q)λ ,

0 = g(q) ,

where M is a positive ‘mass matrix,’ g specifies the constraint functions,
G(q) = Dqg and λ is a vector of Lagrange multipliers. To obtain a system of
ordinary differential equations from this DAE, it is necessary to differentiate
the third equation three times.

Before addressing numerical issues per se, one must first express the
equations of motion in consistent forms amenable to the solution methods
to be used. For multibody mechanical systems, doing this by hand is tedious
and error-prone. In this section, we describe new methods from E. Phipps’
thesis [Phi03] that have the potential to significantly outperform existing
methods in accuracy and ease of problem formulation.

Newton’s laws of motion for a constrained multibody system state that
the time-derivatives of its linear and angular momenta are given by the
forces and moments acting on the bodies. Application of these laws requires
a minimal set of coordinates that specify the state of the system. As even the
simpler examples of §5 below indicate, expressions for velocities and acceler-
ations in these coordinates can be lengthy, making it cumbersome to derive
Newton’s equations in this ‘direct’ manner. While automated systems have
been developed to aid in these derivations, Lagrangian formulations give a
more concise approach, their main advantage being that the system’s kinetic
and potential energies can be described in terms of redundant coordinates
so long as these are subjected to the relevant constraints. The price paid
for doing this is that the resulting Euler-Lagrange equations of motion are
DAEs rather than ODEs. Moreover, even in the Lagrangian formulation,
the differentiations that produce the Euler-Lagrange differential equations
yield lengthy expressions for systems of modest size. It is therefore desir-
able to simulate a system automatically from inputs that consist only of the
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Lagrangian and the constraints. Phipps [Phi03] designed and implemented
codes to do just this.

Phipps computes Taylor series expansions of trajectories, as functions of
time, directly from the Lagrangian and the constraints. He allows constraint
functions that are smooth in positions and linear in velocities. In principle,
this is a straightforward process involving substitution of expansions with
undetermined coefficients into the Euler-Lagrange and constraint equations
and solving for the coefficients. In practice, one needs methods that handle
data structures for the Taylor series expansions and the lengthy algebra in-
volved in solving the equations. Such methods have been developed as part
of a collection of techniques known as automatic differentiation or compu-
tational differentiation [Gri00, GJM+96]. A code that evaluates a function
expressed in terms of elementary functions contains the information needed
to compute its derivatives. Automatic differentiation codes carry out the
process by applying differentiation rules for elementary functions and binary
operations in a step-by-step fashion. Many intermediate results are gener-
ated in automatic differentiation; these need not be explicitly displayed, but
the methods are memory intensive. Indeed, the Euler-Lagrange equations
themselves can be hidden from the user. One of the advantages of automatic
differentiation over approximation of derivatives by finite differences is that
there are no truncation errors: accuracy is limited only by round-off errors
in applying differentiation rules.7

The result of applying automatic differentiation to a Lagrangian with
constraints is a large system of equations for the coefficients of the degree-d
Taylor polynomial of a trajectory. Here d is an algorithmic parameter that
determines the asymptotic order of accuracy of the algorithm. In the case of
ODEs, the system of equations is triangular and readily solved. Equations
derived from DAEs are not triangular, so it is necessary to address their
regularity and efficient methods for their solution. Phipps states hypothe-
ses that the constraints must satisfy for regularity to hold, implying that
the DAE reduces to an ODE on a submanifold of the state space. (These
are satisfied for many locomotion models; indeed, a minimal set of general-
ized coordinates explicitly defines the vector field on such a submanifold.)
He then gives procedures for evaluating this vector field and computing its
Taylor series expansion.

7Since the Euler-Lagrange equations contain derivatives of the Lagrangian, automatic
differentiation codes must be capable of recursive application: if F is defined by applying
automatic differentiation to a function f , then we want to be able to apply automatic dif-
ferentiation to the function F . Making extensive use of C++ templates, Phipps developed
an automatic differentiation code with this capability.
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The problem of computing events accurately is easy to solve with Tay-
lor series methods. The representation of trajectories as a concatenation
of segments defined by Taylor polynomials is dense: its order of accuracy
is maintained at all points of the segment. Therefore, intersections of the
curves defined by the Taylor polynomials with patch boundaries locate the
events to the same order of accuracy employed in the numerical integration.
This property is manifestly not true for many numerical integration methods
in which the order of accuracy is attained only at the endpoints of an inte-
gration step. Here, the computation of events reduces to a one dimensional
root finding problem along the curves defined by the Taylor polynomials.

Steady gaits are represented by periodic orbits of locomotion models.
The simplest method for seeking periodic orbits is to follow trajectories
for a long time, hoping that they converge to the desired periodic orbit.
This strategy works best when the periodic orbit is asymptotically stable
with return map having eigenvalues well inside the unit circle. In these
circumstances, the orbit has a neighborhood that is attracted to it at an
exponential rate determined by the eigenvalues. However, as the examples
of §2.1 and those to come indicate, the periodic orbits of interest here come
in continuous families and there are directions which may be unstable or
only weakly stable. Thus, algorithms that compute periodic orbits directly
are a valuable tool for the analysis of locomotion models. We briefly describe
methods that can be built ‘on top’ of the Taylor series integrator described
above.

Direct computation of a periodic orbit is a boundary value problem.
If Φ is the flow of an n-dimensional dynamical system, we seek solutions
of the equation Φ(x, t) = x. Boundary value methods solve discretized
versions of this equation. The most widely used method for computing pe-
riodic orbits directly is a collocation method implemented in the program
AUTO [DCF+97], but this has not yet been adapted to hybrid systems. In
contrast, shooting algorithms assume that Φ and its Jacobian can be com-
puted via a numerical integration method and used directly to solve the
equation. In simple shooting , one tries to solve the equation Φ(x, t) = x.
One technical problem that must be addressed is that the system is un-
derdetermined: there are n equations but n + 1 variables (x, t). To obtain
a unique solution, one adds another equation (called a phase condition),
that is satisfied by isolated points of the periodic orbit. Simple shooting
algorithms are indeed simple to implement; the Jacobian of Φ is easy to
obtain automatically with the Taylor series methods described above. If
return map has no unit eigenvalues and the phase condition defines a sur-
face transverse to the periodic orbit, then the Jacobian of the augmented
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simple shooting system of equations will be regular and Newton’s method
will converge quadratically to the solution from nearby starting values.

Simple shooting methods are hopelessly ill-conditioned on many prob-
lems. Multiple shooting methods alleviate this difficulty by breaking up the
periodic orbit into segments, solving a system of equations Φ(xi, ti) = xi+1

for points x0,x1, . . .xN and times t0, . . . , tN with xN+1 = x0. This seems
to complicate the problem, creating a larger system of equations to solve
and making the system even more underdetermined. The payoff is that a
much broader class of problems can be solved, and extension to hybrid sys-
tems is straightforward. Specifically, transition maps are included in the
discretization (xi, ti) of the periodic orbit by regarding the boundary func-
tions defining events as phase conditions for the boundary value solver. The
transition maps are applied at events and their Jacobians are inserted in
the computation of Jacobians for the periodic orbit. Guckenheimer and
Meloon [GM00] describe implementations of multiple shooting methods us-
ing the Taylor series integration described above. Phipps [Phi03] extends
these multiple shooting methods to hybrid systems.

4.4 A piecewise holonomic example: the SLIP

The discrete Chaplygin sled of §2.1.2 shows that (partial) asymptotic sta-
bility is possible in some hybrid system, even if the continuous-time vector
fields defining each epoch are Hamiltonian. We now return to a more com-
plex and realistic locomotion model that also exhibits asymptotic stability,
the SLIP. However, before describing it we note that other hybrid systems
have return maps whose natural canonical structures preclude asymptotic
stability. One set of such examples are ‘billiards’ problems involving rigid
bodies bouncing elastically at collisions with each other or with prescribed
boundaries [Bir27, Sin91]. A particularly simple case – a single elastic ball
bouncing on a sinusoidally-vibrating table – may be simplified as the area-
preserving standard map [GH90, §2.4].

In order to relate to horizontal plane (LLS) models in which yawing mo-
tions play an essential role, we describe a generalized SLIP, endowed with
rotational inertia: Fig. 14, cf. Fig. 4, although we subsequently restrict to
the non-rotating or point mass case. A massless, axially-sprung leg is at-
tached to a extended body of mass m and moment of inertia I at a hip joint,
H, a distance d from the COM, G. The system’s configuration is determined
by the pitch angle θ and COM position (xG, yG) referred to an inertial frame,
although during stance, it is convenient to replace the Cartesian coordinates
(xG, yG) by polar coordinates: the angle ψ between the line joining foothold
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Figure 14: The spring-loaded inverted pendulum (SLIP) including pitch-
ing. (a) The stance coordinate system; (b) the stance and flight phases
comprising a full stride. Adapted from [GAHK03].

O to G and the vertical (gravity) axis, and the distance ζ from foothold
to COM: Fig. 14(a). (Note that ψ increases clockwise, while θ increases
counterclockwise.) The (compressed) spring length is

η =
√

d2 + ζ2 + 2dζ cos (ψ + θ) . (27)

For simplicity, we take frictionless joints at O and H. Cartesian coordinates
provide the simplest description during flight. The body is assumed to
remain in the sagittal plane throughout.

A full stride divides into a stance state with foothold O fixed, the leg
under compression, and the body swinging forwards (ψ increasing); and a
flight state in which the body describes a ballistic trajectory under the sole
influence of gravity. Stance ends when the spring unloads at leg length
l and the foot reaction force drops to zero; flight then begins, continuing
until touchdown, which occurs when the landing leg, uncompressed and
set at a predetermined angle β relative to horizontal, contacts the ground:
Fig. 14(b). Control is applied only to reorient the leg during flight, prior to
touchdown. The touchdown and liftoff events are respectively determined
by COM height yG first reaching l sinβ−d cos θ from above and leg length η
first reaching l from below, and COM positions and velocities are unchanged
by either event. Thus, relative to the stance phase coordinate origin O
of Fig. 14, at liftoff (xLOG , yLOG ) = (ζLO sinψLO, ζLO cosψLO). A similar
transition map from Cartesian to polar coordinates applies at touchdown.

Using the coordinate system of Fig. 14, the kinetic and potential energies
of the body may be written as

T =
1

2
m
(

ζ̇2 + ζ2ψ̇2
)

+
1

2
Iθ̇2 , (28)

Vtot = mgζ cosψ + V (η (ζ, ψ, θ)) , (29)
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where V denotes the spring potential. Forming the Lagrangian L = T −Vtot
and writing ∂V/∂η = Vη, we obtain the equations of motion for the stance
phase:

ζ̈ = ζψ̇2 − g cosψ − Vη (η)

mη
(ζ + d cos (ψ + θ)) , (30a)

ζψ̈ = −2ζ̇ψ̇ + g sinψ + d
Vη (η)

mη
(sin (ψ + θ)) , (30b)

θ̈ = dζ
Vη(η)

Iη
sin (ψ + θ) . (30c)

The flight phase dynamics are determined by the ballistic COM transla-
tion and torque-free rotation equations, which may be integrated in Carte-
sian coordinates to yield:

xG(t) = xLOG + ẋLOG t , yG(t) = yLOG + ẏLOG t− 1

2
gt2 , θ (t) = θLO+ θ̇LOt , (31)

where the superscripts LO refer to the system state at liftoff.
Eqns. (30) are in general non-integrable [Arn78, GH90, Hol90] and the

stance trajectory must be obtained numerically, even in the special case
d = 0 in which the rotation (θ) variable decouples and the system reduces
to the two-degrees-of-freedom point mass SLIP of [Bli89, BF93]. However,
if we additionally assume that the spring is sufficiently strong, elastic energy
dominates the gravitational potential during most of the stance phase and
we may neglect the gravitational force and moment entering Eqns. (30a) and
(30b), in which case the moment of linear momentum of the COM about the
foot, mψ̇ζ2, is also conserved and (30a) may be integrated precisely as in the
d = 0 and truly gravity-free LLS analyzed in §5.1.1. (This approximation
is assessed and discussed in detail in [SK00], cf. [GAHK03]). Composition
of the resulting stance and flight phase dynamics results in the approximate
touchdown-to-touchdown Poincaré map:

P :

[

vn+1

cos (δn+1)

]

=

[

vn
√

1− 2gl
v2n

(sin (β +∆ψ)− sinβ) cos (δn + π −∆ψ − 2β)

]

,

(32)
in which the system’s state at the n’th touchdown is described by the COM
velocity magnitude vn and direction δn with respect to a horizontal datum
(Fig. 14(b)). In (32) the angle ∆ψ swept by the leg is given by the quadrature

∆ψ(vn, δn) = 2

∫ l

ζb

dζ

ζ
√

[mv2n−2V (ζ)]ζ2

mv2nl
2 sin2(β−δn)

− 1
, (33)
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Figure 15: A family of approximate one-dimensional Poincaré maps for a
linear spring SLIP with k = 10,m = 1, l = 1.5, β = π/4 and speeds v̄ ranging
from 3.2 to 8. The fixed points appear in a saddle-node bifurcation, and a
gap then opens as v̄ increases. When a pair of fixed points exists, that at
larger δ is unstable; the lower δ one may be stable or unstable, and for very
high speeds only the latter exists. From [GAHK03].

where ζb is the leg length at midstride. In reducing this two-degree-of-
freedom system to a two-, rather than three-dimensional return map, we are
using the fact that the prescribed leg touchdown angle fixes the COM posi-
tion relative to the stance coordinate origin: (xTDG , yTDG ) = (−l cosβ, l sinβ).
If pitching motions were allowed, two further state variables, θn and θ̇n,
would be required, and the map would be four-dimensional, as for the LLS
and other models of §5.

Note that, due to energy conservation and the ‘constant height’ touch-
down protocol for d = 0, the COM speed vn is the same at each touchdown:
this is true even when gravity is included during stance. The dynamics
is therefore captured by the one-dimensional map formed from the second
component of (32) with speed vn = v̄ viewed as a parameter. Fig. 15 shows
an example for a linear spring V = k(η − l)2/2. The gap in the domain
of definition for higher speeds is caused by liftoff conditions for which the
COM fails to reach the necessary touchdown height during flight and ‘stum-
bling’ ensues [GAHK03]. The maps shown here indicate that, for speeds v̄
above a critical lower limit v̄SN at which a saddle-node bifurcation [GH90]
occurs, a stable fixed point exists, although its domain of attraction shrinks
dramatically as v̄ increases. For other parameter choices and spring laws,

56



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 16: A family of one-dimensional Poincaré maps computed by Phipps’
method. Gravity was included during stance. Fixed parameters are m =
1 and l = 1.5 with the gravitational constant normalized to be 1. The
touchdown speed v̄ is varied from 3.2 to 8 in steps of 0.48, to match the
speeds used for Fig. 15. Newton’s method was used to precisely compute
the stable periodic orbit with v̄ = 5.12. The non-trivial eigenvalue of its
monodromy map is -0.146.

period-doubling and even chaos may occur [GAHK03]. For v̄ < v̄SN , the
forward velocity at touchdown is too low to overcome the potential energy
barrier due to the forward-oriented spring leg, and the mass (eventually)
bounces backward: no periodic gaits exist.

Although the quadrature of (33) can be evaluated, in the case of a
quadratic potential, in terms of Jacobian elliptic functions [SH00b], the ex-
pressions are difficult to use and the return maps of Fig. 15 were computed
by direct (fourth order Runge-Kutta) integration of (30a-30b) for d = g = 0.

We have computed analogous maps including gravitational effects (but
still for d = 0) using Phipps’ Taylor series methods described in § 4.3. Rather
than reducing to a two- or one-dimensional map, here one finds polynomial
approximations to trajectories of this two-degree-of freedom hybrid system
in the full four-dimensional phase space. Applying Newton’s method to the
resulting return map and computing its Jacobian, we find for example that
the stable fixed point has eigenvalues 0, 1, 1 and approximately −0.146 at
v̄ = 5.12. The (generalized) eigenspace of 1 is tangent to the plane spanned
by the vector field (i.e., the direction along the orbit) and the family of
periodic orbits obtained by varying v̄, and the zero eigenvalue is due to the
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singularity of the transition map at touchdown. The final eigenvalue is that
of the reduced one-dimensional map. Fig. 16 shows results for a range of
speeds (total energies); this Figure should be compared with Fig. 15.

The partial asymptotic stability of the SLIP, and of the LLS models to
be studied in §5, prompts the following

Question: What are the characteristics of the events and transition maps
needed to obtain asymptotically stable periodic orbits in a (conservative)
piecewise holonomic system? In systems with symmetries, what is needed
to obtain partially asymptotically stable periodic orbits? See Altendorfer,
Koditschek and Holmes [AKH02] for a relevant, albeit far from complete,
discussion.

At this point it is worth noting an important distinction between inertial
and body frame coordinate systems. Newton’s laws must be formulated in
an inertial (non-accelerating) frame [Gol80], while limb positions and forces
generated in muscles or collectively by limbs, are usually most conveniently
represented in body coordinates. Proprioceptive sensing and preflex or reflex
control also take place in the body frame. In formulating Eqns. (30-31) we
use only inertial frames, but in the models of §5 we pass back and forth
between inertial and body frames using rotation matrices.

The point mass SLIP with the fixed touchdown protocol described above
is simple enough to be amenable to (almost) complete analysis, although
little is known about coupled pitching motions (in case d 6= 0), or other
touchdown protocols. Here we have assumed the simplest such, requiring
a minimum of feedback: mere knowledge of the inertial horizontal datum
during flight; given this, leg placement is effected by feedforward control.
More complex procedures have been proposed, including ones in which
the leg is retracted so that it either begins its back swing prior to touch-
down [SG02, SGBH02, SGH03, AKH02], or, as in the hexapedal robot
RHex [SBK01, SK03], after liftoff it continues to rotate in the same di-
rection, passing ‘over the shoulder.’ These effectively enlarge the domain
of attraction of stable gaits, partly by allowing the SLIP to recover from
stumbling.

5 Mathematical models for horizontal plane dy-

namics

As we have described, legged dynamics in the sagittal plane is often mod-
elled by an inverted elastic pendulum or SLIP (e.g., [CHT77, McM84, Bli89,
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MC90, BF93]). Since the typical splayed insect leg posture implies sagit-
tal static stability for the majority of stance positions [TBF94], in [SH00b,
SH00a] we introduced a similar model (without gravity) to explore motions
in the horizontal plane: the lateral leg spring (LLS) system. Our hope is
that, at least in near-steady gaits, sagittal and horizontal plane dynamics
might be only weakly coupled, so that independent analyses will help us
build towards an understanding of the full six degree-of-freedom body mo-
tions. Moreover, since in many insects leg masses are a small fraction of
body mass, we neglected limb masses. (In Blaberus, for example, if we in-
clude the coxa joint, which does not move appreciably, with the body, total
leg mass is ≈ 5% of body mass [KWF97, Table 1].) For additional simplic-
ity, and to capitalize on conservation of angular momentum in central force
problems, we at first restricted our analysis to bipedal models with a 50%
duty cycle, so that precisely one ‘effective foot’, representing three legs of
a tripod acting as one, is in ground contact at any time. If foot contact is
assumed torque-free, for such models angular momentum is conserved about
the stance foot, as it is about the peg in the model of §2.1.2.

We shall give a fairly detailed description of the simplest model, to make
the main ideas clear, and successively curtail our accounts as we move to
more complex models, referring the reader to relevant literature.

5.1 The simplest passive model

The basic LLS model is shown in Fig. 17(a). A rigid body of mass m
and moment of inertia I moves freely in the plane under forces generated
by two massless, laterally rigid, axially-elastic legs, pivoted at a point P
(generally displaced forward or backward a distance d from the COM G),
and intermittently contacting the ground at feet F, F ′ with a 50% duty cycle.
F, F ′ and P are pin joints (no torques). In considering multilegged animals,
we appeal to the stereotyped use of a double-tripod gait in hexapods [FT91b]
and a double quadruped gait in crabs [BF87], and represent each support
set in stance by a single effective or virtual leg . Errors induced by collapsing
leg groups linked in such stance phases to a single virtual leg are discussed
below. We shall describe a hexapedal model in §5.3.

A full stride begins at left touchdown at time t = tn with the left leg
spring relaxed at angle +β relative to body orientation; the left stance phase
ends at tn+1 when the spring is again relaxed, the body having ‘run past its
foot.’ The left leg then begins its swing phase and the right leg simultane-
ously touches down at angle −β; its stance phase, and the stride, ends with
spring relaxation at right liftoff/left touchdown tn+2. We use the conven-
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tion that n even (resp. odd) refers to left (resp. right) stance. Balance of
linear and angular momentum results in three equations of motion for COM
translation r(t) = (x(t), y(t)) and body orientation θ(t) during stance:

mr̈ = R(θ(t)) f , Iθ̈ = (rF(tn)− r)×R(θ(t)) f , (34)

where R(θ) is the rotation matrix, needed to transform leg forces f , usually
specified relative to the body, to the inertial frame; rF(tn) denotes touch-
down foot position, expressed via d, l, β and body angle θ(tn) at touchdown,
and × denotes the vector cross-product. The ‘hip-pivot’ P may be fixed,
or may move in a prescribed manner (perhaps dependent on leg angle φ
relative to body); the specific (linear) rule

d = d0 + d1(ψ − θ) (35)

exemplifies both cases (d1 = 0: fixed; d1 6= 0: moving). We shall initially
suppose that d is fixed.

Global conservation of total energy, and conservation of angular momen-
tum LF = Iθ̇+ (r− rF )×mṙ about the foot in each stance phase, assist in
integration of (34), which is most easily done in a polar coordinate system
centered on the foot: Fig. 17(b). We summarise the results, a complete ac-
count of which appears in [SH00b]. In terms of the polar coordinates (ζ, ψ)

60



and θ, the kinetic and potential energies and the total angular momentum
about the (left) stance foot take the forms:

T =
1

2
m(ζ̇2 + ζ2ψ̇2) +

1

2
Iθ̇2 , (36)

V = V (η) with η =
√

ζ2 + d2 + 2ζd sin(ψ − θ) , (37)

LF = mζ2ψ̇ + Iθ̇
def
= pψ + pθ (= const.) , (38)

and Lagrange’s equations are:

mζ̈ = mζψ̇2 − Vη
η
[ζ + d sin(ψ − θ)] , (39a)

m(2ζζ̇ψ̇ + ζ2ψ̈) = −dVη
η
ζ cos(ψ − θ) , (39b)

Iθ̈ = d
Vη
η
ζ cos(ψ − θ) . (39c)

Reflecting about θ = 0, which takes θ 7→ −θ, we obtain an analogous de-
scription for right foot stance; thus, appeal to our n even-left odd-right
convention and replacement of θ by (−1)nθ in (39) supplies the two vector
fields that, alternately applied, define a hybrid dynamical system. This for-
mulation allows a general spring potential V , but the explicit examples that
follow assume a linear spring V = k

2 (η− l)2. Note that (39) is a gravity-free
version of the full SLIP model (30) (with a different definition of leg angle
ψ).

Assuming that one stiffness parameter suffices to describe the spring,
as in the linear case, the entire model is characterised by six physical pa-
rameters: leg stiffness, k, relaxed length, l, and pivot position relative to
COM, d, along with m, I and β. Normalizing lengths with respect to l and
nondimensionalizing time t̃, these may be reduced to four nondimensional
groups:

k̃ =
kl2

mv2
, Ĩ =

I

ml2
, d̃ =

d

l
, and β ; with t̃ =

vt

l
. (40)

Here v is a representative speed (e.g. COM velocity magnitude at touch-

down, or average forward speed < v >) and
√

k̃ is a Strouhal number char-
acterising the ratio of storable potential to kinetic energy. For fixed k̃, Ĩ , d̃
and β, solutions of (34) describe identical paths in (r, θ)-space, scaled by
l, at rates determined by t̃. This formulation is useful for parameter stud-
ies [SH01], but here we shall retain dimensional quantities to permit direct
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(b) the case d = 0. From [SH00b].

comparisons with experimental data. Specifically, for most of the examples
to follow, parameters characteristic of the deaths-head cockroach Blaberus
discoidalis were selected [FT90, TBF94, KWF97]: m = 0.0025 kg, I =
2.04 × 10−7 kg m2, l = 0.01 m, d = −0.0025 m, k = 2.25 − 3.5 N m−1, β =
1 radian (57.3o). I and m may be directly measured, and choices of l and β
are constrained by the requirement that stride length Ls = 4 cosβ ≈ 0.022 m
at the animal’s preferred speed of ≈ 0.25 m s−1. Stiffnesses were chosen
to given a reasonable average forward speed range for steady gaits (above
< v >≈ 0.15 m s−1), and to ensure that leg compressions at midstride were
not excessive. We shall refer to these choices as the ‘standard’ parameter
set.

The three degrees of freedom of (34) or (39) demand specification of six
initial conditions; however, as for the sleds of §4.1, the system is invariant
under SE(2) in the sense that only the COM position relative to foothold (r−

62



rF(tn)) and body angle θ relative to inertial frame appear in the governing
equations. We find it convenient to define a reduced set of four variables
that describe the body’s ‘internal dynamics’ at touchdown: as in the SLIP of
Fig. 14 these are the COM velocity magnitude v(tn) = |ṙn(t)|, COM velocity
direction or ‘heading’ δ(tn) relative to body axis, along with body orientation
θ(tn) relative to the inertial reference frame, and body angular velocity
ω(tn) = θ̇(tn): see Fig. 18(a). Here we retain the ‘mechanical’ terminology
of [SH00b, SH00a]. In traditional biological usage, heading denotes the
COM velocity with respect to compass direction, i.e. the quantity δ + θ,
and body orientation denotes the angle the body makes with the velocity
vector (δ). Note that δ is positive towards the leg that is touching down,
and δ ∈ [β − π/2, β].

Given the total (kinetic) energy at touchdown:

E = T0 =
p2ζ
2m

+
p2ψ

2mζ20
+
p2θ
2I
, (41)

where

ζ0 =
l sin(π − β)

sinα
and d sinα = l sin(β − α) (42)

are determined by touchdown geometry, and noting that

ζ̇ = v cos(β − δ) and ψ̇ =
v

ζ0
sin(β − δ) (43)

at touchdown, all six initial values necessary for integration of (39) may
be found from (v, δ, θ, ω) and the touchdown parameters l, β. Integration
yields left and right single stance maps FL and FR specifying these variables
at each touchdown instant tn+1 in terms of their values at the preceeding
touchdown tn, and composition yields the ‘full L-R stride’ Poincaré map
P = FR ◦ FL:

(vn+2, δn+2, θn+2, ωn+2) = P(vn, δn, θn, ωn), (44)

where vn = v(tn), etc.. Note that the ‘full stride’ includes left and right
stance phases, unlike the stance-flight SLIP map of §2.2, and might more
properly be called ‘double stride.’

Four-dimensional Poincaré maps of the form (44) suffice to describe all
the models treated in this section. No matter how many or complex their
legs, muscles or neural architectures, the feet in stance ultimately supply
forces and moments to the body via equations of the general form (34),
leading to incrementation of the dynamical variables (v, δ, θ, ω) from stride

63



to stride. Thus, the locomotive behaviors of both the LLS template, and the
more complex and anchored hexapedal and neuromechanical models of §§5.3-
5.4, are summarised by the four-dimensional maps. Of course, this does
not mean that the maps are simple to compute in any of the examples, but
solutions of some special cases may be found in closed form or approximated
perturbatively. To these we now turn.

5.1.1 An integrable limit: d = 0

Using (38), Eqns. (39) can be reduced to two degrees of freedom, but in
general no further constant of motion, excepting the total energy, exists.
However, if the legs are attached at the COM (d ≡ 0), the rotation degree
of freedom θ trivially uncouples and each component pψ and pθ of LF is
individually conserved (cf. (39b,c): both ψ and θ are cyclic coordinates).
The system is therefore completely integrable and may be reduced to a
quadrature using conservation of energy [Gol80, Arn78]:

E =
mζ̇2

2
+

p2ψ
2mζ20

+
p2θ
2I

+ V (ζ) = E0 . (45)

Specifically, since ζ ≡ η, symmetry of the phase portraits about mid-stance
implies that the angle (β − δ) between the mass center velocity direction
and the leg is equal at lift-off to its value at touchdown. As may be seen
from Fig. 17(b), this implies that the angle δn+1 at right touchdown may be
computed from vn, δn at left touchdown as

δn+1 = δn + π − (∆ψn + 2β) + (θn+1 − θn), (46)

where ∆ψn = ∆ψ(vn, δn) is the net angle the leg turns through during the
stance phase. This leads to the single stance maps (n even-left, odd-right):

vn+1 = vn

δn+1 = δn + π − (∆ψ(vn, δn) + 2β) + (−1)nωτ(vn, δn)
θn+1 = θn + ωnτ(vn, δn)

ωn+1 = ωn (47)

where τ(vn, δn) denotes the stance phase duration.
Using (43) with ζ0 = l and the conserved mass center kinetic plus po-
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tential energy, from (39) with d = 0 we compute the quadratures:

τ(v, δ) = 2

∫ l

ζb

√
mζ dζ

√

[mv2 − 2V (ζ)]ζ2 −mv2l2 sin2(β − δ)
, (48)

∆ψ(v, δ) = 2

∫ l

ζb

dζ

ζ
√

[mv2−2V (ζ)]ζ2

mv2l2 sin2(β−δ)
− 1

, (49)

where ζb is the (minimal) spring length at mid-stride (ζ̇ = 0: Fig. 18(b)),
given by:

[mv2 − 2V (ζb)]ζ
2
b = mv2l2 sin2(β − δ) . (50)

Explicit formulae for the cases of quadratic and inverse square potentials,
corresponding to a linear spring and a model for an ‘air spring’ [Rai86], are
given in [SH00b], but the former are in terms of Jacobi elliptic functions and
awkward to use. Schwind and Koditschek [SK00] provide useful approxima-
tions in terms of elementary functions. An upper bound for ∆ψ is easily
found by considering the limit v̄ → ∞, in which potential energy may be
neglected and the COM travels in a straight line [SH00b]:

∆ψ(v, δ) ≤ π − 2(β − δ) . (51)
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Fig. 19 shows graphs of the resulting one-dimensional single stance return
map (the second row of (47)) for a linear spring and parameters charac-
teristic of Blaberus discoidalis over a range of touchdown velocities. When
∆ψ has a unique maximum and its slope is always less than 2 (for which
(51) is necessary but not sufficient, but which holds for linear and air
springs [SH00b, SH01]) then this map is unimodal [GH90] and has at most
one stable fixed point, an unstable fixed point, and no other invariant sets.
Moreover, there is no gap in its domain of definition. (Compare Fig. 19 with
the SLIP Poincaré maps shown in Figs. 15-16 of §4.4.)

Question: An open question which may appeal to analysts is to classify
those potential energy functions V (η − l) that, via (49-50), yield return
maps possessing at most a unique stable fixed point, or, more generally, a
single attractor. The latter would follow if it could be proved that δ −∆ψ
has negative Schwarzian derivative [Sin78, GH90]. Direct computation of
derivatives of ∆ψ yield indeterminate forms that appear difficult to deal
with, and the Schwarzian involves derivatives up to order three.

Fixed points of (47) correspond to symmetric gaits in which left and
right stance phases are mutual reflections, and the COM oscillates about a
straight path: (v̄, δ̄, θ̄, 0), with δ̄ implicitly determined in terms of v̄ by

∆ψ(v̄, δ̄) = π − 2β . (52)

The eigenvalues of the linearized mapDP(v̄, δ̄, θ̄, 0) are λ1−3 = 1, with eigen-
vectors (0, 0, 1, 0)T , (∂∆ψ/∂δ,−∂∆ψ/∂v, 0, 0)T and a generalized eigenvec-
tor; and λ4 = 1 − ∂∆ψ/∂δ|(v̄,δ̄), with eigenvector (0, 1, 0, 0)T . The first of
these is associated with rotational invariance and the second with conserva-
tion of energy; the third is special to this uncoupled case; as we shall see, for
d 6= 0 it perturbs away from 1. Note that, as v̄ increases, fixed points appear
at a critical speed v̄c in a saddle-node bifurcation when (52) is satisfied and
simultaneously ∂∆ψ(v̄, δ̄)/∂δ = 1. For v̄ < v̄c kinetic energy at touchdown
is insufficient to overcome the spring potential and the body bounces back.
Bifurcation diagrams illustrating branches of steady gaits arising in a similar
saddle-node are shown below for d 6= 0.

5.1.2 Fixed COP: d 6= 0

For d 6= 0 (39) is not longer integrable, so we resort to numerical solutions
to construct the full stride map P. Details of the methods adopted, includ-
ing finite difference methods to approximate the Jacobian DP, are given
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in [SH00b]. For small d a perturbative calculation, using power series ap-
proximations for the state variables (η, ψ, θ), confirms these results [SH01].
We find that the branches of fixed points persist, as shown in Fig. 20(left),
and that one of the multiple eigenvalues breaks away from 1, moving inside
the unit circle for d < 0 and outside for d > 0: Fig. 21. Thus, for hip
behind COM, rotational coupling leads to bounded yawing oscillations and
the body still moves along a straight path. Fig. 22 illustrates the effect of
an impulsive body angle perturbation applied at touchdown on the third
stance phase. After 1-2 steps, the body recovers a straight path, having
suffered a net heading change due to the angular impulse. The manner in
which the touchdown states recover is also shown. Further examples are
given in [SH00a].

The fixed COP model, with appropriate geometry, exhibits partially
asymptotically stable motions; indeed, since it is a conservative, rotationally-
invariant system, two of the four eigenvalues strictly less than one in magni-
tude are the best we can do. But how well does the gait dynamics compare
with experimental data? Fig. 23 shows forces, moments and velocities dur-
ing a full left-right stride. Comparing forward and lateral velocities during
the stride to those reported in [FT90, KWF97] and reproduced in the model
of [KF99], reveals that they match reasonably closely those observed for the
cockroach. Forces generated at the foot (or equivalently, at P ) also compare
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fairly well to net leg tripod forces both in orders of magnitude and time
histories, although the peak fore-aft forces (±0.0014 N) and lateral forces
(±0.0041 N) have magnitudes ‘reversed’ from ±0.004 N and ±0.0032 N
taken to represent typical data in [KF99]. However, the yawing θ variation
for the model differs markedly from observations: it approximates a negative
sinusoid (central bottom panel of Fig. 23(b)). This is due to the torque,
which is positive during L-stance and negative during R-stance, since d < 0
(third panel of Fig. 23(c)). Experimental studies ([KWF97], and see Fig. 25
below) reveal that θ behaves more like a positive cosinusoid , with θ̇ ≈ 0 at
touchdown and liftoff.

69



0

x10
-3

0

5

β
l

β β

β

l

l

4l
 c

os
β

0 0.05 0.1 0 0.05 0.1

0 0.05 0.1 0 0.05 0.1

0 0.05 0.1 0 0.05 0.1

0.225

0.22

0.215

-0.02

0

0.02

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

-5

0

1

-1

1

-1

Fw
d 

V
el

oc
 (

m
/s

ec
)

L
at

 V
el

oc
 (

m
/s

ec
)

B
od

y 
Y

aw
 (

ra
d)

time (sec) time (sec)
Fy

 (
N

)
Fx

 (
N

)
N

et
 M

om
en

t (
N

-m
)

x10
-3

x10
-5

l
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ations for steady gait of the fixed COP model with standard parameters
running at preferred speed 0.22 m s−1. From [SGR+02].

Question: While explicit quadratures can be evaluated for specific spring
laws [SH00b], the resulting expressions are often difficult to use. Taylor
series approximations of orbit segments about mid-stride were developed
in [SH01, SH03], but these are lengthy. Can more elegant approximations
be found?

5.1.3 Moving COP

We have noted that the fixed COP model (Fig. 23) produces yaw oscillations
of sinusoidal rather than the observed cosinusoidal form, due to body torques
incurred by the fixed ‘hip’ P . This may be remedied by allowing a moving
COP, as in Fig. 24, for which d was specified by Eqn. (35) with d0 = 0
and d1 = −0.0035 m, resulting in variation of d = ±0.002 m, with d ≈ 0
at mid stance: compare the bottom panels of Figs. 23 and 24. For these
computations, we took l = 0.008 m and k = 3.52 N m−1; again l and β are
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Figure 24: COM path, velocity, yaw, and leg force and body moment vari-
ations for steady gait of the moving COP model with standard parameters
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that d(t) varies symmetrically between d̄ and −d̄ respectively; θ̄ is the value
of θ at leg touchdown. From [SGR+02].

constrained by the stride geometry: see Fig. 24. Branches of gaits exist for
speeds above critical much as in the fixed COP case: Fig. 20(right).

Quantitative comparisons of lateral force and velocity magnitudes remain
good, model values being ≈ 30% higher than experimental values. However,
fore-aft magnitudes differ more appreciably, being lower than in the fixed
COP model, and lower than experimental values by factors of 2-10 when
compared over a large data set [FT90, FBT91, KWF97]. (There is significant
variation among trials of individual animals, and among animals, even after
scaling to the mass value (m = 0.0025kg) used in the model.) The data
shown as solid curves in Fig. 25 were reconstructed for a typical run of one
animal as in unpublished work of Garcia, Full, Kram and Wong (2000),
from trials of [FBT91] and [KWF97]. These data were selected for their
clean phase relationships, although the fore-aft values are unusually high,
and we include fore-aft data (dashed) from [FT90] for a second animal, closer
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Figure 25: Velocity, yaw, leg force and moment variations over about one
stride for Blaberus discoidalis moving at 0.22 m s−1. The sign conven-
tion is the same as for the models. Data for all components from a sin-
gle trial [FBT91, KWF97] are shown solid, with yaw angle computed from
net moments; the direct kinematic yaw measurement is chain-dotted. The
top panels also show as dashed curves fore-aft force and velocity data from
a different trial [FT90], to illustrate variation in magnitudes and average
speed (stride durations are adjusted to match). Since lateral forces were not
simultaneously measured in [FT90], moments could not be computed, but
they exhibit less variability. From [SGR+02].
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to the mean values adopted in [KF99], to illustrate the variability.
We also note that the LLS model describes only horizontal plane dynam-

ics, while Fig. 25 is derived from three-dimensional motions. This may par-
tially account for the underestimate of fore-aft forces and velocity variations
by our models. More strikingly, moments and yaw angles are significantly
lower than observed (by factors of 10-20); we ascribe this primarily to the
collapse of the leg support tripod to a single virtual leg; for futher details
see [SGR+02]. In §5.3 we show that a hexapedal model can rectify these
quantitative mismatches.

5.1.4 On scaling and similarity

The LLS model was developed with insects, cockroaches in particular, in
mind. However, it may have relevance for other sprawled posture animals,
of differing sizes, through similarity relations. For geometrically-similar an-
imals, m ∝ l3 and I ∼ ml2 ∝ m5/3. Stiffnesses are usually assumed to
scale according to elastic similarity: k ∝ m2/3 [MB83], and animals are
most often compared at equal Froude numbers, Fr = v/

√
gl, as in the SLIP

model [Bli89]. The relaxed leg length l defined for the LLS model is the
horizontal projection of a full leg length, and thus we may still appeal to
Froude number similarity, leading to the relation v ∝ l1/2 ∝ m1/6. Substi-
tuting these similarity relations into the nondimensional parameters of (40)
reveals that k̃, Ĩ and d̃ all remain constant for geometrically similar animals.
Thus, the model predicts that geometrically similar animals should possess
the same gait characteristics and stabilities, merely scaled in size and time
(frequency).

For non-geometrically similar species, scaling relationships developed
in [SH01] permit prediction of gait families from a single, ‘standard’ pa-
rameter set.

5.2 Muscles as activated springs

In [SH03] we augmented the passive bipedal LLS models by adding rudi-
mentary models of muscles in the form of actuated linear springs, whose
unstressed (zero force generating) lengths change according to fixed or feed-
back protocols. Specifically, the second class of models adopted in that paper
assume the form illustrated in Fig. 26. An actuated (variable length) spring
pushes or pulls on an extension of the effective leg beyond the pivot, produc-
ing forces and moments similar to those of the musculo-apodeme complexes
of [FA95]. For simplicity, we assume that the single effective leg is pivoted at
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Figure 26: A compliant leg bipedal model with actuated linear hip spring,
kh, lh(t). From [SH03].

the COM and, in place of the elastic knee and two-element limb of [FA95],
we retain the passive axial leg spring of § 5.1 [SH00b, SH01], adding a lin-
ear viscous damper to represent losses due to muscles and flexure of the
exoskeleton [GKP+00].

The nominal actuated hip spring length lh may be determined either as
a function of time alone, or may depend on time and the configuration vari-
ables, e.g.: lh(ψ, θ, t), the explicit time dependence representing sterotyped
CPG (motoneuron) outputs. The kinetic and potential energies of the LLS
with passive linear leg and active hip springs are then:

T =
m(ζ̇2 + ζ2ψ̇2)

2
+
Iθ̇2

2

V =
kh
2
(−h sin(ψ − (−1)nθ)− lh(ψ, θ, t))2 +

k

2
(ζ − l)2 , (53)

In this formulation, it is assumed that the hip spring is always aligned par-
allel to the body centerline, so that its actual length, measured from stance
center where the leg is at 90o to the body axis, is −h sin(ψ − (−1)nθ).

The functional form for the actuated spring length is chosen to produce a
qualitatively correct moment history: for the left (resp. right) stance phase:
i.e. negative (resp. positive) moment about the COM during the first half
of each stance phase, followed by a positive (resp. negative) moment during
the second half (cf. Fig. 25, lower right panel). This requires that lh be
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approximately odd in θ about midstride and approximately equal to its
actual length at both the start and end of stride. We therefore suppose that
lh depends on leg angle as well as time, specifically setting:

lh(ψ, θ, t) = −h sin(ψ − (−1)nθ)
(

2t

ts
− 1

)2

, (54)

where ts is the desired stance period duration. This guarantees that lh
is approximately odd about midstride, as evidenced by its dependence on
the leg angle relative to the body, and zero at the start of the stride and
approximately zero near the end, provided the actual stance duration is close
to ts: the stance duration ‘programmed’ by the CPG.

The formulation (54) implies a feedback law in which the current leg an-
gle ψ− (−1)nθ is sensed and the CPG’s ‘autonomous’ signals to the muscles
are modulated thereby. The resulting Lagrangian computed from (53), with
generalized damping in the first variable, yields the following equations of
motion:

mζ̈ = mζψ̇2 − k(ζ − l)− cζ̇

m(2ζζ̇ψ̇ + ζ2ψ̈) = −1

2
khh

2 sin(2(ψ − (−1)nθ))(1− (
2t

ts
− 1)2)2 (55)

Iθ̈ =
(−1)n

2
khh

2 sin(2(ψ − (−1)nθ))(1− (
2t

ts
− 1)2)2 .

A typical stride, with a relatively strong muscle spring constant kh and
dissipation c included, is illustrated in Figure 27. The hip torques produced
by the actuated spring now match experimental moments about the COM
reasonably well (compare the bottom panels of Fig. 27 with those of Fig. 25),
but the reaction forces induced at the foot have reversed the phasing of the
fore-aft force patterns, so that forces are positive in the first half of stance
and negative in the second, opposite to those observed: compare the top
panels of Fig. 27 with those of Fig. 25. Weaker muscle spring constants retain
the appropriate fore-aft force patterns, but suffer the same low magnitudes
as the passive LLS model (cf. [SH03, Fig. 10]). Similar behavior occurs in
a simpler model, also treated in [SH03], in which hip torques are directly
imposed. The lateral forces and velocity variations remain approximately
correct.

The observation that higher torques imposed by actuation can correct
yawing motions at the expense of producing incorrect fore-aft translational
dynamics underlines the need for a hexapedal model, in which additional
actuation degrees of freedom are available due to the multiple legs active in
stance.
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Figure 27: Characteristics of a typical periodic stride for the compliant
leg model with a ‘strong’ actuated linear hip spring and dissipation in the
passive leg spring: c = 0.01, kh = 300, h = 0.001, ts = 0.0475. Other
parameters were set to values typical of the cockroach Blaberus discoidalis,
as described in §5.1. From [SH03].

As in the passive models of Section 5.1, a family of gaits may be produced
by varying the desired stance period, ts. A typical example is illustrated in
Figure 28. The energy balance induced by the actuated spring now brings
a third eigenvalue, corresponding to COM speed variations, into the unit
circle, leaving only the single (rotational) eigenvalue at 1. This behavior is
not dependent upon the presence of dissipation; even if c = 0, the stride
duration imposed by ts and the balance of positive and negative work done
by the actuated spring suffices to determine a stable speed.

It is not immediately obvious that actuation or prescription of leg forces
should preserve the inherent stability of the passive LLS models. Kubow and
Full [KF99] showed, via numerical simulations of equations of the form (34)
with alternating tripods summing to produce forces f(t) given as sinusoidal
functions of time in the body frame, that purely prescribed forces could
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Figure 28: Periodic gait family for the compliant leg system with an actuated
hip spring. Gait family was computed by varying ts between 0.035− 0.078,
with kh = 30, h = .1l, and c = .001. Other values were held constant at
values typical of the cockroach Blaberus discoidalis, as described in §5.1.
From [SH03].

produce stable motions and select a preferred speed. In contrast, in [SH01]
it was shown analytically (and hence proved) that bipedal LLS models with
prescribed sinusoidal forces that do not rotate with the body (essentially,
setting R(θ(t)) ≡ Id in (34)) are always unstable; their (unique) periodic
gaits have at least one eigenvalue outside the unit circle. These observa-
tions, and the model described above, suggest that a subtle combination
of actuation and mechanical feedback, involving either (or both) rotation
coupling and passive springs, may be required for stability. Our next model
incorporates these effects.

5.3 A hexapedal model

We describe a simple hexapedal model that was proposed, and is described
in greater detail, in [SHF04]. The basis of the model is the actuated spring
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Figure 29: Mechanical model for a single leg (a), and the hexapedal coordi-
nate systems and leg numbering scheme (b). Legs 1, 2 and 3 form the left
tripod, and 4, 5, and 6 the right tripod. From [SHF04].

leg illustrated in Fig. 29(a), in which a rudimentary analog of neurally-
activated muscle complexes is provided by the ‘programmable’ length l(t),
and hip position d(t). Each of these inputs may be independently prescribed,
endowing the leg with two control variables, and permitting one to match the
horizontal plane components of observed single leg forces. However, unlike
the purely prescribed model of [KF99], l(t) sets only the relaxed (force-free)
length; actual leg forces depend upon relative foot-hip displacements, and
thus forces can respond to perturbations in a more natural manner. Six
such units are assembled as indicated in Fig. 29(b), although for simplicity
we assume that the hips all move on the body centerline.

We derive the six inputs lj(t), dj(t) for each leg tripod by requiring that
the forces generated at the feet match those of the idealized model of [KF99],
Fjx, Fjy, which were, in turn, derived from single leg force measurements
in [FBT91]. These forces are sinusoids of the forms:

Fjx = Ajx sinΩt (lateral forces, all feet) ; (56a)

Fjy = Ajy sinΩt , j = 1, 3 (fore-aft forces, front and hind feet) ; (56b)

F2y = A2y sin 2Ωt (fore-aft forces, middle foot) . (56c)

Parameter values are given in [SHF04].
We compute the COM path through a half stride: only one tripod need

be considered, the left here, since bilateral symmetry supplies the inputs
for the other stance phase. Neglecting body rotation, this follows simply
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from integration of the first equation of (34) with R(t) = Id, using the net
idealized forces

∑3
j=1 Fjx,

∑3
j=1 Fjy:

(x(t), y(t)) =
(

−A3x(mΩ2)−1 sin Ωt,−A2y(4mΩ2)−1 sin 2Ωt+ Vdest
)

,
(57)

where we use the fact that certain force components cancel (A2x = −A1x;
A3y = −A1y). The average forward speed, denoted by Vdes, is a constant
of integration that may be adjusted, but initially we set it at the preferred
speed 0.25 m s−1 and leg cycle frequency f = Ω/2π = 10 Hz for which the
idealized leg forces and touchdown foot positions were derived. These and
other physical parameters are given in [KF99] and [SHF04].

We assume linear springs, so that, letting qi denote the vector from the
i’th foot to hip, force consistency requires:

Fjx = Fjx,des ⇒ kj(lj(t)− |qj |)
qjx
|qj |

= Ajx sin Ωt , (58)

Fjy = Fjy,des ⇒ kj(lj(t)− |qj |)
qjy
|qj |

= Ajy sin CjΩt . (59)

Here qjx and qjy are the inertial frame components of qj and Ajx and Ajy the
force component magnitudes of equations (56) (note Cj = 2 for j = 2, but
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Cj = 1 otherwise). The kinematics inherent in Fig 29 allows us to express qj
in terms of the COM path of (57), the touchdown foot position, and the hip
position dj(t). Then dj(t) may be derived by dividing the equations (59) to
eliminate the common term kj(lj(t)−|qj |)/|qj |, and lj(t) found by inverting
the linear force relationship. In order to obtain closed-from expressions, we
neglect yawing throughout, incurring errors of up to ≈ 8% in approximating
the rotation matrix by the identity. Details are given in [SHF04], and the
resulting input functions are shown in Fig. 30.

The unstressed lengths on average obey l1 < l2 < l3, echoing leg lengths
in the insect. Also, the front and back (ipsilateral) hips move backwards
relative to the body during stance, while the middle (contralateral) hip
moves forwards. Although the latter varies by over 3 cm, a greater distance
than the insect’s body length, the net movement is backwards, as in the
bipedal moving COP protocol of Section 5.1.3. Since moving centers of
pressure imply torques at the leg joints, this model suggests that the insect
generates relatively large middle leg torques.

Equipped with the inputs as explicit functions of time, we may now
integrate the fully-coupled equations of motion to obtain gaits. The body
coordinate system and state variables used in defining Poincaré maps remain
the same as for the bipedal models above (cf. Fig. 29(b)). We first confirm
that, even permitting yawing, inputs derived from the idealized preferred
speed data of [KF99] do produce gaits with force and velocity variations
quantitatively similar to those of the animal. Fig. 31 reproduces the data
of Fig. 25 and also shows model results: the match is remarkably good,
although the actual average forward speed (≈ 0.26 m s−1) is slightly higher
than the desired (or design) speed Vdes used to compute the inputs.

These gaits are stable. Indeed, we may produce branches of gaits over
a range of speeds, by recomputing inputs for appropriately adjusted desired
speeds, leg frequencies, and touchdown positions. As mentioned in §3.2.1,
although the insect uses a double tripod pattern throughout the range 0.05-
0.6 m sec−1, it exhibits a gait transition around 0.3 m sec−1: below this
speed is regulated by leg cycle frequency, and above it, by stride length.
Varying Vdes and Ω in a piecewise-linear manner to approximate the data
of [TBF94, Fig. 2], and additionally changing foot touchdown positions from
those of [KF99] by further extending the legs at speeds above 0.25 m s−1,
we obtain the branch of stable gaits illustrated in Fig. 32.

As in Fig 28, since the actuated springs supply and extract energy via
lj(t) and dj(t), along this branch speed is also stabilized, and three of the
eigenvalues lie within the unit circle, with only the ‘rotational’ eigenvalue
λ1 = 1. Moreover the stability boundaries shown in Fig. 32 provide a ratio-
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Figure 31: Comparison of insect data of Fig. 25 with the LLS Hexapod
model. The model solutions are shown as a red (or light gray) solid line.
From [SHF04].

nale for the gait change, since constant frequency or constant stride length
protocols would enter unstable regions at either low or high speeds.

In [SHF04] the moments generated at the COM by individual legs are
also studied, and it is shown that they sum almost without cancellation
to give the net COM moment pattern shown in the lower right panel of
Fig. 31, while individual joint moments remain within reasonable bounds.
Hence this model also shows that the legs of the stance tripod work together
in a relatively efficient manner to produce feedforward force and moment
patterns that result in stable running.

5.4 Towards a neuromechanical model

Thus far we have considered rather simple mechanical models, templates in
the terminology introduced in §1 [FK99], although we have seen that their
behaviors are not so easy to derive analytically. Drawing on the material
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Figure 32: A bifurcation set in design speed-leg cycle frequency space, show-
ing boundaries of the region in which stable gaits exist, and the speed-
frequency protocol adopted. Unstable regions are shaded. The fixed fre-
quency protocol (dashed) encounters instability at low and/or high Vdes,
while the piecewise-linear protocol (solid) remains in the stable region, al-
beit grazing the stability boundary at its break-point. Stability is further im-
proved by adjusting foot placements in this region, as shown by dash-dotted
upper boundary above Vdes = 0.25. From [SHF04], with experimental data
of [TBF94, Fig. 2] indicated by dots.

summarised in §2.4, we now sketch the elements of a true neuromechanical
model, an anchor that includes CPG, muscles, six legs and body. This work
is still in progress; the first part of it is to appear in [GH04], from which the
following is adapted.

5.4.1 The CPG and motoneurons

The model described in this section is based on the work of Pearson and
Iles [PI70, PI71, Pea72, PI72] and Ritzmann et al. [WR98a, WR98b, TR00a,
TR00b], who studied motoneuron, bursting interneuron, and muscle activ-
ity in cockroach locomotion. Pearson and Iles, working with the american
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cockroach Periplaneta americana, suggest a simplified architecture for the
CPG and depressor and levator motoneurons. (Here, since we do not ex-
plicitly model the swing phase when the leg is lifted, we shall be concerned
only with depressor motoneurons and associated muscles.) Both slow and
fast motoneurons, characterised by differing spiking patterns, are involved.
The former, with their low level, high frequency spikes, are active during
muscle contraction at all speeds, and the latter, with typically 1-5 larger
spikes per stride, become increasingly active at high speeds. The motoneu-
ron records presented in [FSAJ98] are from fast cells, while the electromyo-
graphs (EMGs) of [WR98a, WR98b, TR00a, TR00b], taken from Blaberus
discoidalis, primarily reflect slow motoneuron activity, with spikes from fast
motoneurons appearing in [TR00b].

Examination of EMGs and both slow and fast motoneuron outputs re-
veals that they may essentially be described by three parameters: the burst-
ing cycle duration or its inverse, the bursting frequency , which coincides with
the animal’s overall stride frequency (ranging from 2-14 Hz, cf. Fig. 32); the
spiking frequency within bursts, and the duty cycle – the fraction of the
bursting cycle occupied by spiking. The latter two modulate the power pro-
duced by muscles in a graded fashion, greater spike rates and longer bursts
producing greater muscle forces. Fast motoneurons may produce from one to
five spikes per cycle, and none at low speeds, while slow motoneurons exhibit
significantly faster spike rates, from 50-350 Hz [Pea72, PI72, TR00a, TR00b].
In the absence of detailed information regarding currents and ion channels
in cockroach neurons, we choose to model both fast and slow depressor
motoneurons by a simplified three-variable ODE of the following form, in
which fast gating variables have been removed by assuming instantaneous
equilibration, as outlined in §2.3.1:

Cv̇ = −[ICa + IK + IKCa + ḡL(v − EK)] + Iext ,

ṁ =
ε

τm(v)
[m∞(v)−m] , (60)

ċ =
δ

τc(v)
[c∞(v)− c] .

Here δ ¿ ε ¿ 1/C, the fast, slow and very slow currents are respectively
specified by:

ICa = ḡCan∞(v)(v−ECa) , IK = ḡKm·(v−EK) , IKCa = ḡKCac·(v−EKCa) ;
(61)

the subscripts denote the relevant ions. Iext represents external synaptic and
other input currents. As in §2.3.1 the functions m∞(v), n∞(v) and c∞(v)
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are sigmoids of the forms

m∞(v) =
1

1 + exp [−km(v − vm)]
, (62)

and the ‘timescale’ functions are hyperbolic secants:

τm(v) = sech(km(v − vm) . (63)

Specific parameter values appropriate for fast and slow cockroach motoneu-
rons, as well as CPG (inter-) neurons, may be found in [GH04].

This model, in common with others studied by Rinzel et al. [Rin87, RL86,
RL87], has a ‘recovery’ variable c which acts on the fast (v,m)-subsystem as
a slowly-varying parameter in IKCa, analogous to an input current. The fast
subsystem, which incorporates the membrane voltage v and a collective rel-
atively slow channel variable m, has three branches of equilibria, the upper
(w.r.t. v) of which undergoes a supercritical Hopf bifurcation as c increases,
producing a branch of periodic orbits. These represent depolarised spiking,
and they coexist with a lower branch of stable (hyperpolarised) fixed points.
The periodic orbit branch terminates in a homoclinic connection to a middle
branch of saddle points [GH90], beyond which only the lower v (hyperpo-
larised) equilibria are stable. The slow variable c increases, moving toward
the homoclinic bifurcation point as long as spiking occurs and membrane
voltages are relatively high, but returns toward the Hopf bifurcation point
in the absence of spiking, when membrane voltages are lower. At a thresh-
old corresponding to a saddle-node bifurcation in the fast system, the stable
hyperpolarised rest point vanishes and the fast subsystem resumes spiking.
See [KS98, Chapter 6] for an introduction to such two-timescale bursting
models in neurobiology.

The spiking frequency is governed by parameters in the (v,m) subsystem
(e.g. ε, C, and the conductances ḡCa etc.), and the burst frequency by pa-
rameters in the third z equation, primarily δ/τc(v). The whole is modulated
by the external input current Iext. Following Pearson [Pea72], we suppose
that Iext is influenced by ‘external’ inputs from higher brain centers (a tonic
excitation level, primarily a speed control), and inhibited by CPG outputs
so that the depressor muscle activity is shut off during the swing phase.

Pearson [Pea72, PI72] also found evidence of bursting interneurons that
constitute part of (or are driven by) the CPG. Absent detailed knowledge of
the neural architecture, we shall again represent each of the six subunits of
the CPG by a single bursting neuron of the form (60), with parameters cho-
sen appropriately. We couple each ipsilateral triplet, and each contralateral
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pair, by nearest neighbor inhibitory synapses, in the manner characterised
in Fig. 33(a). The same overall architecture has been proposed for the stick-
insect pattern generator [BB98, Fig. 4]. Following [DA01, p. 180], we model
synaptic behavior by the first order dynamics

ṡ =
s∞(v)(1− s)− s

τsyn
, with s∞ =

1

1 + e−ksyn(v−E
pre
syn)

, (64)

in which v denotes the potential of the presynaptic neuron and τsyn sets
the timescale of the postsynaptic potential. The nondimensional synaptic
variable s enters the postsynaptic cell in the first of equations (60) as

Cv̇ = −[ICa + . . . ] + ḡsyn s · (v − Epost
syn ) , (65)

where ḡsyn denotes synaptic strength and the current Isyn = ḡsyn s·(v−Epost
syn )

induced in the postsynaptic cell is typically positive (negative) for excitatory
(inhibitory) synapses [JW95].

85



0 100 200 300 400
−60

−40

−20

0
C

P
G

1

0 100 200 300 400
−60

−40

−20

0

C
P

G
1, C

P
G

4

0 100 200 300 400
−60

−40

−20

0

C
P

G
5

0 100 200 300 400
−60

−40

−20

0

D
f1

, D
f4

0 100 200 300 400
−60

−40

−20

0

C
P

G
3

Time [ms]
0 100 200 300 400

−60

−40

−20

0

D
s1

, D
s4

Time [ms]

Figure 34: Membrane voltages from a network of six mutually inhibiting
bursting neuron models driving slow and fast bursting motoneurons. Left
column shows ipsilateral CPG neurons, right column shows contralateral
CPG neurons and fast and slow motoneurons for units 1 and 4. Units 1, 2
and 3, and 4, 5 and 6, constituting the left and right tripods respectively,
rapidly fall into the appropriate antiphase relationships. From [GH04].

The CPG circuit of Fig. 33(a) produces the requisite 180o (anti)phase
difference between the tripods, as shown by simulations illustrated in Fig. 34,
which show ipsilateral CPG outputs along the left side, and contralateral
CPG and fast and slow motoneuron outputs for the front legs.

In [GH04] it is shown that the three ‘behavioral’ parameters – bursting
frequency, spiking frequency and duty cycle – can be individually adjusted
by the motoneuron external current Iext, the CPG neuron’s conductance
ḡKCa, and the slow timescale parameter δ/τc(v) respectively. In Fig. 35 we
show that variations in δ alone produce duty cycle/stepping frequency varia-
tions similar to those measured by Pearson [Pea72], and that a combination
of δ and ḡKCa variations can accurately bracket that data. We have like-
wise been able to find Iext and ḡKCa parameter ranges that reproduce slow
motoneuron spike rates and numbers of spikes for fast motoneurons [GH04].
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Figure 35: Comparative study of duty cycle versus cycle time (inverse step-
ping frequency). Data reproduced from Pearson [Pea72, Fig. 5] (bold) and
obtained by varying δ from 0.01 to 0.051 and keeping ḡKCa fixed in the
CPG model at the values indicated (dashed and broken lines). Dotted lines
correspond to 50% and 100% duty cycle. From [GH04].

These motoneuron outputs will be used to innervate Hill type muscle mod-
els, but before we consider this we show that the CPG-motoneuron model
anchor can be reduced to a phase oscillator template almost as simple as
that of Eqn. (18).

We remark that, while each bursting neuron is modelled in some bio-
physical detail, the circuit of Fig. 33(a) still vastly simplifies the probable
architecture of the insect’s CPG. A single bursting interneuron represents
each ‘leg oscillator,’ where several neurons are probably involved. Moreover,
in studies of slow walking of stick insects, which use more precise foot place-
ment, there is strong evidence of individual joint oscillators within the leg
units [BB98]. For fast running, however, multiple units are likely to be co-
ordinated in a stereotyped fashion, and so even if more units were included,
the phase reduction and symmetry ideas introduced below may still result
in condsierable simplification.
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5.4.2 Reduction to phase oscillators

While substantial analyses can be performed on singularly-perturbed sys-
tems such as (60), in the synaptically coupled network of Fig. 33(a) there
are sixty ODEs, three each for the six CPG neurons and twelve motoneurons
and a further six for the CPG synaptic variables (the coupling to motoneu-
rons is one way, so motoneuron synaptic variables do not appear). This is a
formidable system, but for weak coupling, and assuming identical neurons,
the six-burster CPG circuit can be reduced, via phase response curve and
averaging methods, to ODEs in the relative phases ψj of each ‘leg unit.’

As in §2.3.1 we write the ODEs (60) and (64) for a single burster and
its synaptic variable as:

ẋi = f(xi) +
∑

j

ḡsyn,ji gji(xi,xj) ; xi = (vi,mi, ci, si) , (66)

where gji denotes the coupling function (of strength ḡsyn,ji) from presynaptic
cell j to postsynaptic cell i, and the sum is over all cells in the network that
synapse onto i. Assuming that (66) has an attracting hyperbolic limit cycle
Γ0 with frequency ω0 = 2π

T0
for ḡsyn,ji = 0, and extending the analysis of

§2.3.1 in the obvious way, we may define a scalar phase variable φ(xi) ∈
[0, 2π) for each unit and derive a coupled set of phase equations of the form:

φ̇i = ω0 +
∑

j

ḡsyn,jiZ(φi) · gji(φi, φj) + o(ḡsyn,ji) ; Z(φi(xi)) =
∂φi
∂xi
|Γ0(φ) .

(67)
In deriving (67) we are projecting solutions along isochronic manifolds onto
the product of the unperturbed limit cycles: for N units, an N -dimensional
torus [Win01, Guc75].

As noted in §2.3.1 synaptic dynamics only enters via the variables sj and
vi in the coupling defined by Equations (64-65), so only the first component
of Z(φi) survives in the dot product of (67). This phase response curve or
PRC can be approximated numerically by approach to the limit

Z1(φi) = lim
∆vi→0

t→∞

∆φi
∆vi

, (68)

or calculated by use of adjoint theory [HI97], as implemented, for example,
in the software XPP [Erm02]. Defining the relative phases ψi = φi − ω0t
and using the fact that the absolute phases φi evolve faster than ψi(t), we
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may then average (67) to obtain

ψ̇i =
N
∑

j 6=i

ḡsyn,jiHji(ψi − ψj) , (69)

where

Hji(ψi − ψj) =
1

T0

∫ T0

0
Z1(φi) sj(Γ0(φj) [vi(Γ0(φi))− Epost

syn,i] dt (70)

(cf. [GH90, Chap. 4] and [HI97, Chap. 9]). As noted in §2.3, pairwise
phase differences alone appear in the averaged coupling functions Hji due
to periodicity of the integrand in (70).

For mutual coupling between two identical bursters we have ḡsyn,jiHji =
ḡsyn,ijHij , and the reduced phase equations (69) are

ψ̇1 = ḡsynH(ψ1 − ψ2) and ψ̇2 = ḡsynH(ψ2 − ψ1) ; (71)

we may subtract these as in §2.3.3 to further reduce to a single scalar ODE
for the phase difference θ = ψ1 − ψ2:

θ̇ = ḡsyn[H(θ)−H(−θ)] def= ḡsynG(θ) . (72)

Now, since H is 2π-periodic, we have G(π) = H(π) − H(−π) = H(π) −
H(π) = 0 and G(0) = 0, implying that, regardless of the form of H, in-
phase and anti-phase solutions always exist. For the present burster model
and the specific parameters selected in [GH04], these are in fact the only
fixed points: see Fig. 36. Note that, unless H(0) = H(π) = 0, we have
ψ̇1 = ψ̇2 = ḡsynH(θ̄), so coupling changes the common frequency φ̇ = ω0+ψ̇i
of the units, even when phase locking occurs.

Stability of these phase-locked solutions is determined by the eigenvalues
of the 2× 2 matrix obtained by linearizing (71) at ψ1 − ψ2 = θ̄:

ḡsyn

[

H ′(θ̄) −H ′(θ̄)
−H ′(θ̄) H ′(θ̄)

]

; (73)

these are 0 and 2ḡsynH
′(θ̄) = ḡsynG

′(θ̄), with eigenvectors (1, 1)T and (1,−1)T
respectively. Hence the dynamics is only neutrally stable to perturbations
that advance or retard the phases of both units equally, but since H ′(π) < 0
the anti-phase solution is asymptotically stable to perturbations that disrupt
the relative phase ψ1 − ψ2.
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In [GH04], to preserve equal net input to all units, it is assumed that
ipsilateral synapses from front and rear leg units to middle ones are half
the strength of the remaining ipsilateral and contralateral synapses. The six
burster CPG circuit of Fig. 33 then reduces to the system:

ψ̇1 = ḡsynH(ψ1 − ψ4) + ḡsynH(ψ1 − ψ5)

ψ̇2 =
ḡsyn
2
H(ψ2 − ψ4) + ḡsynH(ψ2 − ψ5) +

ḡsyn
2
H(ψ2 − ψ6)

ψ̇3 = ḡsynH(ψ3 − ψ5) + ḡsynH(ψ3 − ψ6)

ψ̇4 = ḡsynH(ψ4 − ψ1) + ḡsynH(ψ4 − ψ2) (74)

ψ̇5 =
ḡsyn
2
H(ψ5 − ψ1) + ḡsynH(ψ5 − ψ2) +

ḡsyn
2
H(ψ5 − ψ3)

ψ̇6 = ḡsynH(ψ6 − ψ2) + ḡsynH(ψ6 − ψ3) .

Seeking left-right tripod solutions of the form ψ1 = ψ2 = ψ3 ≡ ψL(t),
ψ4 = ψ5 = ψ6 ≡ ψR(t), (74) collapses to the pair of equations

ψ̇L = 2ḡsynH(ψL − ψR) and ψ̇R = 2ḡsynH(ψR − ψL) , (75)

and the arguments used above may be applied to conclude that ψR = ψL+π
and ψR = ψL are fixed points of (75), again independent of the form of H.
For this argument to hold, note that the sums on the right hand sides of the
first three and last three equations of (74) must be identical when evaluated
on the tripod solutions; hence, net inputs must be equal. If all synaptic
strengths are assumed equal (replacing ḡsyn/2 by ḡsyn in (74), then to get
antiphase solutions it is also necessary that H(π) = 0, which does, in fact,
hold here (Fig. 36).

Linearisation of (74) at fixed points produces the eigenvalues

λ = 0, ḡsynH
′, 2ḡsynH

′, 3ḡsynH
′, 4ḡsynH

′ , (76)

the third (2ḡsynH
′) having algebraic and geometric multiplicity two. Since

ḡsynH
′(π) < 0 (Fig. 36), this establishes asymptotic stability with respect to

perturbations that disrupt the tripod antiphase relationships, and instability
of the in-phase (‘pronking’) solution. Moreover, the last and largest negative
eigenvalue for the antiphase solution has eigenvector (1, 1, 1,−1,−1,−1)T,
indicating that perturbations that disrupt the relative phasing of the left
and right tripods recover fastest, before those that affect phases within a
tripod.

We note that (71) and (74) provide examples of networks that are forced
by their symmetries to possess certain steady state solutions regardless of
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Figure 37: (a) Single muscle complex model: see text for description; (b)
bipedal model with two opposing muscles attached at distances r1 and r2
from hip; only left leg shown. From [SH03].

the precise forms of the coupling functions. The stability of the solutions,
however, does depend on the coupling. This is a typical situation in equiv-
ariant bifurcation theory [GS85, GSS88, GSBC99].

5.4.3 Muscles and legs

In [SH03] the bipedal LLS model of Fig. 26 was equipped with agonist-
antagonist pairs of muscles, each comprising a contractile element (CE) in
parallel with passive visco-elastic elements: Fig. 37(a). The classical Hill
model [McM84, Zaj89] was used, adapted to match data from muscle 177c,
the main power generator of Blaberus hind leg [FA95, Mei01]. Passive stiff-
ness and damping were also estimated by fitting to empirical data [GKP+00].

In the Hill model each muscle exerts a force equal to the sum of its
passive and active components:

Fi = k1(li − lo) + k2(li − yi − l2) + Fact,i ; i = 1, 2 . (77)

The damper length yi is determined by an additional differential equation,
derived from equality of the damper and series spring forces. The active
force Fact,i develped in each CE is determined by the product of the isomet-
ric force-length, Fl, and force-velocity, Fv, relations and the motoneuronal
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activation, Fa. Fv(l̇i) takes two forms, depending on whether the muscle is
shortening or lengthening (cf. [Zaj89, MGK+98]), giving:

Facti =
0.52Fl(li)Fa(t) (vmax + l̇i)

0.52 vmax − l̇mi

, l̇i ≤ 0 , (78)

Facti =
Fl(li)Fa(t) (0.114 vmax + 1.5 l̇i)

0.114 vmax + l̇i
, l̇i > 0 , (79)

where vmax = 5.7lmo
mmsec−1 is the maximal shortening velocity at which

Facti equals zero. The isometric force-length function for muscle 177c of
Blaberus is given by

Fl(li) = Fo[4.435(li/lo)
4 − 16.46(li/lo)

3 +

18.28(li/lo)
2 − 5.333(li/lo) + 0.1150] , (80)

where Fo = 0.46N is the maximum isometric force and lo = .0103m the
optimal muscle length.

The muscle lengths li and velocities l̇i that appear in (77-80) will be de-
termined by the coupled mechanical (force and moment balance) equations.
The motoneuronal excitation function Fa(t) is derived as follows.

Raffaele - NEED YOUR INPUT HERE!!

In [SH03] we showed that the results summarised in §5.2 for the simpler
actuated spring LLS of Fig. 26 – the preservation of a branch of stable
gaits with the additional property of speed stabilization as per Figs. 27-
28 – persist for the Hill muscle pair of Fig. 37(b). We expect that this
will hold for hexapedal models, but to properly incorporate muscles we
require a more realistic model than the abstracted telescopic leg with a
sliding pivot of §5.2. To avoid excessive complexity, we follow Full and
Ahn [FA95, Fig. 2] in simplifying the four-component cockroach limbs to
a two rigid links, connected to the body at a ‘hip,’ representing the coxa-
trochanteral joint, and pivoted at a ‘knee’ or ‘ankle,’ representing the femur-
tibia joint. These joints display the greatest angular variations [KWF97].
Similarly, the musculo-apodeme complexes active during the stance phase
are collapsed to a single Hill-type element that pulls on the extension of the
femur past the coxa-trochanteral joint: see Fig. 38. Rather than including
a second (antagonist) element, we rely on passive damping in the knee joint
to perform the bulk of the negative work in each stance phase.

NEEDS COMPLETING!!
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Figure 38: Geometry of the hexapedal model with actuated muscles and
two-component legs. For each leg a single Hill type muscle represents the
depressor muscle complexes active during stance. The pivots represent the
coxa-trochanteral and femur-tibia joints, and torsional stiffness and dissipa-
tion can be included in both joints.

5.5 A note on proprioceptive feedback

The neuromechanical model that we have sketched above still lacks reflexive
feedback and overall CNS control. In particular, our CPG model is ‘wired’ to
produce a stable antiphase tripod gait. (It possesses other periodic gait pat-
terns, but they are unstable [GH04].) Tryba and Ritzmann [TR00a, TR00b]
present evidence of different inter- and intra-limb (joint) phase relations dur-
ing slow walking and searching behaviors, and the extensive work on stick
insect locomotion [CKS+98, CBMWC98, BB98, Cru02] indicates that pro-
prioceptive feedback from strain sensors (campaniform sensillae) and hair
cells [Zil85, RFRZ98] will be important in regulating inter-limb motions in
these regimes. Pearson [PI70, Pea72, PI72] shows that campaniform sensillae
make excitatory connections to slow depressor motoneurons and inhibitory
connections to bursting interneurons, thereby reinforcing the depressor mus-
cle activity during stance, while tonic inputs from other leg receptors exert
the opposite effect. It is also known that overall CNS commands excite both
CPG neurons and motoneurons, and that, in turn, CPG outputs can signif-
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icantly modulate reflexive feedback pathways [CCR00]. The review [Pea95]
cites many further references on proprioceptive feedback.

Keep higher level goal-oriented feedback out of it at this stage, except
for brief discussions in conclusions and future challenges?

NEEDS COMPLETING!!

6 Conclusions: Open problems and challenges

To be done. Suggestions welcome!!
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