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This work addresses the construction and use of low-dimensional invariant manifolds to simplify
complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As
a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of
decreasing dimension in the full composition space. In previous research, several different methods
have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new
method based on an invariant constrained equilibrium edge �ICE� manifold. This manifold �of
dimension nr� is generated by the reaction trajectories emanating from its �nr−1�-dimensional edge,
on which the composition is in a constrained equilibrium state. A reasonable choice of the nr

represented variables �e.g., nr “major” species� ensures that there exists a unique point on the ICE
manifold corresponding to each realizable value of the represented variables. The process of
identifying this point is referred to as species reconstruction. A second contribution of this work is
a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and
uses preimage curves �PICs�. The ICE-PIC method is local in the sense that species reconstruction
can be performed without generating the whole of the manifold �or a significant portion thereof�.
The ICE-PIC method is the first approach that locally determines points on a low-dimensional
invariant manifold, and its application to high-dimensional chemical systems is straightforward. The
“inputs” to the method are the detailed kinetic mechanism and the chosen reduced representation
�e.g., some major species�. The ICE-PIC method is illustrated and demonstrated using an idealized
H2/O system with six chemical species. It is then tested and compared to three other
dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of
stoichiometric hydrogen/air, which is described by a detailed mechanism containing nine species
and 21 reactions. It is shown that the error incurred by the ICE-PIC method with four represented
species is small across the whole flame, even in the low temperature region. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2177243�
I. INTRODUCTION

It is currently feasible to perform computer simulations
of turbulent reactive flows involving order 50 chemical
species.1 For the methodology used in this example, the com-
putational work scales approximately as the square of the
number of species; and so, an order of magnitude reduction
in cost would result if the chemistry could be adequately
described by 16 species instead of 50. Conversely, a chemi-
cal mechanism involving 1000 species would increase the
cost �compared to the currently feasible 50 species� by a
factor of 400, and hence will remain impracticable for some
time to come. Chemical mechanisms involving 1000 species
or more are not uncommon in the description of the combus-
tion of real fuels. For example, the detailed kinetic mecha-
nism for the primary reference fuel2 contains 1034 species,
which participate in 4236 elementary reactions.

These considerations motivate the well-recognized need
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for methodologies that radically decrease the computational
burden imposed by the direct use of detailed chemical kinet-
ics in reactive flow calculations.

Of the several different types of such methodologies,
three approaches that are currently particularly fruitful �and
which can be used in combination� are the extraction of skel-
etal mechanisms from large detailed mechanisms by the
elimination of inconsequential species and reactions;3,4

dimension-reduction techniques, which are reviewed in Refs.
5–7 and are the subject of the current paper; and storage/
retrieval methodologies such as in situ adaptive tabulation
�ISAT�,8 which substantially reduce the number of chemical
kinetic computations required in a reactive flow calculation.

The oldest and most commonly used dimension-
reduction methodology is based on the quasi-steady-state as-
sumption �QSSA�.9,10 It is useful to outline this method as a
means of introducing more general concepts. In the QSSA
approach, the ns chemical species are divided in nr “major
species” �or represented variables� and nu=ns−nr “minor
species” �or unrepresented variables�. For each of the minor

species QSSA is invoked, i.e., the net production rate of the
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minor species by chemical reactions is taken to be zero. The
use of QSSA changes the mathematical nature of the model
for the chemically reactive system, from one governed by a
set of ns ordinary differential equations �ODEs� to a
differential-algebraic system consisting of nr ODEs and nu

algebraic equations.
In the ns-dimensional species or composition space,

these nu algebraic equations define an nr-dimensional mani-
fold, composed of all compositions which satisfy QSSA for
the minor species. All compositions which occur in the reac-
tive flow are assumed to lie on �or close to� this manifold,
based on the following observation. In a typical combustion
process, there is a wide range of time scales present in the
chemical mechanism; the very fast time scales are usually
associated with local equilibrium or quasisteady states, while
the long-term dynamics of the reactive flow are determined
by a small number nr of slow processes.11–14 Hence, a dimen-
sion reduction is achieved: the reactive system can be de-
scribed on this nr-dimensional QSSA manifold rather than in
the ns-dimensional full space.

Many other dimension reductions have been proposed,
all of which either explicitly or implicitly define a low-
dimensional manifold in the full composition space. In addi-
tion to QSSA,9,10,15,16 such methods include rate-controlled
constrained equilibrium �RCCE�,17–19 intrinsic low-
dimensional manifolds �ILDMs�,20 trajectory-generated low-
dimensional manifolds �TGLDMs�,21 flamelet generated
manifolds �FGMs�,22 the Roussel-Fraser �RF� algorithm,23

the method of invariant manifolds,24 the preimage curve
method,25 and some variants of the above methods.26–28

While each of the existing approaches can claim some suc-
cess, and several have been extensively applied, all have ei-
ther some mathematical shortcomings or difficulties in
implementation, especially in higher dimensions.

Among the desirable mathematical properties of low-
dimensional manifolds to describe the chemical kinetic sys-
tem are invariance, continuity, and smoothness. By defini-
tion, a manifold is invariant if a composition initially on the
manifold remains on the manifold as the composition
evolves according to the detailed chemical kinetics. Or, put
another way, a manifold is invariant if it is composed of
reaction trajectories of the full system. Approaches such as
RF and TGLDM are invariant, whereas QSSA, RCCE,
ILDM, and FGM are not.

The manifold introduced in this work draws on ideas
from TGLDM and RCCE, and is called the invariant con-
strained equilibrium edge �ICE� manifold. As in TGLDM,
the nr-dimensional manifold is generated by the reaction tra-
jectories emanating from an �nr−1�-dimensional “edge”
manifold. As in RCCE, the edge manifold is composed of
compositions in constrained chemical equilibrium. By con-
struction, the ICE manifold is invariant, continuous, and
piecewise smooth. �As is usual in the chemistry-reduction
literature we use the term “manifold” somewhat loosely,
where the object described may be only piecewise smooth,
whereas the stricter mathematical definition of a manifold
requires global smoothness.�

Another desirable property is that the nr-dimensional

manifold be simply parametrized by nr represented variables.
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For the given represented variables, we say that a manifold is
“not folded” if the compositions on the manifold are given
by a graph of a function of the represented variables. In this
case, to each realizable value of the represented variables
there exists a unique corresponding point on the manifold.
Conversely, if a manifold is folded, then there are multiple
manifold points corresponding to some values of the repre-
sented variables. In our experience it is not difficult to find a
set of represented variables such that the ICE manifold is not
folded.

For a manifold that is not folded, the process of deter-
mining the full composition �on the manifold� from the re-
duced representation is termed “species reconstruction.”25

An important distinction between dimension-reduction meth-
odologies is whether or not they are local. By definition, in
local methods, species reconstruction can be performed �for
given values of the represented variables� without construct-
ing the whole �or a significant portion� of the manifold. Ap-
proaches such as QSSA, RCCE, and ILDM are local, and in
these cases species reconstruction involves, respectively, the
solution of the nonlinear QSSA equations to determine the
mass fractions of the minor species, a constrained equilib-
rium calculation, and a Newton iteration to determine the
corresponding ILDM point. In contrast, methods such as
TGLDM, FGM, and RF are global—they require the genera-
tion of the entire manifold. The computational implementa-
tion of such global methods soon becomes impracticable as
the dimensionality of the manifold increases.

A second contribution of the present work is the devel-
opment of a local method to perform species reconstruction
based on the ICE manifold. The method is based on preim-
age curves �PIC�,25 and consequently is called the ICE-PIC
method. Given the values of the represented variables, the
ICE-PIC method performs species reconstruction through
three steps which are as follows: first, the determination of
the constrained equilibrium composition; second, in the full
composition space, following the constrained equilibrium
preimage curve �CE-PIC� to a particular point on the edge of
the manifold; and, third, following the reaction trajectory
from this point along the ICE manifold to the required
point—the reconstructed composition.

We note that this ICE-PIC method is currently the only
dimension-reduction methodology that is both based on an
invariant manifold, and for which there is a local method of
species reconstruction.

Compared to other local methods �QSSA, RCCE,
ILDM�, the ICE-PIC method is computationally more expen-
sive. As discussed by Ren and Pope,25 if a dimension-
reduction technique is used in combination with a storage/
retrieval methodology �e.g., ISAT�, then �within reason� the
cost of species reconstruction is not of primary concern. This
is because, in a typical application, the overall computational
cost is dominated by retrievals, whereas species reconstruc-
tion needs to be performed only in the relatively infrequent
storage events.

The outline of the remainder of the paper is as follows.
In Sec. II the mathematical formulation is developed for an
isobaric, isothermal reacting system, culminating in the defi-

nition of the ICE manifold and an examination of its prop-
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erties. The development is largely geometrical, involving
various curves and manifolds and their intersections. We il-
lustrate the geometrical constructions involved for an ideal-
ized H2/O system, contrived to yield two-dimensional mani-
folds in three-dimensional space, so that they can be depicted
in figures. In Sec. III the ICE-PIC method is described. The
extension of the ICE manifold and the ICE-PIC method from
isothermal systems to adiabatic systems is discussed in Sec.
IV. In Sec. V we compare the performance of different spe-
cies reconstruction methodologies �ICE-PIC, RCCE, ILDM,
QSSA� for the test case of a premixed laminar hydrogen/air
flame described by the nine-species detailed mechanism of
Li et al.29 In Sec. VI we conclude by summarizing the prop-
erties of our approach and describing the directions of future
work.

II. THE INVARIANT CONSTRAINED EQUILIBRIUM
EDGE „ICE… MANIFOLD

In this section we develop the sequence of concepts and
notation needed to define the ICE manifold. In Sec. II B, we
introduce the idealized H2/O system as a specific example
designed to illustrate the various geometric objects involved.

A. Homogeneous reacting system

We consider a closed, homogeneous, isobaric reacting
system. To present and illustrate the new ideas, we consider
an isothermal system. The extension to an adiabatic system is
discussed in Sec. IV, and the method is applied to an adia-
batic system in the tests shown in Sec. V.

The system consists of ns chemical species, composed
on ne elements. The elemental composition of the species is
given by the ns�ne elemental matrix E: the component Eij

indicates the number of atoms of element j in a molecule of
species i. The molecular weights of the species are given by
W= �W1 ,W2 , . . . ,Wns

�. Different ns-vectors can be used to
represent the composition of the system at any time, e.g., the
moles of the species N, their mass fractions Y, or their spe-
cific moles z �zi=Yi /Wi�. We use the specific moles z
= �z1 ,z2 , . . . ,zns

�.
In this work we take a geometric view and use the no-

tation of linear vector spaces. The specific moles z is a vector
in the full composition space C, which is defined to be a real
ns-dimensional Euclidean space with canonical basis vectors
ei, i=1,2 , . . . ,ns. Similarly W and the columns of E are
vectors in related ns-dimensional spaces. The specific moles
satisfy a normalization condition which can be written

�
i=1

ns

ziWi = zTW = 1. �1�

This is equivalent to the mass fractions summing to unity.
During chemical reactions, atoms are rearranged into

different molecules, but of course the number of atoms of
each element is conserved �since the system considered is
closed�. The specific moles of atoms of element i is denoted

e
by zi and the ne vector of element specific moles is given by
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ze = ETz . �2�

Thus for the system considered in Secs. II and III, conserved
quantities �fixed for all time� are the mass m, the pressure p,
the temperature T, and the element specific moles ze. �Note
that ze satisfies the normalization condition aTze=1, where
a= �a1 ,a2 , . . . ,ane

� are the atomic weights of the elements,
which, in view of the relation W=Ea, is consistent with Eq.
�1�.�

Given that the ne element specific moles ze are con-
served, the reactive system can be described in the
�ns−ne�-dimensional reactive affine space, defined by

C�ze� � �z	ETz = ze,z � C� . �3�

And the non-negativity of the species confines the composi-
tions to the realizable region of this reactive affine space,
defined by

C+�ze� � �z	zi � 0,ETz = ze,z � C� . �4�

This is a bounded convex polytope.

B. Idealized H2/O system

To illustrate the ideas developed here, we consider a spe-
cific chemically reactive system. So that we can draw the
various geometric objects in three-dimensional space, we
choose a system with ns−ne=3. Specifically, we consider the
six species H2, O, H2O, H, OH, and N2, containing the three
elements H, O, and N. Compared to the standard representa-
tion of H2/O2 chemistry, the species O2, HO2, and H2O2 are
absent �as are NO and related species�. The system consid-
ered is therefore artificial, especially because of the omission
of O2. In Sec. V we present test results based on the full
H2/O2 system.

In the examples given below, we take p=1 atm, T
=3000 K, and the specific moles of the elements H, O, and N
are 0.012 34, 0.004 11, and 0.065 81 kmol/kg, respectively.
We use the mechanism of Li et al.,29 stripping out the absent
species. The resulting mechanism has six reversible reactions
and is given in Table I.

Figure 1 shows the realizable region C+�ze� for this ide-
alized system. In order to display it in an easily understood
space, the three-dimensional region C+�ze� is shown pro-
jected onto the three-dimensional subspace of C, with basis
vectors corresponding to the first three species H2, O, and

+ e

TABLE I. Chemical mechanism of the ideal H2/O system. A in mol/cm/s/K;
Ea in cal/mole; k+=AT� exp�−Ea /RT�; R universal gas constant. M repre-
sents a third body that could be any of the species H, H2, OH, O, H2O, and
N2. The collision efficiencies for the third bodies are fH=1, fH2

=2.5, fOH

=1, fO=1, fH2O=12, and fN2
=1.

A � Ea

�R1� O+H2ÛH+OH 5.08�104 2.7 6290.0
�R2� H2+OHÛH2O+H 2.16�108 1.5 3430.0
�R3� O+H2OÛOH+OH 2.97�106 2.0 13 400.0
�R4� H2+M ÛH+H+M 4.58�1019 −1.4 104 380.0
�R5� O+H+M ÛOH+M 4.71�1018 −1.0 0.0
�R6� H+OH+M ÛH2O+M 3.80�1022 −2.0 0.0
H2O. As may be seen, C �z � is a five-sided wedge-shaped
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convex polytope. Its boundary �C+�ze� is made up of five
�two-dimensional� facets, on each of which at least one com-
ponent of z is zero, whereas in the interior of C+�ze� all
components of z are strictly positive.

C. Gibbs function, entropy, and chemical equilibrium

All thermodynamic variables—energy, enthalpy, en-
tropy, etc.—are scalar functions defined in C+�ze�. Of particu-
lar interest is the Gibbs function G�z�. It is well known �see,
e.g., Refs. 30 and 31� that G�z� is a strictly convex function
with a unique global minimum in the interior of C+�ze�. For
the isothermal, isobaric systems under consideration, the lo-
cation of this minimum corresponds to chemical equilibrium
and is denoted by zeq�ze�. On a facet of the boundary �C+�ze�,
the gradient of the Gibbs function �G is infinite in magni-
tude and its direction is that of the outward-pointing
normal.30

For a system that is adiabatic �as opposed to isothermal�
the equilibrium composition is the unique point in the inte-
rior of C+�ze� at which the entropy is maximum.

D. Reaction trajectories

Due to chemical reactions, the composition z�t� evolves
in time t according to the autonomous set of ordinary differ-
ential equations �ODEs�

dz�t�
dt

= S�z�t�� , �5�

where the rate-of-change vector S�z� is determined by the
detailed chemical kinetic mechanism.

The solutions of Eq. �5� are conveniently denoted by the
reaction mapping �or flow� R�z , t�, which is defined by

R�z,0� = z,
�R�z,t�

�t
= S�R�z,t�� . �6�

Thus, R�z , t� is the solution to Eq. �5� after time t, starting
from the initial condition z. As depicted in Fig. 1, for fixed z

FIG. 1. Sketch, in the H2–O–H2O subspace, of the realizable region C+�ze�
for the idealized H2/O system. Two hypothetical reaction trajectories are
sketched, through the points z and z�, starting from the boundary origin
points zb�z� and zb�z�� and ending at the single equilibrium point zeq�ze�.
and variable t �positive and negative�, R�z , t� represents the
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reaction trajectory through z.
The rate vector S has the following properties:

�1� ETS=0, so that the elemental composition �ETz=ze� is
conserved. As a consequence, the reaction trajectory
remains in the �ns−ne�-dimensional reactive affine
space containing z.

�2� 	S	�0 for z�zeq�ze�. That is, the mixture is reactive
everywhere, except at equilibrium. This is generally the
case in the interior of C+�ze�, and we assume that the
mechanism is such that it is also the case on the bound-
ary.

�3� ST�G�0 for z�zeq�ze�, where �G is the
gradient of the Gibbs function, �G= ��G /�z1 ,
�G /�z2 , . . . ,�G /�zns

�. In other words the Gibbs func-
tion is a strictly decreasing function of time along a
reaction trajectory until the equilibrium composition is
attained �in infinite time�. This follows from the law of
mass action and the second law of thermodynamics.

�4� On the boundary �C+�ze�, S cannot point outward the
interior of C+�ze�. This result stems from the law of
mass action and it ensures that reaction trajectories
originating in C+�ze� remain realizable. �It also follows
from property �3� and from the properties of �G on the
boundary.�

It follows from these four properties that the reaction
trajectory through z remains in C+�ze� �for ze=ETz�; at large
positive times the trajectory tends to the equilibrium point,
i.e., R�z ,��=zeq�ze�; and at a finite �but possibly large� nega-
tive time, denoted by −�b�z�, the trajectory intersects the
boundary �C+�ze�. Denoting this intersection by zb�z�, we
therefore have

R�z,− �b�z�� = zb�z� �7�

and

R�zb�z�,�b�z�� = z . �8�

Two different reaction trajectories, through points z and z�,
are shown in Fig. 1. Note that the different trajectories have
different boundary origins, zb�z� and zb�z��, but the same
ending point, i.e., zeq�ze�.

The ns�ns sensitivity matrix A�z , t� is defined to be the
derivative of the reaction mapping

Aij�z,t� �
�Ri�z,t�

�zj
. �9�

This is a very important quantity in the analysis which fol-
lows, because it describes the perturbation of the trajectory
caused by an infinitesimal perturbation to the initial condi-
tion z. Specifically for infinitesimal dt and dz, we have

R�z + dz,t + dt� = R�z,t� + A�z,t�dz + S�R�z,t��dt

= R�z,t� + A�z,t��dz + S�z�dt� , �10�

where the second step follows from S�R�z , t��=A�z , t�S�z�.14

Numerically, Eqs. �5� and �9� for R and A are integrated
together forward in time using the code DDASAC,32 with the
Jacobian J �Jij ��Si /�zj� being evaluated by automatic dif-

33
ferentiation using ADIFOR.
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E. Reduced composition

The state of the system is completely specified by p, T,
and z. The idea of dimension reduction is to approximate the
dynamics of the system using fewer variables, which here we
take to be p, T, ze, and the reduced composition r, where r
= �r1 ,r2 , . . . ,rnr

� is a specified set of nr represented variables,
for 1�nr� �ns−ne�. Usually, as in the examples below, the
reduced compositions are specified as certain major species.
But we allow for a more general linear combination of spe-
cies by defining

r = BTz , �11�

where B is a specified ns�nr matrix �such that �E B� has
independent columns�.

For the idealized H2/O system, we take nr=2 and
specify the reduced compositions to be the specific moles of
H2 and O. Thus, with H2 and O being the first and second
species, we have r1=z1, r2=z2; and the elements of the ma-
trix B are zero, except for B11=B22=1.

The reduced composition r is an nr-vector in the reduced
composition space

B�ze� � �r	r = BTz,ETz = ze,z � C� , �12�

and it is confined to the reduced realizable region

B+�ze� � �r	r = BTz,z � C+�ze�� . �13�

In Fig. 2, the horizontal r1−r2 plane is the reduced com-
position space B�ze�, and the shaded quadrilateral is the re-
duced realizable region, B+�ze�. Given the composition z, the
reduced composition r is simply the orthogonal projection
onto the r1−r2 plane. Note that the interior of C+�ze� is
mapped to the interior of B+�ze�: but the boundary of C+�ze�
is mapped both to the boundary �B+�ze� and to the interior of
B+�ze�.

It is convenient to define a set of nu unrepresented com-

FIG. 2. Sketch, in the active subspace, of the reduced realizable region
B+�ze� �shaded�, which is the perpendicular projection of the realizable re-
gion C+�ze� onto the reduced subspace. The reduced composition r is shown,
corresponding to the full composition z. The sketch also shows the one-
dimensional feasible regions F�r� and F�r�� corresponding to the interior
and boundary points r and r�; and the zero-dimensional feasible region
corresponding to the boundary point r�.
positions u, for nu=ns−ne−nr. In general we specify an ns
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�nu matrix U such that �E B U� spans the composition
space C, and then we define

u = UTz . �14�

The columns of �E B U� provide an alternative basis for the
composition space C, and �ze ,r ,u�= �ETz ,BTz ,UTz� contains
the same information as z.

For the idealized H2/O system, we have nu=6−3−2
=1, and we specify u1 to be the specific moles of H2O. Thus,
with H2O being the third species in the ordering, the compo-
nents of U are zero, except for U31=1. In Fig. 2, the vertical
axis is u1.

Many spaces and subspaces can be defined in terms of
E, B, and U. These include span�E�, the element subspace;
span�E��, the reactive subspace �to which S�z� belongs
when nondimensionalized�; span�B�, the reduced subspace;
span��E B��, the represented subspace; span�U�, the unrep-
resented subspace; and span��B U��, the active subspace,
which is the subspace in which Fig. 2 is sketched.

F. Attracting manifolds and species reconstruction

From one perspective, dimension reduction consists pri-
marily of identifying an nr-dimensional attracting manifold
M�ze� in the realizable region C+�ze�. For the methods con-
sidered in Sec. III, for each point r in the reduced realizable
region B+�ze�, there is a unique corresponding point on the
manifold, denoted by zM�ze ,r�. That is, the manifold M�ze�
is not folded: it is given by a graph of a function of the
represented variables, namely, zM�ze ,r�. By assumption, the
compositions which occur lie close to M�ze�, and the dy-
namics are well approximated by those on M�ze�.

A closely related perspective is that of species
reconstruction,25 which, given ze and r, seeks to determine
zM�ze ,r�. The distinction between these two perspectives is
that in species reconstruction the goal is to determine a
single manifold point, without generating or representing the
whole manifold �or a significant portion of it�.

In species reconstruction, an important concept is that of
the feasible region. Given the reduced representations ze and
r, the feasible region F�ze ,r� is defined as the union of com-
positions z in C+�ze� which have the reduced composition r,
i.e.,

F�ze,r� � �z	BTz = r,z � C+�ze�� . �15�

Given ze and r, without further knowledge or assumptions, it
is not generally possible to determine z uniquely: the unrep-
resented composition u is not known. But it is known that z
is in the feasible region F�ze ,r�. For r in the interior of
B+�ze�, the feasible region is an nu-dimensional convex poly-
tope. But for r being on the boundary �B+�ze�, the dimen-
sionality can be between nu and zero.

Figure 2 is a sketch of the feasible region for the ideal-
ized H2/O system �for which nu=1�. As shown in the figure,
for r in the interior of B+�ze�, F is one-dimensional. The
feasible regions corresponding to the upper and right bound-
aries are one-dimensional �parametrized by u1�, whereas
those corresponding to the lower and left boundaries are

zero-dimensional �given by u1=0�.
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G. Constrained equilibrium manifold

In the rate-controlled constrained equilibrium �RCCE�
method developed by Keck and Gillespie,17,18 the
nr-dimensional attracting manifold is taken to be the con-
strained equilibrium manifold �CEM�, which we denote by
MCE�ze�. Here we use the CEM for the different purposes.

In the isobaric, isothermal systems being considered, for
the given ze and r, the corresponding point on the CEM,
denoted by zCE�ze ,r�, is the point in the feasible region at
which the Gibbs function G�z� is minimum. And the CEM is
defined as the union of all such points

MCE�ze� � �z = zCE�ze,r�	r � B+�ze�� . �16�

This manifold is known30 to have ideal mathematical prop-
erties in many respects: zCE�ze ,r� exists and is unique for all
r in B+�ze�, MCE�ze� is smooth, and efficient numerical
methods exist to compute zCE.31,34–36 These are based on the
method of Lagrange multipliers, which in this context are
called constraint potentials. However, MCE�ze� is not invari-
ant: reaction trajectories starting on MCE�ze� can move away
from it, although they eventually return because the equilib-
rium point zeq�ze� is in MCE�ze�.

The CEM for the idealized H2/O system is shown in
Fig. 3. In this figure the bold line shows the constrained
equilibrium edge �MCE�ze�, defined �in general� as the inter-
section between MCE�ze� and the boundary of the realizable
region

�MCE�ze� � MCE�ze� � �C+�ze� . �17�

Because of the convexity of the Gibbs function, to each point
in the boundary �B+�ze� of the reduced realizable region
there is a unique corresponding point in the constrained equi-
librium edge, which is equivalently given by

CE e CE e + e

FIG. 3. The computed constrained equilibrium manifold �grid manifold�
with H2 and O being the represented species for the idealized H2/O system.
The dot is the chemical equilibrium composition of the system. The bold
curves and lines form the constrained equilibrium edge, which is the inter-
section between the constrained equilibrium manifold and the boundary of
the realizable region.
�M �z � = �z = z �z ,r�	r � �B �z �� . �18�
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As discussed in Sec. IV, for adiabatic �as opposed to
isothermal� systems, the same concepts apply, but based on
the maximization of entropy, rather than on the minimization
of the Gibbs function.

H. Invariant constrained equilibrium edge „ICE…
manifold

A conceptually simple way to obtain an nr-dimensional
invariant manifold is to define it as the union of the reaction
trajectories originating from points in a specified
�nr−1�-dimensional manifold transversal to the vector field
S�z�. This is the idea behind the method of trajectory-
generated low-dimensional manifolds �TGLDMs� advanced
by Pope and Maas21 and studied by others.23,26,27 Different
nr-dimensional invariant manifolds can be generated starting
from different specifications of �nr−1�-dimensional mani-
folds. However, the invariant manifolds converge together at
a rate determined by the ratio of the fast and slow time scales
in the chemical kinetics. We use the TGLDM method here,
taking the �nr−1�-dimensional constrained equilibrium edge
to define the origin of the trajectories.

We now state these ideas more precisely. We denote by
MICE�ze� the attracting low-dimensional manifold intro-
duced here, and call it the invariant, constrained equilibrium
edge manifold or the ICE manifold for short. It is defined by

MICE�ze� � �z	z = R�zg,t�,t � 0,zg � �MCE�ze�� , �19�

that is, the ICE manifold is the union of all reaction trajec-
tories R�zg , t� �forward in time� emanating from generating
boundary points zg in the edge of the constrained equilibrium
manifold �MCE�ze�. Obviously, the ICE manifold contains
the equilibrium point zeq�ze�.

The ICE manifold for the idealized H2/O system is
shown in Fig. 4. As may be seen from the figure, from each
point in �MCE�ze�, the reaction trajectory proceeds �almost
as a straight line� to the observed curve, which is a highly
attracting one-dimensional manifold. Although not evident
from the figure, the trajectories then turn sharply to join this
one-dimensional manifold and proceed to the equilibrium

FIG. 4. The invariant constrained-equilibrium edge �ICE� manifold for the
idealized system, which is the union of the reaction trajectories from the
constrained equilibrium edge �bold lines and curves�.
point.
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Figure 5 shows the projection of the ICE manifold onto
the reduced composition space B�ze�. Note that to every
point r in the boundary �B+�ze� of the reduced realizable
region there is a unique corresponding constrained equilib-
rium composition zCE�ze ,r�, and hence the starting point of a
unique reduced trajectory �i.e., the trajectory projected onto
B�ze��.

It is clear from Figs. 4 and 5 that the ICE manifold for
the H2/O system �with the selected reduced subspace B� is
not folded, and consequently for each reduced composition r
there is exactly one corresponding manifold point which is
denoted by zICE�ze ,r�. That is, for each r�B+�ze�, the set

zICE�ze,r� � �z	z � MICE�ze,r�,BTz = r� �20�

consists of a single point.
Whether an ICE manifold is folded or not folded de-

pends on the chemistry of the system, the values of ze, and
the specified reduced subspace, span�B�. Our experience
suggests that for typical combustion systems and a sensible
specification of B, ICE manifolds are not folded. Along a
trajectory from a generating boundary point in �MCE�ze� to
the equilibrium point zeq�ze�, the tangent vectors of the ICE
manifold are readily determined �from the sensitivity matrix
A�. Hence a fold in the manifold along the trajectory can
easily be detected �as a point where a tangent vector is or-
thogonal to span�B��.

An ICE manifold that is not folded has the following
properties:

�1� Invariance. By construction, the ICE manifold is in-
variant.

�2� Continuity and smoothness. The constrained equilib-
rium edge �MCE�ze� is continuous, and it is smooth on
each facet of the boundary �C+�ze�. The ICE manifold
inherits these properties, and hence is continuous and
piecewise smooth.

�3� Consistency with fundamental laws. The dynamics
on the ICE manifold �like any invariant manifold� are

FIG. 5. The projection of the ICE manifold onto the reduced composition
space B�ze�, shown by the projected trajectories originating on the edge
�B+�ze� �bold lines�. The fact that the projected trajectories do not cross
demonstrates that this ICE manifold is regular: to each point r in B+�ze�
there is a unique manifold point zICE�ze ,r�. �The directions of the r1 and r2

axes are chosen to facilitate comparisons with the previous 3D illustrations.�
those of the detailed kinetic system in the full compo-
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sition space. As a consequence they are consistent with
all fundamental laws, in particular, element conserva-
tion and the first and second laws of thermodynamics.

�4� Existence of reconstructed species. For every reduced
composition r�B+�ze� there exists a corresponding
point zICE on the ICE manifold �with BTzICE=r�.

�5� Uniqueness of reconstructed species. By definition of
the ICE manifold being not folded, to every reduced
composition r�B+�ze� there exists a unique corre-
sponding point on the ICE manifold zICE�ze ,r� �with
BTzICE�ze ,r�=r�.

�6� Local determination. As shown in the next section, for
the given ze and r, the corresponding ICE manifold
point zICE�ze ,r� can be determined without generating
the whole manifold �or a significant portion of it�.

�Properties �1�–�4� also apply to folded ICE manifolds.�

III. ICE-PIC: A METHOD TO DETERMINE POINTS ON
THE ICE MANIFOLD USING THE CONSTRAINED
EQUILIBRIUM PRE IMAGE CURVE

As illustrated in Fig. 4, for the idealized H2/O system,
the whole of the two-dimensional ICE manifold can be gen-
erated by following trajectories from the constrained equilib-
rium edge. However, computationally, the process of gener-
ating and representing the manifold rapidly becomes much
more difficult, and soon infeasible, as the dimensionality nr

of the manifold increases. For the accurate reduced represen-
tation of the combustion chemistry of hydrocarbon fuels,
manifolds of dimension nr�10 may be required,14,37 and the
computational representation of a manifold of more than ten
dimensions is surely infeasible.

Rather than the global method of generating the whole
manifold, to apply the ICE manifold �with nr�10, say� in
practice for the dimension reduction of combustion chemis-
try, one needs instead a local method of species reconstruc-
tion; that is, a local method to determine the ICE manifold
point zICE�ze ,r� for given values of ze and r. In this section
we describe such a local method to determine points on the
ICE manifold using the constrained equilibrium preimage
curve, which we call the ICE-PIC method.

A. The preimage manifold

An important entity in the ICE-PIC method is the pre-
image manifold MPI�ze ,r� introduced by Ren and Pope25

and now described.
Given the reduced representation of the composition,

�ze ,r�, the full composition is known to lie in the feasible
region F�ze ,r�, Eq. �15�. From each point ẑ in F�ze ,r� the
reaction trajectory can be followed backwards in time until
�at time −�b�ẑ�� it intersects the boundary �C+�ze� at zb�ẑ�.
The preimage manifold is defined to be the union of all of
these trajectories:

MPI�ze,r� � �z	z = R�ẑ,t�, ẑ � F�ze,r�,− �b�ẑ� � t � 0� .

�21�

For the idealized H2/O system, Fig. 6 shows the feasible

region and the preimage manifold that it generates. The
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curves b1 and b2 are the boundaries of the preimage mani-
fold, which are the intersections between the preimage mani-
fold MPI�ze ,r� and the boundaries of the realizable region
C+�ze ,r�. Curve b1 is in the front facet and curve b2 is in the
reduced realizable region B+�ze� �the lower facet�.

Provided that the rate vector S�ẑ� has a nonzero compo-
nent in the reduced subspace �i.e., BTS�ẑ��0, for every ẑ
�F�ze ,r��, then it follows from the well-known properties
of ODEs that the dimension of the preimage manifold
MPI�ze ,r� is one more than the dimensionality of the fea-
sible region F�ze ,r� from which it is generated. That is,
MPI�ze ,r� is of dimension �ns−ne−nr+1�. �If F�ze ,r� con-
tains the equilibrium point zeq�ze�, then zeq�ze� is the corre-
sponding point on the ICE manifold, and the ICE-PIC
method to perform species reconstruction is not invoked.
Otherwise �i.e., ẑ�zeq�, the occurrence of BTS�ẑ�=0 would
indicate a very poor specification of the reduced subspace,
span�B�.�

B. The constrained equilibrium preimage curve
„CE-PIC…

By definition, a preimage curve is a curve lying in the
preimage manifold with one end in the feasible region. Ren
and Pope25 describe a species-reconstruction technique based
on the minimum-curvature preimage curve, which starts at
the constrained equilibrium point zCE�ze ,r�, is initially tan-
gent to the constrained equilibrium manifold �CEM�, and is
subsequently continued with minimum curvature. Here we
consider another preimage curve which has two ends: one
end in the feasible region and the other on the boundary of
the realizable region.

The preimage curve considered here is defined by the
property that every point on the curve is both a constrained
equilibrium point and a preimage point. Thus, the CE-PIC
denoted by CCE�ze ,r� is the intersection between the preim-

FIG. 6. Sketch showing the feasible region F�r� and the preimage manifold
MPI corresponding to r= �zH2

;zO�= �0.002 12;0.002 01� kmol/kg. The pre-
image manifold MPI intersects the boundary of the realizable region along
the curves b1 and b2.
age manifold and the constrained equilibrium manifold:
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CCE�ze,r� � MPI�ze,r� � MCE�ze� . �22�

Note that these two manifolds are of dimension �ns−ne−nr

+1� and nr, respectively, and so �provided that they are trans-
verse�, their intersection CCE is one-dimensional �i.e., a
curve� in the �ns−ne�-dimensional realizable region C+�ze�. It
is important to appreciate that the CE-PIC is not a reaction
trajectory since the CEM is not invariant.

For the idealized H2/O system, Fig. 7 shows the CE-PIC
which is the intersection between the CEM MCE�ze� and the
preimage manifold MPI�ze ,r�, and Fig. 8 shows several re-
lated quantities.

The CE-PIC has two ends: the first, the feasible end, is
the constrained equilibrium composition zCE�ze ,r� �which is
the intersection between the CEM and the feasible region�.
The second, the boundary end denoted zg�ze ,r�, is the inter-
section of three objects: the CEM MCE, the boundary
�C+�ze�, and the preimage manifold MPI. Being in
MCE��C+ means that the point zg�ze ,r� is in the con-
strained equilibrium edge, and therefore also on the bound-
ary of the ICE manifold. Therefore, the trajectory from
zg�z ,r� is in the ICE manifold, and because zg�ze ,r� is a
preimage point, this trajectory intersects the feasible region.
It does so at the sought-after ICE manifold point zICE�ze ,r�.

FIG. 7. Sketch showing the intersection between the CEM MCE�ze� and the
preimage manifold MPI�ze ,r� for r= �zH2

;zO�= �0.002 12;0.002 01�
kmol/kg. The intersection is the constrained equilibrium preimage curve
�CE-PIC�.

FIG. 8. Sketch showing �for given ze and r� the feasible region F�ze ,r� and
the constrained equilibrium preimage curve CCE�ze ,r�. The general point on
the CE-PIC is denoted by zPIC�ze ,r ,s�, and the reaction trajectory from it,
R�zPIC, t��, intersects the feasible region at zF�ze ,r ,s�=R�zPIC, t�s��. The
feasible end of the CE-PIC is zPIC�ze ,r ,0�=zCE�ze ,r� and the boundary end
is zg�ze ,r�=zb�zICE�. The reaction trajectory from zg is in the ICE manifold,
and it intersects the feasible region at zICE�ze ,r�=R�zg ,�b�sb��

F e b b ICE
=z �z ,r ,s � after time � �z �.
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Thus the boundary end zg�ze ,r� of the CE-PIC is the gener-
ating boundary point of the ICE manifold corresponding to
the reduced composition r, i.e.,

zICE�ze,r� = R�zg�ze,r�,�b�zICE�� , �23�

zg�ze,r� = R�zICE�ze,r�,− �b�zICE�� = zb�zICE�ze,r�� , �24�

where �b is the time along the reaction trajectory from
zg�ze ,r� to zICE�ze ,r�, which is in the feasible region.

The CE-PIC can be naturally parametrized by the ar-
clength s measured from the feasible end zCE�ze ,r�. We de-
note the general point on the CE-PIC CCE�ze ,r� by
zPIC�ze ,r ,s�, or simply zPIC�s�. The time along the reaction
trajectory from the point zPIC�ze ,r ,s� on the CE-PIC curve to
the feasible region is denoted by t�ze ,r ,s�, or simply t�s�. As
sketched in Fig. 8, after time t�s�, the reaction trajectory from
zPIC�s� intersects the feasible region at a feasible point de-
noted by zF�ze ,r ,s� or simply zF�s�. Thus for 0�s�sb

�where sb�ze ,r� is the arclength at the boundary end zg�ze ,r��
we have

zF�ze,r,s� = R�zPIC�ze,r,s�,t�s�� . �25�

The feasible end of the CE-PIC is

zPIC�ze,r,0� = zCE�ze,r� , �26�

and zF�0� is coincident with this point. The boundary end of
the CE-PIC is

zPIC�ze,r,sb�ze,r�� = zg�ze,r� = zb�zICE� , �27�

and the corresponding feasible point is

zF�sb� = zICE�ze,r� . �28�

C. The ICE-PIC method

Given the reduced representation, �ze ,r�, the ICE-PIC
method achieves species reconstruction by identifying the
corresponding point on the ICE manifold, zICE�ze ,r�. A lit-
eral implementation of the ideas developed above leads to
the following three-step algorithm.

�1� The constrained equilibrium composition zCE�ze ,r� is
computed, e.g., by the constraint potential method.

�2� The CE-PIC is followed from its feasible end zPIC�0�
=zCE�ze ,r� to its boundary end zPIC�sb�=zg�ze ,r�.

�3� The reaction trajectory from zg�ze ,r� is followed for-
ward in time until it intersects the feasible region at
zF�sb�=zICE�ze ,r�.

Provided that the CE-PIC exists �i.e., that the CEM and pre-
image manifolds are transverse�, each of these steps can be
reliably performed, thus ensuring the success of the method
to identify the unique ICE manifold point, zICE�ze ,r�.

As mentioned, the first step can be efficiently performed
using the constraint potential method.31 In essence, the ne

+nr constraint potentials � are determined by the ne+nr

equations ETz=ze and BTz=r.
The second step can be performed by traversing the CE-

PIC in small steps using a combination of the methods de-
25 31
scribed by Ren and Pope and Pope. At arclength s along
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the curve, the constraint potentials are ��s�, and the con-
strained equilibrium composition determined by � is
zPIC�ze ,r ,s�. �The use of the constraint potential method
forces the composition to remain on the constrained equilib-
rium manifold.� For small 	s, the ne+nr constraint potentials
��s+	s� and the time t�s+	s� are determined from the �ne

+nr+1� simultaneous equations as follows:

ETzPIC = ze, �29�

BTR�zPIC�ze,r,s + 	s�,t�s + 	s�� = r , �30�

and

	zPIC�ze,r,s + 	s� − zPIC�ze,r,s�	 = 	s , �31�

where 	z	 denotes the two-norm �zTz�1/2. The first of these
equations imposed the elemental composition; the second is
the requirement that zPIC�ze ,r ,s+	s� is a preimage point;
and the third is the definition of the arclength increment.

The above applies in the interior of C+�ze�. As the curve
reaches the boundary �C+�ze�, the species specific moles zi of
some species tend to zero, and correspondingly a constraint
potential tends to minus infinity. To avoid the associated dif-
ficulties, the curve is extrapolated to the boundary to predict
zg�ze ,r� and the facet in which it lies. Figure 9 illustrates the
process by which the two CE-PIC points zPIC�s1� and zPIC�s2�
are used to construct an estimate ẑg of the boundary end of
the CE-PIC, zg. On the facet thus identified, the reduced
composition r has nr−1 degrees of freedom, and, with the
absent species removed from consideration, the constrained
equilibrium composition is determined by the �ne+nr−1� re-
maining constraint potentials. The estimate ẑg of zg�ze ,r� can
be improved by a Newton iteration in which the �ne+nr�
unknowns are the �ne+nr−1� constraint potentials and the

b

FIG. 9. For a case with two represented variables �r1 and r2� and one
unrepresented variable �u1�, a sketch of the realizable region C+�ze� showing
the feasible region F�r� and the constrained equilibrium point zCE�r�, cor-
responding to the given reduced composition r; the constrained equilibrium
preimage curve CCE from zCE to its boundary end zg, which lies in a facet of
�C+�ze� �the triangle at the left, on which r1 is zero�; the constrained equi-
librium edge �MCE�ze� in this facet; and the trajectory R�zg , t��, which
intersects the feasible region at zICE. Based on the two CE-PIC points
zPIC�s1� and zPIC�s2�, a predicted value ẑg of zg is obtained by extrapolation
to the facet. A Newton iteration is performed yielding a succession of esti-
mates �z�0� ,z�1� , . . . ,z�k� , . . . � of zg �all in �MCE�ze��. The initial guess z�0�

has the same value of the represented variables as ẑg, and the iteration is
based on refining z�k� with the aim of making the projected reaction trajec-
tory BTR�z�k� , t�� pass through r.
time t=� along the trajectory to the feasible region, and the
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�ne+nr� equations are analogous to Eqs. �29� and �30�. After
k iterations, the estimate of zg�ze ,r� is denoted by z�k�. The
initial estimate z�0� is the constrained equilibrium point with
the same value of the represented variables as ẑg. As illus-
trated in Fig. 9, the iterate z�k� is determined by a linear
approximation to the requirement that the projected reaction
trajectory BTR�z�k� , t�� passes through r �or equivalently that
R�z�k� , t�� intersects F�r��.

Once zg�ze ,r� has been determined in step �2�, then step
�3� in principle requires the integration of the ODEs dz /dt
=S�z� from the initial condition zg along the reaction trajec-
tory until the feasible region is reached to yield zICE�ze ,r�. In
practice, this integration has already been performed as part
of the iteration in step �2�.

The method requires zg�ze ,r� to be accurately
determined—as it is by the Newton iteration performed on
the facet. But the CE-PIC does not have to be traversed
accurately: all that is required is an estimate of zg, which is
sufficiently accurate for the Newton iteration on the facet to
converge. For the sake of efficiency, we therefore evaluate as
few points on the CE-PIC as possible, and, as necessary,
repeatedly extrapolate to the boundary and attempt the New-
ton iteration. In practice, the computation of three or four
points on the CE-PIC is usually sufficient. In anticipation of
combining the ICE-PIC method with ISAT, we observe also
that infinitesimal changes in the reconstructed composition,
i.e., zICE�ze+dze ,r+dr�, can be determined from the CEM at
zg and from the sensitivity matrix A�zg ,�b�. A knowledge of
the CE-PIC is not needed.

For all the cases we have performed, t�s� increases
monotonically with the arclength s along the CE-PIC. There-
fore, for such cases the CE-PIC can be equivalently param-
etrized by t, i.e., zPIC�t�. For the idealized H2/O system, for
r= �0.002 14;0.000 929� kmol/kg, Fig. 10 shows the compo-
sition zPIC�t� along the CE-PIC. As may be seen from the
figure, zPIC changes significantly along the curve. The dot in
the figure is the ending point of the curve, that is, the gener-
ating boundary point zg�ze ,r�. The species specific moles

PIC PIC

FIG. 10. Top row: composition zPIC�t� along the CE-PIC with r= �zH2
;zO�

= �0.002 14;0.000 929� kmol/kg; the dot is the boundary end of the CE-PIC,
zg=zPIC��b�, where �b=2.60�10−7 s. Bottom row: the feasible composition
zF�t� mapped from the CE-PIC for the same case; the dot is the recon-
structed composition zICE=zF��b� on the ICE manifold.
zH2O and zH of the generating boundary point are zero. Fig-
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ure 10 also shows the feasible composition zF�t� mapped
from the preimage curve. Since H2 is the represented species,
inevitably, we have a constant value of zH2

F �t� even though
zH2

PIC�t� varies appreciably. For the unrepresented species, it
may be seen that they approach asymptotic values due to the
fact that trajectories from the latter part of the CE-PIC have
been attracted to a low-dimensional manifold. The dot in the
figure is the corresponding point on the ICE manifold
zICE�ze ,r�.

IV. ICE-PIC METHOD FOR ADIABATIC SYSTEMS

In this section, we discuss the differences between adia-
batic and isothermal systems and indicate the necessary
changes in order to apply the ICE-PIC method to adiabatic
systems.

For a closed, homogeneous, adiabatic, and isobaric re-
acting system, conserved quantities �fixed for all time� are
the mass m, the pressure p, the specific enthalpy h, and the
element specific moles ze. The state of the system is com-
pletely specified by p, h, and z. And the ICE-PIC method
approximates the dynamics of the system by �p ,h ,ze ,r�.

The specific enthalpy of the system, h, is related to the
temperature T by

h = zTh̄�T� , �32�

where h̄i�T� is the molar specific enthalpy of species i, which
is a strictly increasing function of T. Below some tempera-
ture Tlow, the ideal gas assumption and the accuracy of the
chemical kinetics break down. Accordingly, for the adiabatic
case, the definition �Eq. �4�� of the realizable region is modi-
fied to exclude compositions z at which the temperature is
below Tlow—or, equivalently, at which the enthalpy h is less

than zTh̄�Tlow�:

C+�ze,h� = �z	zi � 0,zTh̄�Tlow� � h,ETz = ze,z � C� . �33�

Note that the constraint on temperature appears as a linear
inequality constraint on z, and hence C+�ze ,h� is a convex
polytope, as in the isothermal case.

Among all thermodynamic variables defined in C+�ze ,h�,
of particular interest is the entropy S�z�, which is strictly
concave and has a unique global maximum in the interior of
C+�ze ,h�. For the adiabatic, isobaric system considered, the
location of this maximum corresponds to chemical equilib-
rium. Due to chemical reactions, the composition z�t�
evolves in time t according to a set of ODEs similar to Eq.
�5�. The enthalpy along the reaction trajectory remains con-
stant, whereas the temperature varies. The reaction rate vec-
tor S has all the properties listed in Sec. II D, except now the
second law of thermodynamics and the law of mass action
force the entropy to increase with time along a reaction tra-
jectory until equilibrium is reached �instead of the Gibbs
function decreasing�.

Given p, h, ze, and r, the corresponding point on the
CEM for the adiabatic system is the point in the feasible
region at which entropy is maximum �in contrast to the

Gibbs function being minimum in the isothermal system�.
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All of the other concepts, such as the constrained equi-
librium edge, the ICE manifold, the preimage manifold, and
the CE-PIC curve, are the same as for the isothermal system.
With small modifications, the ICE-PIC method developed in
Sec. III can therefore be applied to adiabatic systems.

V. COMPARATIVE TESTING OF SPECIES
RECONSTRUCTION METHODOLOGIES

In this section, the ability of the ICE-PIC method of
species reconstruction is investigated for the test case of a
hydrogen/air premixed laminar flame, and quantitative com-
parisons are made with other methodologies, namely, RCCE,
ILDM, and QSSA. As described fully in Sec. V A, using a
detailed chemical mechanism for hydrogen, the one-
dimensional steady laminar flame equations are solved to
yield profiles of the full composition as a function of the
distance x, denoted by zP�x�, through the flame. At any point
in the flame, the reduced composition can be deduced from
zP�x� and, based on this, one of the species-reconstruction
methods can be used to yield an estimate zM�x� for the full
composition. Then the resulting error in the species recon-
struction, zP�x�−zM�x�, can be examined and quantified.

For a given choice of represented variables, all the
dimension-reduction methodologies considered �i.e., ICE-
PIC, RCCE, ILDM, and QSSA� identify attracting manifolds
based solely on chemical kinetics and thermodynamics. In
the laminar flame equations, one effect of molecular diffu-
sion is to draw compositions away from these attracting
manifolds.38 Hence the difference zP�x�−zM�x� is in part due
to this effect of molecular diffusion.

In the following subsections we describe the premixed
laminar flame computations and the four species reconstruc-
tions methodologies, and then the results are reported.

A. Computations of a premixed laminar flame

The test case considered is the steady, isobaric, adiabatic,
one-dimensional premixed laminar flame of a pure stoichio-
metric hydrogen/air mixture with an unburnt temperature of
300 K and pressure of 1 atm. The detailed chemical mecha-
nism employed is the mechanism of Li et al.,29 which in-
volves three elements, nine species, and 21 reactions. Nitro-
gen chemistry is not included so that N2 is considered to be
inert.

The governing partial differential equations for the one-
dimensional flame are solved using Sandia’s PREMIX code
with full multicomponent transport properties of the species.
The resulting profiles of temperature, TP�x�, and the species
specific moles, zP�x�, are shown in Figs. 11 and 12 as func-
tions of distance x. As may be seen from the figures, the
consumption of hydrogen and formation of water occurs in a
very thin reaction zone. Besides plotting the results against
the distance x across the flame, another more revealing way
is to show the results against the temperature TP�x�. �All the
quantities such as zP�x� and zP�x�−zM�x� can be param-
etrized by TP�x�, which is an increasing function of distance
x through the flame.� In the following, we mainly use the

latter to show the test results.
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B. Species reconstruction using ICE-PIC

At different locations across the flame, the adiabatic
ICE-PIC method is employed to perform species reconstruc-
tion, i.e., to determine the full composition zICE on the cor-
responding ICE manifold as an estimate of zP. At each loca-
tion, the thermochemical state is completely specified by
pressure p, specific enthalpy h, and the species specific

FIG. 11. Temperature and species specific moles across the flame. Lines:
composition �TP ,zP� obtained using PREMIX with detailed chemistry; dots:
compositions �TICE,zICE� reconstructed using the ICE-PIC method.

FIG. 12. Species specific moles across the flame. Lines: composition �zP�
obtained using PREMIX with detailed chemistry; dots: composition �zICE�

reconstructed using the ICE-PIC method.
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moles z; and given the reduced representation �ze ,h ,r�, the
ICE-PIC method is applied to the corresponding adiabatic,
isobaric closed system. In this application, we take nr=4, and
specify the reduced compositions r to be the specific moles
of the species H2, O2, H2O, and H. Thus with the given ze

and h, the dimensionality of the low-dimensional manifolds
is 4. At each location, the species specific moles of the rep-
resented species r, the element specific moles ze, and en-
thalpy are extracted from the full composition �h ,zP� ob-
tained using PREMIX with the detailed mechanism. The
reconstructed composition on the ICE manifold zICE�ze ,h ,r�
is then obtained using the ICE-PIC method. The value Tlow

=280 K is specified, but the lowest temperature encountered
is greater than this, and so the restriction T�Tlow has no
effect in this case. �In other cases, e.g., with nr=2, this bound
is encountered.�

The reconstructed composition zICE and temperature TICE

obtained using ICE-PIC are also shown �as dots� in Figs. 11
and 12. The represented species are, of course, reconstructed
without error. For the unrepresented radicals O and OH,
there is no noticeable difference between zICE and zP. There
is also good agreement for temperature, with the normalized
error �defined as 
T= �2� 	TICE−TP� / �TICE+TP�� being less
than 1.5�10−3 across the whole flame. There are noticeable
differences in the unrepresented species HO2 and more so in
H2O2, see Fig. 12. These differences are partly due to the
effect of molecular diffusion. �For RCCE, ILDM, and QSSA,
we also observe large errors in H2O2.� However, these dif-
ferences do not affect the chemical dynamics for the repre-
sented species, as is shown below.

C. Species reconstruction using RCCE

In the ICE-PIC method, the constrained equilibrium
manifold is used only to identify the constrained equilibrium
edge. In contrast, in the RCCE approach to simplify chemi-
cal kinetics, the CEM is taken as the low-dimensional at-
tracting manifold. With the same reduced representation as in
the ICE-PIC method, the composition on the CEM manifold
can be determined. �Indeed, this is the first step of the ICE-
PIC method.� Figure 13 �plotted against the temperature TP�
compares the reconstructed compositions on both the ICE
and CEM manifolds together with zP. As may be seen from
the figure, for the unrepresented radicals O and OH, there is
a significant difference between zRCCE and zP in the tempera-
ture range of 600–1900 K, where the chemical kinetics are
important. In comparison, as previously noted, there is ex-
cellent agreement between zICE and zP. The reason for this
difference is that the CEM manifold is fully based on the
thermodynamics, taking no account of the chemical kinetics,
whereas the ICE-PIC method accounts for the chemical ki-
netics by following the reaction trajectories.

D. Species reconstruction using ILDM

By definition, the ILDM is the set of compositions z

satisfying
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U f
TS�z� = 0, �34�

where S�z� is the rate vector and span�U f� is the fast sub-
space of the Jacobian matrix J�z� �see Ref. 20 for further
details�. Given the same reduced representation �ze ,h ,r� as
in the ICE-PIC method, species reconstruction using ILDM
consists of identifying ILDM compositions zILDM satisfying
Eq. �34� in the feasible region F�ze ,h ,r�.

While the existence and uniqueness of the reconstructed
composition are guaranteed by RCCE and ICE-PIC �for an
unfolded ICE manifold�, there are no such guarantees with
ILDM. Figure 14 shows zH2O2

ILDM compared to zH2O2

P for the
premixed laminar flame. As may be seen, there is excellent
agreement at high temperature, with no discernible differ-
ences down to 1600 K. As the temperature decreases further,
there is a clear divergence between zH2O2

ILDM and zH2O2

P ; and
below 1200 K, zH2O2

ILDM decreases almost linearly to reach zero
�with nonzero slope� around 875 K. �The value of zH2O2

ILDM ob-

FIG. 13. Species specific moles across the flame. Lines: zP from PREMIX;
dots: zICE from ICE-PIC; dot-dashed line: zCEM. The profiles are plotted
against the temperature TP�x�, which is an increasing function of distance x
through the flame.

FIG. 14. Species specific moles of zH2O2
. Solid line: zH2O2

P obtained using
PREMIX with detailed chemistry; dashed line: zH2O2

ILDM, reconstructed using
ILDM. Note that zH2O2

ILDM passes through zero at about T=875 K. The profiles
are plotted against the temperature TP�x�, which is an increasing function of

distance x through the flame.
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tained at 871.24 K is −3.6�10−8 kmol/kg.� Below this tem-
perature we are unable to find ILDM points in the feasible
region F�ze ,h ,r�. These findings are consistent with the
ILDM not existing below 875 K for this case.

E. Species reconstruction using QSSA

In ICE-PIC, RCCE, and ILDM, the same reduced repre-
sentation �ze ,h ,r� is used, and hence these three methods can
be compared directly. In QSSA, on the other hand, the re-
duced representation is �h ,r�, with no information about the
elemental composition of the unrepresented species. As a
consequence, the comparison with QSSA is somewhat less
direct.

In the other methods there are eight degrees of freedom
in the reduced representation �enthalpy, three elements, four
represented species�. We consider, therefore, a standard
QSSA method39 with the same number of degrees of free-
dom, specifically, enthalpy and the specific moles of seven
major �i.e., non-steady-state� species: H2, O2, H2O, H, OH,
O, and N2. The quasi-steady-state assumption is applied to
the two minor species HO2 and H2O2. Given that there are
three elements in the system, the dimensionality of the low-
dimensional manifolds of the QSSA method is 7−3=4. With
the values of the major species specific moles being taken
from zP, the minor species are reconstructed from the quasi-
steady-state approximation. �This specification for the major
species favors QSSA in later comparisons because of the
omission of errors in two additional major species, OH and
O.�

F. Comparison of species reconstruction errors

Let zM denote the reconstructed species specific moles
using one of the methods described in the preceding four
subsections �i.e., zM is one of zICE, zRCCE, zILDM, or zQSSA�.
Then, as a function of position through the flame, we define
the normalized species-reconstruction error as

�z =
2 � 	zM − zP	

	zM	 + 	zP	
. �35�

The reconstruction errors for all four species reconstruc-
tion methodologies are shown in Fig. 15 �plotted against
temperature TP�. Considering first temperatures above
875 K, it is readily observed that RCCE incurs much larger
errors than all other methods with a peak of �z

RCCE=0.015 at
T=1450 K. In this range �T�875 K�, all other methods
yield very small errors �less than 1.2�10−4�, with �z

ICE being
very similar to �z

ILDM.
Below 875 K, the ILDM does not exist, while QSSA

yields large errors �z
QSSA as the low-temperature boundary is

approached �T=300 K�. On the other hand, for ICE-PIC and
RCCE the errors are here well controlled. This is because the
specific moles of elements in the unrepresented species are
very small, and hence the specific moles of the unrepresented
species are small, thus limiting the maximum possible error.
In contrast, in QSSA, spuriously large values of minor spe-

cies can occur.
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Of the species reconstruction methodologies that suc-
ceed over the entire temperature range, ICE-PIC yields the
smallest maximum error: over the whole range �z

ICE is less
than 3�10−4.

Besides the reconstructed composition, it is also impor-
tant to study the reconstructed rate vector �i.e., S�zM�� and to
compare it to S�zP�. Figure 16 �plotted against temperature
TP� compares the rates for H2O for all four species-
reconstruction methodologies together with SH2O�zP�. As
may be seen from the figure, the composition on the CEM
manifold has qualitatively different chemical kinetics com-
pared to all others. This is due to the inaccurate reconstruc-
tion of the important O and OH species on the CEM mani-
fold �see Fig. 13�. In comparison, the reconstructed rates of
H2O using ICE-PIC, QSSA, and ILDM all have good quan-
titative agreement with SH2O�zP�. �The ILDM is not able to
predict the chemical kinetics below 875 K.�

Figure 17 provides further quantitative comparison of
the normalized reconstruction error in the reaction rate vec-
tor. The normalized reconstruction error �S is defined as

FIG. 15. Normalized errors �Eq. �35�� in reconstructed compositions. The
profiles are plotted against the temperature TP�x�, which is an increasing
function of distance x through the flame.

FIG. 16. Reaction rates of H2O across the flame based on PREMIX calcula-
tions and different reconstructed compositions. The profiles are plotted
against the temperature TP�x�, which is an increasing function of distance x

through the flame.
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�S =
	S�zM� − S�zP�	

Smax
, �36�

where Smax=944 kmol/ �kg s� is the maximum value of
	S�zP�	 across the flame. From the figure, it is readily ob-
served that RCCE incurs much larger errors than all the other
methods with a peak of �S

RCCE=15 at T=1450 K. In the range
T�875 K, ICE-PIC, ILDM, and QSSA all yield small errors
�less than 0.03�, with �S

ICE being very similar to �S
ILDM. Notice

that there is a steep increase in �S
ILDM around T=875 K.

Closer examination shows that this occurs just before zILDM

becomes unrealizable �zH2O2

ILDM becomes negative, see Fig. 14�.
Over the entire temperature range, �S

ICE is less than 0.024 and
�S

QSSA is less than 3.2�10−3. �Note that this comparison fa-
vors QSSA because of the omission of errors in OH and O in
QSSA.�

VI. DISCUSSION AND CONCLUSION

The ICE-PIC method presented in this article is a useful
tool for simplifying complex chemical kinetics. In numerical
simulations of chemically reacting flows, the ICE-PIC
method can be used in conjunction with a storage/retrieval
method such as ISAT �Ref. 8� to reduce substantially the
computational cost of implementing the chemical kinetics.

The ICE-PIC method is based on three major ingredi-
ents: the constrained equilibrium manifold the trajectory-
generated manifold, and the preimage curve method. The
low-dimensional manifold employed in the ICE-PIC method
is a trajectory-generated invariant manifold from the con-
strained equilibrium edge �i.e., it is the time-flow image of
the constrained equilibrium edge�. This ICE manifold is in-
variant, continuous, and piecewise smooth. With a reason-
able choice of represented species, the manifold is not
folded, and hence is given by a graph of a function of the
represented variables, i.e., zICE�ze ,r�. The ICE-PIC method
employs the constrained equilibrium preimage curve to de-
termine locally the full composition on the ICE manifold. In
comparison to other existing dimension-reduction methods
such as QSSA, RCCE, and ILDM, this method is the first

FIG. 17. Normalized errors �Eq. �36�� in the reconstructed reaction rate
vectors. The profiles are plotted against the temperature TP�x�, which is an
increasing function of distance x through the flame.
approach that locally determines compositions on a low-
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dimensional invariant manifold. Because it is local, the ICE-
PIC method can readily be applied to high-dimensional sys-
tems. This will be demonstrated in future work.

The method is demonstrated here for the idealized H2/O
system with six chemical species, and it is tested for the
premixed laminar flame of a stoichiometric hydrogen/air
mixture, where the detailed mechanism with nine species and
21 reactions is employed. With four represented species, H2,
O2, H2O, and H, the ICE-PIC method reconstructs the full
composition accurately compared with the results obtained
by PREMIX with the detailed mechanism. The normalized er-
ror �z in the composition reconstructed by the ICE-PIC
method is less than 3�10−4 and the error in the recon-
structed temperature is less than 1.5�10−3 throughout the
flame. Besides the composition, the ICE-PIC method also
reproduces the chemical kinetics accurately �see Fig. 17�.

Apart from the detailed kinetic mechanism, the only “in-
put� to the ICE-PIC method is the choice of the reduced
compositions, e.g., the specification of nr and of the ns�nr

matrix B �and Tlow in the adiabatic case�. The effect of dif-
ferent choices of reduced representations will be investigated
in future work: it is expected that the ICE manifold is weakly
dependent on B, away from the realizable boundaries. An-
other important question to be addressed in future work is to
determine the minimum dimension of the ICE manifold re-
quired to describe a particular chemical system with pre-
scribed accuracy, i.e., the minimum number of represented
variables nr required. �For other dimension-reduction meth-
ods, some studies on the minimum dimensions required have
been reported.13,14,40–42� Further work includes the applica-
tion of this method to more complex chemical kinetic sys-
tems �such as methane/air and heptane/air systems� and a
computationally-efficient implementation of the method
combined with ISAT for application to the simulation and
modeling of turbulent combustion.
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