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This paper investigates the control of running gaits in the context of a spring loaded inverted
pendulum model in three dimensions. Specifically, it determines the minimal number of steps
required for an animal to recover from a perturbation to a specified gait. The model has four control
inputs per step: two touchdown angles �azimuth and elevation� and two spring constants �compres-
sion and decompression�. By representing the locomotor movement as a discrete-time return map
and using the implicit function theorem we show that the number of recovery steps needed follow-
ing a perturbation depends upon the goals of the control mechanism. When the goal is to follow a
straight line, two steps are necessary and sufficient for small lateral perturbations. Multistep control
laws have a larger number of control inputs than outputs, so solutions of the control problem are not
unique. Additional constraints, referred to here as synergies, are imposed to determine unique
control inputs for perturbations. For some choices of synergies, two-step control can be expressed
as two iterations of its first step policy and designed so that recovery occurs in just one step for all
perturbations for which one-step recovery is possible. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3127577�

Understanding locomotion demands an understanding of
how the animal stabilizes each of its gaits. What does an
animal do when it inevitably finds that its state differs
from what is desired? An intriguing possibility is that the
complex and high-dimensional neuromechanical
system—body, limbs, muscles, nervous system—behaves
as if it were a much lower-dimensional system,1 affording
a task-level control strategy to recover from perturba-
tions “step to step.”2 We investigate such step-to-step con-
trol by examining a widely studied model of locomotion,
the spring loaded inverted pendulum (SLIP). SLIP mod-
els can describe movements of the center of mass during
running for a surprisingly wide range of species from
cockroaches to humans.3 But even with these reductions,
a controller for SLIP would have considerable freedom to
choose its response to a given perturbation. An animal’s
response likely reflects tradeoffs between different objec-
tives such as stability, maneuverability, and energy effi-
ciency; these tradeoffs undoubtedly vary between differ-
ent species or within the same animal across different
behavioral contexts. An experimental investigation of
these issues demands testable hypotheses. Using a well
known theorem of calculus, namely, the implicit function
theorem, we study the consequences of one such hypoth-
esis: the nervous system acts to exactly correct perturba-
tions in the minimal number of steps.

I. INTRODUCTION

Animal locomotion results from a complex interaction of
the animal and the environment.4 Mathematical models of
this locomotor interaction typically involve differential equa-

tions predicting musculoskeletal dynamics during different
“continuous phases” of motion, such as free flight or single
support, together with a set of conditions, such as heel strike
or toe off, that describe transitions between these continuous
phases.5 Here we present an optimal class of control strate-
gies for running: those that exactly correct perturbations as
fast �i.e., in the fewest number of steps� as possible.
Here “exact correction” refers to the predictions of the
mathematical model under consideration. The animal need
not explicitly represent this model. Our scheme requires
only that the animal learn the mapping between sensory in-
put and the motor commands yielding the optimal perfor-
mance. This mapping can most parsimoniously be described
as a solution of the nonlinear equation that integrates the
model to the desired state. The fact that many of the proper-
ties of these control strategies can be readily understood us-
ing the implicit function theorem of calculus may not be
simply fortuitous: it suggests that comparable biological
strategies may exist for learning and representing such
behaviors.

We present the main contributions of this paper in the
context of a simple model for locomotion: the SLIP hopper
model. The SLIP model consists of a point-mass body con-
nected to a single massless spring-loaded leg �Fig. 1�. SLIP
locomotion resembles the motion of a pogo stick. Despite its
simplicity, the SLIP model is widely regarded as a simple
description of the center-of-mass trajectory of running �and
several other gaits� in diverse species3,6–10 from humans and
horses to crabs and cockroaches. As such, it is considered a
template1,2,5,11 for running. With a few exceptions,12–14 most
prior consideration of SLIP restricts motion to the sagittal
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plane, requiring only two degrees of freedom to describe
body motion: fore-aft and up-down but not medial-lateral.
Some authors have proposed templates for running more
complicated than the SLIP �for example, in the sagittal
plane15�.

II. MODELING AND CONTROL

A. The SLIP model

We describe the SLIP model used in this paper as a
model of running. Our model hopper consists of a point-
mass body connected to a massless spring-loaded leg. Its
motion resembles that of a pogo stick with two alternating
phases: stance and flight. These phases are distinguished by
whether or not the foot �or tip of the leg� is in contact with
the ground. Transitions between these phases are called
touchdowns �from flight to stance� or lift-offs �from stance to
flight�.

We assume the hopper moves in a Cartesian space: three
coordinates label body position from a fixed reference. The
third coordinate measures vertical height above the ground.
This frame is known as the inertial frame. During flight the
state of the hopper is given only by the position and velocity
of its body �x ,y ,z , ẋ , ẏ , ż�. The equations of motion for the
body in flight are given by the following second order sys-
tem, which determines the motion of a particle subject only
to gravitational force

d2

dt2�x

y

z
� = � 0

0

− g
� . �1�

Because the leg is massless, its motion during flight does
not affect the motion of the body. Nevertheless its direction
at the moment of touchdown does affect the subsequent
stance phase: we choose the spherical angles � and � in
determining this direction as control parameters. Here � is
the angle �at touchdown� between the leg and downward
vertical and � is the angle �at touchdown� between the pro-
jection of the leg onto the ground and the positive x-direction
�see Fig. 1�. The assumption that the controller can appropri-
ately point the leg for touchdown implies that it maintains a

sense of true horizontal, perhaps using a gyro or balance
organs. We need not be precise about how the leg moves
during flight other than to say that it swings in such a way as
to avoid collision with the ground. The length of the leg
during flight always equals its maximum length during
stance l. �For simulations, we set l=0.97 m.� If the apex
height is less than the leg length there will be a restriction on
how the leg can point for touchdown. Namely l cos � must
be less than the apex height of the body. Implicit in this
restriction is the assumption that the controller can bring the
leg to its touchdown position at the apex event, which we
define by the condition ż=0. The apex event divides the
flight phase into ascent and descent phases.

Flight lasts while z� l cos �. When this inequality is first
violated, touchdown occurs. The position of the foot at
touchdown �xf ,yf� is given by

xf = x + l sin � cos � , �2�

yf = y + l sin � sin � . �3�

The state of the hopper in stance is given by both the posi-
tion and velocity of the body and the position of the foot. In
the inertial frame this state is given by �x ,y ,z , ẋ , ẏ , ż ,xf ,yf�.
However to express the equations of motion it is convenient
to introduce a change in coordinates

x̂ = x − xf , �4�

ŷ = y − yf . �5�

The reference frame �x̂ , ŷ ,z� is known as the foot frame. For
the duration of stance the foot position remains fixed. Thus
velocities in the foot frame coincide with velocities in the
inertial frame and will not be notationally distinguished.

The stance equations of motion are defined in terms of a
parametrized spring force function f��r�. The value of this
function at r gives the leg force on the body when the leg
length equals r. The function f��r� is defined for r� �0, l�
and for each fixed � must be a decreasing function of r and
must be positive for r� �0, l�. It can, but need not, diverge as
r→0. The parameter � is called the modulation parameter.
For our simulations, � is the spring constant k of a linear
spring force function whose rest length is l, but in principle
one can consider other parametrized spring laws such as an
air spring �which facilitates the generation of analytical ap-
proximations of the stance map10� or a spring law that has
been fitted to experimental running data.16 For each fixed r,
f��r� must be an increasing function of �. The parameter � is
set by the controller. Modulation of the spring force during
stance is required to give the controller the ability to adjust
the total energy in the system.

The stance phase is divided into compression and de-
compression phases by the bottom event. At this moment the
spring is maximally compressed and x̂ẋ+ ŷẏ+zż=0.

In terms of f� the equations of motion for the body in
stance are given by the following second order system:

FIG. 1. �Color� Diagram of SLIP hopper. Motion is allowed in all three
dimensions. Shown are positional coordinates of the body together with the
variables that determine the pointing of the leg.
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d2

dt2�x̂

ŷ

z
� = � 0

0

− g
� +

f���x̂2 + ŷ2 + z2�

m�x̂2 + ŷ2 + z2 �x̂

ŷ

z
� . �6�

The above equation of motion determines the dynamics of
six of the eight stance state variables. The last two stance
state variables xf and yf are constant for the duration of the
stance phase. Stance lasts as long as x̂2+ ŷ2+z2� l2. Lift-off
occurs when this inequality is first violated.

We define a step as a portion of the hopper’s trajectory
between two successive apexes. Five events punctuate each
step: the initial apex, touchdown, bottom, lift-off, and the
final apex. We say the hopper chooses its control variables
for the step at the initial apex based on complete knowledge
of the state at that apex. We denote the space of possible
apex states X. An element of X has the form �x , ẋ ,y , ẏ ,z�. It
is implied that z�0 and ż=0. Thus X=R4�R+.

Except when we show that a more general controller
cannot perform better, we say that the modulation parameter
changes once during stance at the bottom event. We say
that the controller chooses both the compression value of

the modulation parameter kc and the decompression value
kd. Moreover, we assume an instantaneous transition be-
tween the compression and decompression spring laws.10

Thus there are four control variables for each step:
�� ,� ,kc ,kd�. These four values parametrize the control space
U=S2�R+�R+.

B. Discrete time models

The class of models to which our methods apply consists
of those that can be written as an iteration of a discrete-time
return �or Poincaré� map r1; see Fig. 2. This map describes
locomotion as the evolution of a sequence of state-vectors x j.
These vectors are indexed by the step-number j. In our case,
xj is the state of the SLIP at the jth apex; xj �X. In a more
general context, the components of each state vector in the
sequence might be positions and velocities of each body seg-
ment and, in fact, might include nonmechanical states. Typi-
cally these quantities evolve continuously in time, but we
measure the state vector at specified events, namely, the
apexes of the center of mass in the SLIP model. These events
define the boundaries between the steps. The one-step return
map r1 expresses each successive state vector as a function
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FIG. 2. �Color� State space and trajectories of the SLIP with motion constrained to a vertical line. The state variables under this constraint are vertical position
of the body �vertical axis� and vertical velocity of the body �horizontal axis�. The four quadrants represent the four phases of motion of the SLIP �in order from
apex: descent, compression, decompression, and ascent�. The hopper is in flight when the vertical position of the body is greater than one �the uncompressed
leg length�. The quadrant boundaries are the event conditions �touchdown, bottom, lift-off, and apex, respectively�. The thick vertical line �in flight, vertical
velocity 0� is the Poincaré section defining apex, parametrized by a single variable �vertical body position at apex or hopping height�. We assume that
trajectories start and stop on this section. In this example, the controller acts by changing the decompression spring constant at the bottom. Trajectories with
different possible controls diverge from this point. Some reach subsequent apex states that are too low �red�, some that are two high �blue�, and for one
particular value of the control �the deadbeat control�, the subsequent apex state reaches its desired height �green�. If the initial height were different �but within
some range�, the deadbeat control would also be different, but would still exist �not shown�.
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of the previous step’s state vector and a control-vector u j for
the previous step

x j+1 = r1�x j,u j� . �7�

The control-vector u j quantifies the nervous system’s actions
during the step j. For our controlled SLIP, u j �U.

A sequence of unperturbed reference states and corre-
sponding control actions �x j

� ,u j
�� that satisfy the return map

equation

x j+1
� = r1�x j

�,u j
�� , �8�

will be called a gait. While we assume that r1 is independent
of the step number, note that the reference states and the
control vectors in the gait sequence may depend on j. Below,
we study neutral gaits that are defined as those gaits with the
properties that x j+1

� −x j
� and u j

� are constant. We call a gait N
-step periodic if there is a rotation R about the vertical axis
so that x j+N

� −x j
�=R�x j

�−x j−N
� � and u j+N

� =R�u j
�� for every j.

C. Deadbeat control

The control literature gives the name deadbeat to the
class of strategies that produces exact correction to a pertur-
bation from the target gait in a finite �usually minimal�
amount of time.17 In the context of legged locomotion, dead-
beat control means exact correction within a finite number of
steps. We will show that deadbeat control is feasible for a
broad class of locomotion models.

The nervous system aims to stabilize a desired gait,
given in general by Eq. �8�. We hypothesize that if for some
j, a perturbation has left the motion off course x j�x j

�, a
deadbeat controller will choose controls over the next N
steps �u j ,u j+1 , . . . ,u j+N−1� for some N to return the hopper
�exactly� to the desired motion x j+N=x j+N

� .
We assume the nervous system responds as a function of

the available sensory information. For demonstrating that a
locomotion model admits a deadbeat controller, we assume
that this sensory information perfectly represents the sys-
tem’s state �i.e., perfect state estimation�. In this case, the
controller’s response during the subsequent N steps is a func-
tion of its state at the present step with reference to the es-
tablished target state x j+N

� of the gait

�u j,u j+1, . . . ,u j+N−1� = gj
N�x j� . �9�

The N -step return map

x j+N = rN�x j,u j,u j+1, . . . ,u j+N−1� �10�

gives the state of the system at step j+N as a function of the
current state and the controls over all N steps; it can be
defined recursively in terms of the N-fold composition of the
one-step return map. For example,

r2�x j,u j,u j+1� ª r1�r1�x j,u j�,u j+1� . �11�

We say that an N-step control law �for the jth step� gj
N is

N-step deadbeat if for all states x j sufficiently close to x j
�,

x j+N
� = rN�x j,gj

N�x j�� . �12�

We also require gj
N to be continuously differentiable and that

gj
N�x j

��= �u j
� ,u j+1

� , . . . ,u j+N−1
� �. In the domain of rN, we call

�x j
� ,u j

� , . . . ,u j+N−1
� � the reference point.

The implicit function theorem18 provides sufficient con-
ditions for the existence of an N-step deadbeat control law
gj

N. The theorem has the following conditions �illustrated in
Fig. 3�:

�1� The control vector �u j , . . . ,u j+N−1� has the same or
higher dimension than the final state vector x j+N.

�2� The reference point lies in the interior of the domain of
rN.

�3� At the reference point rN is continuously differentiable
and the Jacobian �matrix of partial derivatives� with re-
spect to the controls has full rank.

The deadbeat equation is a vector equation that specifies
dim x j+N

� scalar conditions �equations�

x j+N
� = rN�x j,u j,u j+1, . . . ,u j+N−1� �13�

that must be satisfied. In this context, the desired state x j+N
�

can be considered fixed and the initial state vector x j can be
considered the “parameter” that varies as we solve for the
controls �u j ,u j+1 , . . . ,u j+N−1�.

The space of possible N-step controls has dimension
N�dim u j. When the hypotheses of the implicit function
theorem are satisfied, N�dim u j �dim x j+N

� , solutions
of Eq. �13� constitute a manifold of dimension N�dim u j

−dim x j+N
� . If this difference is zero, then the implicit theo-

rem guarantees uniqueness of the solution in an open neigh-
borhood of the reference point and in neighborhoods of pre-
viously computed solutions where the theorem’s hypotheses
are satisfied. If the difference is positive, the nervous system
must choose one control from the manifold of solutions. To
make this choice, we add N�dim u j −dim x j+N

� additional
constraints to the deadbeat, Eq. �13�. We call these con-
straints synergies �see Fig. 4� in reference to muscle syner-
gies whereby many muscles work in concert.19 Here, each
synergy is a scalar equation involving the controls, which
together form a vector equation

e� = e�u j, . . . ,u j+N−1� . �14�

Once the synergies have been specified, we apply the
implicit function theorem to the target map f consisting of
both the return map and the synergies

f�x j,u j, . . . ,u j+N−1� = �rN�x j,u j, . . . ,u j+N−1�
e�u j, . . . ,u j+N−1� 	 . �15�

In the search for controls, the deadbeat �Eq. �13�� is then
replaced by

f j+N
� = f�x j,u j, . . . ,u j+N−1� , �16�

where f�= �x j+N
� ,e��. We choose the number of synergies to

be N�dim u j −dim x j+N
� , yielding an equation whose number

of unknowns equals its number of conditions. In this situa-
tion, the conditions of the implicit function theorem suffice
to yield a �locally� unique solution of Eq. �15�.
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D. Linear controllability and the existence
of deadbeat control

Suppose the return map is linear,

xj+1 = r1�xj,uj� = Axj + Buj . �17�

Let �x j
� ,u j

�� be an unperturbed gait. A one-step deadbeat con-
trol strategy exists if for all perturbed states x j �sufficiently
close to x j

��, there is a control u j such that

x j+1
� = Ax j + Bu j . �18�

Because the equation is linear, the deadbeat control u j, if it
exists, is a linear function of x j �i.e., u j =g�x j�=Gx j�, and the
“sufficiently close” condition can be dropped. Rephrased,
one-step deadbeat control to stabilize the unperturbed gait
�x j

� ,u j
�� exists if and only if


x j+1
� − Ax j:x j � Rn� � col B �19�

for each j, where n=dim x and col B is the column space of
matrix B.

Thus, one-step deadbeat control exists for all gaits if and
only if rank B=n. By iterating the equation, a similar argu-

ment shows that two-step deadbeat control exists for all gaits
if and only if rank �B ,AB�=n, and likewise N-step deadbeat
control exists for all gaits if and only if rank
�B ,AB ,A2B , . . . ,AN−1B�=n. The existence of an N for which
this equation holds is equivalent to the classical notion of
controllability. Deadbeat control �for an unspecified number
of steps� exists for all gaits if and only if system �18� is
controllable.

E. Method for numerically computing a nonlinear
deadbeat control law

Starting with the reference point or a previously com-
puted solution �x j

� ,u j
� ,u j+1

� , . . . ,u j+N−1
� � and given a specific

perturbed apex state x j, we seek a solution �u j ,u j+1 ,u j+N−1�
to the target �Eq. �16�� that corrects the perturbation. Our
search uses Newton’s method augmented with a continuation
strategy along the segment J joining x j

� to x j. When New-
ton’s method fails to converge, the perturbed state x j is re-
placed with the midpoint of the segment joining x j

� to x j. The
replacement is closer to reference than the initial perturbed
state making Newton’s method more likely to converge. If
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FIG. 3. �Color� An illustration of the conditions of the implicit function theorem and how they can fail. The horizontal axis in each panel is the initial apex
state �initial hopping height from Fig. 2�. The vertical axis is the applied control �decompression spring constant, see Fig. 2�. The blue dashed curves represent
the level sets of the Poincaré return map �the locus of initial apex states and controls which send the hopper to a point with a particular apex height on the
next step�. The thick blue curve is the level set corresponding to the desired final height. In other words, if the control �or decompression spring constant� is
chosen so that the corresponding point on this graph lies on the thick blue curve, then the subsequent apex has the desired height, see Fig. 2. �Note that only
the vertical location on the graph can be chosen by the controller—the horizontal location is determined by the initial apex height.� Thus the thick blue curve
is the graph of the deadbeat control law �deadbeat control as a function of the initial apex state�. The asterisk is the reference point that defines the unperturbed
reference motion. Red curves indicate hypothetical boundaries of the return map. �a� All conditions of the implicit function theorem hold and the deadbeat
control law can be defined for apex states in an open neighborhood �lower thick blue line� of the reference initial apex state �asterisk�. ��b�–�d�� The deadbeat
control law cannot be defined in an open neighborhood of the reference point because the conditions of the implicit function theorem fail. �b� The control is
constrained to have only one value. Thus there is one target �or condition on the final apex state� and a smaller number �zero� of unknowns. �c� The reference
point lies on the boundary of the return map—boundaries have been arbitrarily created for this purpose. �d� A hypothetical return map having level sets whose
projection to apex states has folds—thus the Jacobian derivative of the return map with respect to the control has less than full rank. The deadbeat control law
cannot be defined in an open neighborhood of a reference point on the fold.
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Newton’s method converges at this new perturbed state, then
the reference �x j

� ,u j
� ,u j+1

� , . . . ,u j+N−1
� � is replaced by this

computed solution to the target equation. This process is re-
peated to march along J until a solution is obtained at the
initial perturbed state. Increments along J are halved when
Newton’s method fails, increased by 30% when Newton’s
method converges in fewer than four iterations and left the
same otherwise. When a planned step falls beyond the end of
J, it is reduced appropriately to reach the end point.

Our method can be generalized to employ a param-
etrized curve ��s� instead of the segment J. For a given
curve, the implicit function theorem guarantees uniqueness
of the continued solution for sufficiently small steps in the
parameter, but different curves may yield different solutions,
even if they have the same end points.

III. RESULTS

Our main result is that the minimum number of steps for
deadbeat control is two.

A. Number of recovery steps

One-step deadbeat control of the SLIP model is impos-
sible because the final state vector has more components
�five� than the control vector �four�. Thus the first condition

of the implicit function theorem fails. In Appendix A we
show that biomechanical constraints �the fixed position of
the foot during stance� make failure inescapable even for
more complex control strategies whose control vectors have
dimension five or larger.

We illustrate a correcting maneuver requiring two steps
in Fig. 5. The illustration shows an attempt to stabilize in-
place hopping �i.e., running with zero forward speed�. The
hopper has been perturbed so that its apex speed is still zero,
but its apex position is shifted to the left �possibly by an
arbitrarily small amount� from its desired position. A first
step of the hopper �foot placed to the left� is required to give
the hopper rightward momentum and a second placement
�foot placed to the right, shown� is required to arrest the
hopper’s rightward momentum. This lane change maneuver
is required to correct perturbations arbitrarily close to the
unperturbed state. It follows that the conditions of the im-
plicit function theorem must fail even with additional control
variables for actuating the spring leg. Specifically, the third
condition of the implicit function theorem fails: the Jacobian
derivative of the return map r1 with respect to the controls u j

does not possess full rank at the reference point. Our dem-
onstration of this fact in Appendix B relies on the symmetry
of the sagittal plane; however, numerical calculations indi-
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FIG. 4. �Color� An illustration of possible synergies for the one-step control of vertical hopping where both the compression and the decompression spring
constants remain free to be chosen by the controller. Shown is the space of possible controls �the pair of compression and decompression spring constants�.
Each colored line corresponds to an initial hopping height and the line is the locus of controls that achieve the deadbeat targets �final hopping height of 1.3
m�. Synergies select exactly one point on each colored line �in other words, select a control law—a deadbeat control for each possible initial height�. In this
case only one synergy is needed. Synergy 1, kd=15, fixes the decompression spring constant, leaving the compression spring constant free. Likewise, synergy
2, kc=15, fixes the compression spring constant as in Figs. 2 and 3. Synergy 3, kd+0.4�kc−10�2=25, covaries the two control variables along a different
prescribed path. All three synergies intersect at the reference control for the unperturbed periodic motion �red asterisk�. Periodic motion results from any
control value on the diagonal kc=kd. �The diagonal is also the line corresponding to an initial height equal to the desired height.� The motion being stabilized
determines the reference control �asterisk�.
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cate that one-step control is still impossible even for trajec-
tories that do not preserve sagittal plane symmetry such as
running around a circle.

B. Iteration of the first step policy

Our method to obtain two-step control laws uses syner-
gies. Different synergies can lead to qualitative differences in
control strategy. A two-step control law schedules control
action that, when implemented, takes place over two succes-
sive steps. After one step, however, new state information is
available to the controller. If, in addition to the initial pertur-
bation being corrected, a substantial second perturbation oc-
curs during the first step, it may no longer be desirable to
proceed with the initially scheduled control action for the
second step. Instead, it may be desirable to start over with a
new two-step schedule. Such a new schedule would plan a
maneuver to fully correct the newly perturbed motion after
two additional steps �i.e., by the end of the third step�.

If repeatedly perturbed motion proceeds over many
steps, the controller faces the following choice: it can create
new two-step schedules at every apex, never implementing
more than the first half of each schedule, or it can create new
two-step schedules at every other apex, following each
schedule to completion. In other words, the controller can
either iterate its partial first step policy or iterate its full two-
step policy. While the former strategy always utilizes the
most current state information, its effectiveness depends
upon the synergies.

C. Effect of synergies

Both of the following sets of synergies yield locally
unique control laws for two-step control of �SLIP model�
running

synergies E1: kj
c = kj+1

c = kj+1
d = k�, �20�

synergies E2: kj
c = kj

d = kj+1
c = k�. �21�

We emphasize that our theory requires only that syner-
gies be continuously differentiable functions; they need not
be linear functions as assumed here �and below�. Synergies
E1 fix the spring constant to its reference value k� throughout
the second step stance phase but allow the decompression
spring constant for the first step kj

d to be adjusted. On the
other hand, synergies E2 fix the spring constant throughout
the first stance phase but allow adjustment on the second
step. A consistent value for the spring constant throughout a
stance phase implies that the step conserves energy. Because
the whole two-step maneuver must correct, not conserve, en-
ergy, this correction must take place entirely during the step
that does not conserve energy. In other words, E1 corrects
energy on the first step �hence the label E1� while conserving
energy on the second, whereas E2 corrects energy on the
second �hence the label E2� while conserving energy on the
first. This difference has an important consequence described
below.

Suppose a controller iterates the first step policy of one
of the two-step deadbeat control laws E1 or E2. Each itera-
tion of the first step policy of E1 corrects energy, whereas
each iteration of the first step policy of E2 conserves energy.
For the former, energy correction happens in one step; for the
latter, energy correction never happens. For synergies E2,
iterating the first step policy is clearly not an effective strat-
egy in the face of perturbations that can change energy, for
no control action will ever change it back.

Iterating the first step policy of the control law deter-
mined by E1 does more than just correct energy on each step.
Specifically, two successive iterations of the policy, follow-
ing a small perturbation, will, assuming no additional pertur-
bations, lead to an exact correction: x j+2=x j+2

� . In other
words the iteration of the first step policy of the control law
determined by E1 is itself a two-step deadbeat control law. In
Appendix C, we establish a stronger statement: the control
law given by two iterations of the first step policy of E1 is
actually the same as the control law determined by the full

Initial Apex Final ApexApex

Shadow of
Initial Apex

Shadow of
Final Apex

First Footprint Second Footprint

FIG. 5. �Color� A two-step maneuver that accomplishes
a lane change for in-place hopping, an easy-to-visualize
degenerate running gait with zero forward speed. The
degenerate “lanes” in this case are points on the ground
�shadows of the initial and final apexes�. The leftmost
blue circle represents the perturbed apex state; the right-
most blue circle represents the final desired apex state.
Both the initial and final states have zero horizontal
velocity. The first step gives the hopper rightward mo-
mentum. The second step arrests the rightward momen-
tum. Because the center of pressure cannot move during
stance, two steps are required to make this correction,
no matter how close the perturbed and desired states lie.
Blue circles on the ground represent the projections of
the initial and final apex states. Asterisks represent foot
location. The trajectory is divided between blue �flight�
and red �stance�.
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two-step policy. In other words, for synergies E1, following
the new schedule is the same as following the old, assuming
that no additional perturbations change how the controller
evaluates the new policy. On the other hand, if an additional
perturbation has occurred, clearly the first step policy is more
appropriate because it accounts for the new state informa-
tion. With no further perturbations, iterating the first step
policy corrects motion in two additional steps, whereas if the
controller waits for a step to create a new schedule, it takes
three additional steps.

We say that the control law determined by E1 is express-
ible as an iteration of its first step policy. See Fig. 6 for a
graphical depiction of this property.

D. Control laws illustrated

We explored the domains of two-step deadbeat control
laws for running with the spatial SLIP model. These studies
are based on a neutral gait with parameters fit to the motion
of a human sprinter, as reported by Ref. 20, for a population
of eight young adult male athletes who were not sprint run-
ning specialists. To fit the data, we used eight conditions
obtained in Ref. 20 by averaging across steps and/or sub-
jects. We used three trajectory conditions �contact time per
step equals 0.110 s, flight time per step equals 0.141 s, and
velocity during contact equals 8.1 m/s�, two anthropomor-
phic conditions �mass equals 72.7 kg, leg length equals 0.97
m�, and three neutral conditions �all apexes have the same
speed and height and there is no lateral motion�. The condi-
tions determined the parameters m and l, the reference con-
trol variables ��, ��, and k� �necessarily equal for all steps
and such that k�,d=k�,c�, and components of the reference
apex state �speed and height equal for all steps�. These con-
straints, together with the arbitrary choices x0

�=y0
�= ẏ0

�=0,
x0

��0, uniquely determined the entire reference trajectory.
Our results are displayed in Figs. 7–9. To produce the

bitmaps in the background of these figures, we applied our

numerical algorithm �Sec. II E� to calculate the control law
on a regularly spaced mesh of perturbations within a two-
dimensional slice of the five-dimensional initial apex state
space. Specifically, within our slice, x and y �respectively, the
in-line and lateral components of initial position� varied,
while z �the initial hopping height�, ẋ, and ẏ remained con-
stant and equal to their reference values. Because the implicit
function theorem only guarantees local uniqueness of the
target equations, we employed a continuation strategy to map
the solution manifold and search for multiple solutions.
Within the slice, we continued the solutions along sequences
of intermediate points, following one of four directions and
stopping when the continuation failed to produce a solution.
The four directions chosen were increasing x, decreasing x,
increasing y, and decreasing y, where in each direction we
held everything else constant.

The algorithm proceeded to explore within the slice, the
region where deadbeat control could be defined. The location
within the slice determines the initial apex state for the mo-
tion; the algorithm computes the control action �leg pointing
and spring constants over two steps� needed to produce mo-
tion that satisfies the deadbeat condition at the end of the
motion. If no such control action exists, the algorithm will
fail. We interpreted the failure points as the boundaries of the
deadbeat control law. We ran our algorithm until the region

FIG. 6. �Color� An illustration of closed-loop control with a two-step dead-
beat control law that is expressible in one step. The space shown is analo-
gous to the apex state space. The closed-loop return map projects the entire
space onto the line �x ,y� :y=0 labeled �x ,0� with the function f�x ,y�
= �y ,0�. The funnels illustrate this projection. The seven lines are the pre-
images of seven arbitrarily chosen points �asterisks� that map to the goal in
one more step. Two iterations of this return map send all points to the goal
at the origin: f � f�x ,y�= f�y ,0�= �0,0�.

x

y
1m

FIG. 7. �Color� A two-dimensional slice of the domain of the deadbeat
control law determined by synergies E1. Of the five components of initial
apex state space, the plot shows only perturbations of in-line and lateral
positions; the other components are fixed at their reference values. The
SLIP’s reference motion is from left to right on the plot. White space indi-
cates regions outside the control law’s domain �i.e., where continuation
fails�. Note that the domain is not simply connected allowing nonuniqueness
�the bright green “tongue” partially occludes the dark green “annulus”�.
Darker shades of green indicate a larger distance �2 norm� to the reference
trajectory as measured between apexes after the first step of the motion.
Brightest green �the reference point� represents zero distance �i.e., one-step
correction�. Darkest green represents maximal distance �2 norm=17.33�.
Superimposed on this plot are five trajectories from different selected initial
perturbations. Blue curves: body in flight; red curves: body in stance; blue
circles: body at apex; red asterisks: foot placement fixed during stance.
Despite large initial differences, all trajectories coincide by the end of the
second step.
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had been maximally expanded to failure points in all four
chosen directions from all mesh points. For selected bound-
ary points we verified that a condition of the implicit func-
tion theorem failed �for example, see caption to Figs. 8 and
9�. The white space in the figure represents apex states that
are beyond the boundary of the deadbeat control law. The
color gradient indicates how close the correction is to one-
step correction. More precisely, the green saturation is deter-
mined by the two-norm distance in five dimensional apex
state space between the first corrected apex in the two-step
maneuver and the corresponding reference apex, where most
saturated indicates perfect one-step correction. Note that this
two-norm metric involves a scaling between position and
velocity that our units �m and m/s� determine arbitrarily.

We considered two control laws that differed in their
synergies: synergies E1 �Figs. 7 and 8 defined by Eq. �20�� as
well as the following synergies �Fig. 9�, which we call syn-
ergies G,

� j+1 = ��, kj+1
c = kj+1

d = k�. �22�

In Appendix C we show that synergies G, like synergies E1,
determine control laws that are expressible in one step �that
is, they are equal to two iterations of their first step, barring
additional perturbations, as discussed above�. Moreover the
control law determined by synergies G, while having a
smaller domain of definition than the one determined by syn-
ergies E1, has a desirable property shown in Appendix C: the
control law determined by synergies G is greedy �hence the
label G� in the sense that it always �for all small perturba-
tions� selects a maneuver that achieves exact correction in

the fewest number of steps possible. For this two-step con-
trol law, greedy means that the synergies always select a
maneuver that exactly corrects perturbations in one step
whenever such a maneuver exists. When a two-step control
law corrects in one step, the second step that the correcting
maneuver specifies coincides with the reference trajectory.

When can a perturbation be corrected in one step? For
the SLIP example, most lateral perturbations �that is, a ge-
neric set� cannot be corrected in one step; however some can.
First, consider the two-step maneuver depicted in Fig. 5. The
initial apex, like most other perturbed apex states, cannot be
corrected in one step. However the motion can be corrected
in one step from the middle apex of the correcting maneuver.
The control laws determined by both synergies E1 and G,
given that they are both one-step expressible, correct in one
step all states that can be reached as middle apexes of a
two-step correcting maneuver determined by the same con-
trol law.

Second, all small perturbations that preserve the sagittal
plane can be corrected in one step—by a maneuver that is
locally unique �near the reference point�. We discovered this
fact by verifying numerically that the conditions of the im-
plicit function theorem for one-step correction hold within
the invariant sagittal plane. As shown in Appendix C, for all
small perturbations, synergies G select the unique one-step
correcting maneuver—indeed, as noted above, they select a
one-step correction whenever such a maneuver exists. On the
other hand, synergies E1 typically select a maneuver that
requires two steps to accomplish exact correction for sagittal
perturbations, despite the existence of a one-step maneuver

0.5m
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FIG. 8. �Color� Three trajectories implementing the
deadbeat control law determined by synergies E1. The
bitmaps in these panels are enlargements of the central
region of the bitmap in Fig. 7. �a� The reference trajec-
tory. ��b� and �c�� Initially perturbed trajectories with
coinciding initial conditions. �b� The trajectory closer to
one-step deadbeat �measured as for the color gradient�.
�c� The trajectory farther from one-step correction. Up-
per subpanels show each trajectory in the xy-plane
where the unperturbed motion is positively directed
along the x-axis. Lower subpanels show the trajectory
in xz-plane. The boundary near the initial condition in
�b� is a fold. As the boundary near the initial condition
in �c� is approached, the duration of the middle flight
phase tends to zero and the first lift-off coincides with
the second touchdown.
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that corrects exactly. Figure 9 plots the reference trajectory
and two correcting maneuvers for the control law determined
by synergies G. The initial apexes of all displayed trajecto-
ries lie within the sagittal plane, and for both correcting ma-
neuvers, the correction is exact in one-step: both correcting
maneuvers have second steps that coincide with the reference
trajectory.

The correcting trajectories for synergies E1 and E2 co-
incide when the correction conserves energy, for example,
for perturbations that change only x and/or y. In this case �as
shown in Figs. 7 and 8� perturbations are corrected with
trajectories that are mirror symmetric about the middle apex.

The reference trajectory and two example correcting ma-
neuvers from synergies E1 are shown in Fig. 8. �However, in
all cases shown, the correcting maneuvers from synergies E1
and E2 coincide.� The two correcting maneuvers plotted
have the same initial apex, despite the fact that they follow
different trajectories. This situation is allowed by the fact
that the domain of definition of the control law determined
by synergies E1 is not simply connected �meaning that some
closed paths are not deformable to a point while staying
within the domain�. The fact that the two-dimensional slice
shown is not simply connected is apparent from the holes in
Fig. 7. Note in Figs. 7 and 8 that the dark green annulus
extends below the bright green tongue on which the refer-
ence point lies. Where the two overlap, the control law de-
termined by synergies E1 is nonunique. However, note that
only the solution depicted by the bright green tongue is local
to the reference point; although both “bright green” and
“dark green” maneuvers can correct the unperturbed initial

condition, the controls for these maneuvers are separated and
local uniqueness near the reference point still holds.

E. Less restrictive control targets

Up to this point we have considered SLIP locomotion
patterns that place a target value on all five components of
the apex state: �x , ẋ ,y , ẏ ,z�. Because these targets constrain
in-line position x as well as other quantities, they might be
appropriate for a runner trying to step squarely on marks on
a track, spaced according to the preferred step length of the
runner. Alternatively, these targets might apply to a long
jumper on the last few steps before reaching the takeoff
boards. However, runners do not ordinarily care where they
step in relation to marks on the ground and, in this more
common situation, it is unlikely that the in-line position of
the apex state is under deadbeat control. A simple modifica-
tion to our scheme allows for an appropriate generalization.
We write the target function �from Eq. �15�� not in terms of
the value of the return map but in terms of the value of the
return map projected via a function h onto a �possibly� lower
dimensional surface in the apex state space

f�x j,u j,u j+1, . . . ,u j+N−1� = �h�r�x j,u j,u j+1, . . . ,u j+N−1��
e�u j,u j+1, . . . ,u j+N−1� 	 .

�23�

We call the components of the projection h the correc-
tion criteria. If h is the identity function �as before� then we
say h implements trajectory correction because all compo-
nents of the trajectory are controlled. Alternatively, for path
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FIG. 9. �Color� Three trajectories implementing the
deadbeat control law determined by synergies G. The
plots have the same axes as the corresponding ones in
Fig. 8 but differ as noted. �a� The reference trajectory
�same as in Fig. 8�. �b� A trajectory initially retarded
along the line of motion. �c� A trajectory initially ad-
vanced along the line of motion. All trajectories shown
have initial conditions in the sagittal plane, thus the
second step of the trajectories in both �b� and �c� coin-
cides with the reference motion in �a� �one-step correc-
tion�. Top panels: the brightest shade of green �x-axis�
represents one-step correction. Away from this axis the
distance from one-step correction falls off slowly at first
then rapidly close to the boundary. The color scheme is
analogous but the narrow band of darkest green at the
lateral boundaries represents only a 2-norm distance of
about 1/20 of the 2-norm distance of the same shade in
Fig. 7. As the boundary near the initial condition in �b�
is approached, a weak spring constant allows the leg to
fully compress so that the body reaches the foot. On the
other hand, as the boundary near the initial condition in
�c� is approached, two pairs of events coincide. First,
the initial apex approaches the first touchdown and, sec-
ond, the first lift-off approaches the first corrected apex.
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correction of a neutral gait, h drops the x component from
the value of r, appropriate if the runner does not care about
hypothetical marks on the ground.

What other sets of correction criteria are there? We
might consider compass correction, which drops both com-
ponents of horizontal positions x and y. These correction
criteria would be appropriate for running in a straight line
without a specified target, where perturbations in lateral po-
sition need not be corrected. Compass correction assumes
that the controller has an intrinsic sense of direction derived
either from a compass or from a view of distant landmarks.
Deadbeat control for compass correction can be achieved
with a one-step control law, whereas path correction, like
trajectory correction, requires two steps to correct lateral
perturbations.

Note that when the number of conditions is changed by
the correction criteria, the number of synergies must change
accordingly.

F. Other gaits and maneuvers

We have analyzed deadbeat control of the neutral gait.
This gait is periodic with a one-step period and the motion of
the center of mass remains in a consistent sagittal plane.
However we emphasize that deadbeat control can stabilize
other more complicated motions.

Consider that a human runner has two legs and therefore,
in reality, the motion has a period of at least two steps �one
stride�. If the motion of the center of mass does not remain
within the sagittal plane but shifts laterally back and forth
�e.g., depending upon what leg is on the ground�, as the
runner advances, we call such a gait an alternating gait. We
considered the possibility that breaking the symmetry asso-
ciated with the sagittal plane by switching from a neutral to
an alternating gait would allow one-step deadbeat control but
discovered that the SLIP model with an alternating gait still
requires two steps for deadbeat path correction of most small
perturbations.

While the alternating gait has a two-step period, there
are non-neutral gaits that have a one-step period including
circle hopping, back-and-forth hopping, and in-place hop-
ping. For circle hopping, the body’s height and speed remain
the same at each apex, but the direction changes by a con-
stant angle from apex to apex. Consequently, the apexes of
the desired motion fall equidistant from some center point
�i.e., they lie on a circle�. Back-and-forth and in-place hop-
ping are degenerate forms of circle hopping. For back-and-
forth hopping the turning angle is 180° and the desired
apexes alternate between two states with the same position
and speed but opposite direction of motion. For in-place hop-
ping the circle radius is zero, all desired apex states coincide,
the forward apex speed is zero, and the apex directions of
motion are not defined uniquely. We have tested the SLIP
model with a circle gait and correction criteria that constrain
height, tangential and radial velocity, and distance to the cen-
ter point, but not position along the circle. We discovered
that this circle gait path correction requires two steps to cor-
rect perturbations.

For nonperiodic gaits, i.e., maneuvers, the reference
apex state, the reference control, the synergies, and the cor-

rection criteria all depend on step number, giving a step de-
pendent target function for N-step deadbeat control

f j�x j,u j,u j+1, . . . ,u j+N−1� = �hj�r�x j,u j,u j+1, . . . ,u j+N−1��
ej�u j,u j+1, . . . ,u j+N−1� 	 .

�24�

When the conditions of the implicit function theorem
hold, the target function implicitly determines a step-
dependent multistep deadbeat control law gj

N. That is, for all
x j in the neighborhood of the unperturbed x j, the deadbeat
equation is satisfied,

f j�x j,gj
N�x j�� = f j+N

� . �25�

Assuming such a gj
N exists, all step-dependent targets will be

satisfied, N-steps after a sufficiently small perturbation on the
jth apex, provided the controller applies the N-step control
chosen at the jth apex, and provided no additional perturba-
tions occur.

As an example of a nonperiodic maneuver to be dead-
beat stabilized, consider a lane change. Suppose it is desired
to shift to a parallel lane between the jth and j+2nd apexes
but otherwise run in a straight line with a specified hopping
height. Similar maneuvering has been studied in ostriches.21

The simplest way to accomplish this maneuver with a
deadbeat-controlled SLIP is with a shift in the control law.
For example, during the first j−1 steps, the control law for
running illustrated by Figs. 7 and 8 can be applied, then for
all subsequent steps the same control law but with shifted
desired lateral positions yj

� ,yj+1
� , . . . can be applied. To be

feasible, the desired �unshifted� apex state x j must lie within
the domain of definition of the shifted control law. Note that
this control law is expressible in one step: for each step of
the control law, it is only the first step of the two-step ma-
neuver that is applied.

Note that the sudden shift does not fit the framework of
Eqs. �24� and �25� on every step. Specifically the shift is not
taken into account on the j−1st step. If a perturbation occurs
at apex x j−1, the two-step correction will be appropriate for
the old control law and will not correct the motion to arrive
after two steps at the intermediate apex of the maneuver x j+1

as in the above framework. If the runner expects the lane
change, one may want to formulate an appropriate control
law on the j−1 step: gj−1

2 . This formulation will not change
the desired motion but will change the way perturbations on
the j−1st step are corrected.

IV. DISCUSSION

We have analyzed feedback control strategies for stabi-
lizing running that correct perturbations to a target trajectory
in a minimal number of steps. Our strategy for closing the
loop feedback suggests hypotheses for the nervous system’s
response to a range of perturbations, including those with a
lateral component. While it is known that the spatial SLIP
requires feedback for stability,14 little experimental work
considers the control of human or animal running in this
context. In the absence of data to challenge our model, it
makes sense to use the SLIP formulation to generate predic-
tions that can be tested with the experiment. However, our
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contributions do not rely upon the validity of the closed-loop
SLIP model. Rather, our hypothesis states that the equation
expressing the exact correction of some model’s motion de-
scribes the nervous system’s control law that closes the loop.
As perhaps the simplest such model, the SLIP model pro-
duces parsimonious predictions. Nonetheless, most of our
conclusions with the SLIP model illustrate more general
truths that hold for exact correction of other locomotion
models. The mathematical assumptions required to make
these conclusions hold for a broad class of models.

The implicit function theorem framework that we ad-
vance for studying locomotion is quite broad. It allows free-
dom in specifying the correction criteria for determining the
control targets and the synergies for resolving redundancy.
Nevertheless, one specific testable hypothesis can be posed
to guide future experimental work: control targets are met in
the minimal number of steps. Considering only perturbations
without a lateral component, our model, as we have formu-
lated it, admits just one set of synergies with the hypoth-
esized greedy property �for trajectory correction�. Unfortu-
nately, in a more realistic model of locomotion, e.g., with
continuous actuation of many joints and muscles, many sets
of synergies will be consistent with our hypothesis. How are
synergies chosen? Perhaps synergies reflect evolutionary
tradeoffs between stability, maneuverability, and energy effi-
ciency that reflect unique conditions for each species. Com-
parative studies should be informative in this regard.

Often, the problem of relating control system models to
experimental locomotion data becomes one of parameter fit-
ting: find the feedback gains for a particular closed-loop
model which minimize error between observed and numeri-
cally simulated system trajectories. Necessarily such models
directly couple requirements on sensory systems with de-
mands on the motor output. A deadbeat controller, by con-
trast, has no feedback control gains to tune. Instead, these
controllers can be described by a parametrized family of con-
trol synergies and correction criteria, which can themselves
be directly fitted to data. We suspect that the resulting cor-
rection criteria will provide insight into requirements on sen-
sory systems, i.e., what the nervous system needs to mea-
sure, while the resulting control synergies describe the space
of motor actions the nervous system can take in order to
drive this measurement to its control target.
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APPENDIX A: LANE CHANGE CORRECTIONS
REQUIRE AT LEAST TWO STEPS

First we will show that one class of perturbations, those
requiring a “lane change” �see Fig. 5� for recovery, can
never be corrected in one step. Because lane changes are
required for some arbitrarily small lateral perturbations to the

neutral gait, one-step deadbeat control for the neutral gait
does not exist.

We consider any gait that maintains a consistent sagittal
plane. A lane change is required if a perturbation leaves the
velocity vector parallel to the desired plane at apex but off-
sets the body position. For the SLIP model we show that a
maneuver that corrects such a perturbation requires at least
two steps.

In the interest of clarity, Fig. 5 shows a lane change for
in-place hopping, a degenerate neutral gait where the desired
forward speed is zero. In this scenario, the desired trajectory
lies on a vertical line, but perturbations can still occur along
all five dimensions of apex state space. A lane change is
required if the perturbed speed at apex is zero �same as with
the unperturbed speed�, but the body does not lie on the
desired vertical line. Similar reasoning shows that two steps
are required for lane changes stabilizing in-place and neutral
hopping.

Our key assumption is that the hopper maintains a single
point of contact with the ground that cannot move during
stance. For a more realistic model of human running, with a
foot of nonzero size, small lane changes might be possible in
one step, but not if the distance between the lanes is greater
than the width of the foot.

Suppose the perturbed state �body at initial apex� lies to
the left of the desired state at the origin: y0�y�=0. Further-
more, suppose that the lateral velocity is zero, as desired:
ẏ0= ẏ�=0. The following assumption is superfluous but
makes the reasoning conceptually simpler: we assume
motion is constrained to the desired frontal �yz� plane
�that is, there is never any motion in the fore/aft direction�:
x�t�= ẋ�t�=x�= ẋ�=0. The controller wishes to place the foot
yf to return the hopper to the goal after one step: y1= ẏ1=0.

Is this maneuver possible? Note the forward invariance
of the following regions of state space:

�1� yf �y�t� and ẏ�t��0,
�2� yf �y�t� and ẏ�t�	0, and
�3� yf =y�t� and ẏ�t�=0.

The invariance follows from the fact that the leg force �the
only nonvertical force on the body� is always directed from
the foot to the body, and from the fact that the foot cannot
move.

Because the body must move to the right to return to the
goal, it follows that the foot must be placed so that yf �y0.
But then the state cannot remain on or return to the boundary
of the invariant region where ẏ=0. Thus recovery in one step
is impossible: at least one additional step will be necessary to
arrest the hopper’s rightward movement and return the hop-
per to the goal.

APPENDIX B: FAILURE OF IMPLICIT FUNCTION
THEOREM FOR ONE-STEP CORRECTION

As the model has been formulated, one-step deadbeat
control with trajectory correction does not exist because
there are more control targets �five� than control variables
�four�. Thus the system violates condition �1� of the implicit
function theorem. But what about one-step path correction

026106-12 Carver, Cowan, and Guckenheimer Chaos 19, 026106 �2009�



�with only four targets� or one-step trajectory correction with
more actuation control of the leg spring �at least five control
variables�. Condition �1� no longer fails, but note that in
these cases, for the neutral gait, lane changes will still be
necessary for some arbitrarily small perturbations. The rea-
soning in Appendix A shows that deadbeat control �for these
scenarios� still does not exist. Which condition of the im-
plicit function theorem fails? We will show that condition �3�
fails.

Recall for the neutral gait that the desired trajectory
maintains a consistent sagittal plane. Choose the x-axis as the
constant horizontal direction of motion. Then the condition
y= ẏ=0 determines the sagittal plane, which can be param-
etrized by the remaining state variables �x , ẋ ,z�. We call
these remaining state variables sagittal variables, and the
other variables y and ẏ mediolateral variables. On the other
hand, we call the control variables � j and all leg force actua-
tion variables kj

�i� sagittal controls, and call � j mediolateral
controls.

Let Jms be the Jacobian derivative of the mediolateral
variables with respect to the sagittal controls and define Jss,
Jsm, and Jmm analogously. The sagittal controls leave the sag-
ittal plane invariant. Thus Jms=0 �i.e., Jms equals the zero
matrix of the appropriate dimension�. By symmetry about the
sagittal plane, Jsm=0. Let Ju be the Jacobian derivative of the
return map �r1 or r2� with respect to the controls and suppose
the variables and controls have been properly ordered to give
Ju the block structure

Ju = �Jss 0

0 Jmm
	 . �B1�

Then Ju is the matrix that must have full rank to satisfy
condition �3�. Since Ju has as many columns as rows �by
condition �1��, each diagonal block must have rank equal to
the number of its rows. For one-step deadbeat control �return
map is r1� full rank is impossible because Jmm has two rows
�corresponding to yj+1 and ẏ j+1�, whereas it has only one
column �corresponding to � j�. For two-step deadbeat control
�return map is r2� there are still two rows �corresponding to
yj+2 and ẏ j+2�, but now two columns �corresponding to � j

and � j+1�.

APPENDIX C: CONSEQUENCES OF LOCAL
UNIQUENESS

Consider the two-step deadbeat control �u j ,u j+1� chosen
following a perturbation of the initial apex state x j. Assum-
ing no additional perturbations, the motion recovers after two
steps: x j+2=x j+2

� . Thus the control chosen at this j+2nd apex
will be the reference control for two steps: �u j+2 ,u j+3�
= �u� ,u��. To show that the control law is expressible as its
first step policy, we show that the two-step deadbeat control
that would be chosen by iterating the first step policy at apex
x j+1 coincides with �u j+1 ,u��. As it turns out, this demonstra-
tion can be accomplished easily: as long as �u j+1 ,u�� satisfies
the synergy conditions, the conclusion follows from the
uniqueness enforced by synergies. All that is needed to show
that �u j+1 ,u�� satisfies the synergy conditions is �1� to verify
the implication that if u j+1 satisfies the second step condi-

tions then it satisfies the first step conditions and �2� to verify
that u� satisfies the second step conditions. Note that both of
these statements hold for both synergies E1 and G, respec-
tively, but not for synergies E2.

Our demonstration of one-step expressibility has a gap
which we now fill: the synergies only imply local unique-
ness. As above, we note that whenever �u j ,u j+1� satisfies the
synergies then �u j+1 ,u�� satisfies the synergies. In addition,
note that whenever �u j ,u j+1� is close to �u� ,u�� then
�u j+1 ,u�� is close to �u� ,u��. It follows that the two-step
control law must locally �in an open neighborhood of the
reference point� be the same as the iteration of its first step,
which is all we will be able to conclude.

A similar argument shows the greediness of synergies G.
Note that all conditions for synergies G involve constraints
on the second step control variables, allowing complete free-
dom for all first step control variables. Moreover, synergies
G fix the second step controls to their reference values.
Therefore �u j ,u

�� always satisfies the synergy conditions.
Because synergies G determine the control uniquely, if con-
trol u j corrects the perturbation, i.e., if

x j+1
� = r1�x j,u j� , �C1�

then �u j ,u
�� must be the unique two-step control selected by

the synergy conditions to correct the perturbed apex state x j.
Again the same caveat applies: we can only conclude local
greediness. Specifically, there exists an open neighborhood O
of the reference point �x j

� ,u j
� ,u j+1

� � such that if O contains a
one-step correction—that is a point �x j ,u j� satisfying Eq.
�C1�, then �u j ,u

�� must be the unique two-step control cho-
sen by synergies G to correct x j.
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