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1 Introduction

Locating bifurcations is one of the objectives of numerical methods for the analysis of dynam-
ical systems. The presence of bifurcations is often deduced from trajectories; i.e., solutions
of initial value problems, with different parameter values. However, methods that directly
locate bifurcations are usually more efficient and more precise. Robust direct methods must
take into account that the computations may seek objects that are inherently singular. New-
ton’s method is a fundamental example of an algorithm that relies upon regularity of the
equations being solved. Without regularity of the defining system, Newton’s method and
other equation solving algorithms suffer significant degradation of their convergence proper-
ties or fail altogether. Since the effectiveness of algorithms for numerical solution of systems
of equations often depend upon the regularity of the equations being solved, one strategy
for the formulation of the direct methods to compute singular objects is to decompose them
into subsets that are manifolds. This paper discusses the implementation of algorithms that
produce regular systems of defining equations for two problems: saddle-node bifurcation of
periodic orbits of vector fields and the Thom-Boardman stratification of a smooth mapping.
We describe these problems in more detail.

Let γ be a periodic orbit of period T for an n dimensional vector field ẋ = f(x). If p ∈ γ,
then the Jacobian DφT of the time T flow map φT at p is the monodromy map of γ based at
p. Monodromy maps based at different points of γ are related by similarity transformations,
so the spectrum of the monodromy map is independent of the base point p. The vector f(p)
is an eigenvector for monodromy map based at p with eigenvalue 1. The periodic orbit is
isolated and varies smoothly with parameters if 1 is a simple eigenvalue of the monodromy
map. Saddle-node bifurcation of a periodic orbit occurs when the return map of f has 1 as an
eigenvalue and additional non-degeneracy conditions are satisfied. If 1 is an eigenvalue of the
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return map, then it is not a simple eigenvalue of the monodromy map. Defining equations
for the periodic orbit must include an equation that determines whether 1 is an eigenvalue
of the return map or has (algebraic) multiplicity two for the monodromy map. Multiple
shooting boundary value solvers that we have formulated give a block representation of the
monodromy map [7], so it is natural in this context to seek an explicit equation on the space
of n×n matrices whose solutions give the matrices for which 1 is an eigenvalue of multiplicity
larger than 1. Vanishing of the characteristic polynomial and its first derivative at 1 gives a
pair of equations with the desired properties, but calculation of the characteristic polynomial
is a poorly conditioned problem. Therefore, we discuss alternative sets of equations in the
next section.

The second problem we discuss is about singularities of smooth mappings. If ẋ = h(x, λ)
is a generic, smooth family of vector fields, then its equilibrium points, the solutions of
h(x, λ) = 0, form a smooth manifold E. However, bifurcations of h occur at the singu-
larities of the projection of E onto the parameter space of the family. The resulting bi-
furcation locus in the parameter space may have singularities, so we want to pursue its
decomposition into submanifolds. Here we consider a more general problem, the Thom-
Boardman stratification of an arbitrary smooth mapping. Let f : Rm → Rn be a smooth
mapping. The Thom-Boardman stratification of f is defined inductively, beginning with
Σi = {x ∈ Rm | corank(Dfx) = i. If Σi1,i2,...,ik−1 is defined and is a manifold, then Σi1,i2,...,ik−1,ik

is defined to be the set of points for which the corank of Df restricted to the tangent space
of Σi1,i2,...,ik−1 has corank ik. Boardman [2] proved that for generic maps (with respect to
the Whitney topology of C∞(Rm, Rn), the sets Σi1,i2,...,ik−1 ⊂ Rm are manifolds. He gave a
formula for the codimension of these manifolds.

The definition of the Thom-Boardman stratification given above does not lend itself read-
ily to numerical computation. The operation of restriction of f to a submanifold is difficult
to express directly if the submanifold is known only through the solution of equations at a
discrete mesh of points. Moreover, the defining equations for the strata depend implicitly on
derivatives of f of increasing order, suggesting that the lack of smooth approximations for
each stratum is likely to lead to increasing errors in the computation of the next.

The strategy of creating regular systems of defining equations for bifurcations has become
common in numerical algorithms for analysis of dynamical systems [3]. Many implementa-
tions of this strategy introduce extra variables and formulate systems whose dimension is
larger than the minimum possible [12]. For example, in computing Hopf bifurcations of an n
dimensional vector field f with a single parameter, one strategy to define a regular system is
to introduce variables for vectors in a two dimensional invariant subspace and for the another
variable for the magnitude of the pure imaginary eigenvalue. This yields 3n + 2 variables,
requiring a regular system of 3n + 2 equations. Guckenheimer, Myers and Sturmfels [9, 8]
explored this issue for Hopf bifurcation of equilibria [6] and found advantages to using sys-
tems of defining equations of minimal dimension. They advocated using singularity of the
“bialternate product” of the Jacobian as a defining equation for Hopf bifurcation of an equi-
librium. There is a trade-off in the definition of regular systems between the dimension of
the system and the complexity of the defining equations reflected in this choice: singularity
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of the bialternate product is determined by application of methods from linear algebra whose
complexity is reflected in the size of the bialternate product (n(n− 1)/2× n(n− 1)/2 for an
n-dimensional vector field). This paper works with minimally augmented systems of defin-
ing equations that do not introduce extra variables. As in the Hopf example, the defining
equations sometimes employ “standard” numerical algorithms to evaluate a function.

2 Defining equations for nilpotent Jordan blocks

This section presents an augmenting equation that can be used to determine when 1 is not
a simple eigenvalue of the monodromy matrix of a periodic orbit. We shall denote the n× n
monodromy matrix by A and assume that 1 is an eigenvalue of geometric multiplicity one.
This assumption is valid generically at saddle-node bifurcations of periodic orbits. (The only
2× 2 matrices with an eigenvalue of geometric multiplicity two are the diagonal matrices, so
the set of matrices with an eigenvalue of geometric multiplicity two has codimension three.)
Let wt and v be the left and right null vectors of A. The generalized eigenspace of 0 has
dimension larger than 1 if the equation Ax = v has a non-zero solution. We then have
Ax 6= 0 but A2x = Av = 0. Moreover, since A has corank (rank deficiency) 1, the equation
Ax = b is solvable if and only if wtb = 0. In particular, wtv = 0 if and only if A has a two
dimensional nilpotent subspace. To use this equation as part of a regular system of defining
equations for the presence of a nilpotent subspace, we need an algorithm that produces v
and w in a manner that depends smoothly upon A. Note that the eigenvalues of A do not
vary smoothly near matrices that have multiple eigenvalues. Therefore, we want to avoid
computing the eigenvalues of A. Instead, singular value decomposition can be used to both
compute the smallest singular value of A and to compute its singular vectors. In the case of
a singular matrix with rank deficiency 1, we can define a “signed” singular value s near 0 so
that s and its singular vectors v, wt vary smoothly with A. Then s together with wtv give a
pair of regular defining equations for determining the matrices A that have a two dimensional
nilpotent subspace.

Guassian elimination with a bordered matrix can be used to produce a function whose
the zero set includes the singular matrices of rank deficiency 1. Form an (n + 1) × (n + 1)
bordered matrix

Ā =

(

A B
C 0

)

If A has rank deficiency 1, ACt = BtA = 0 and CCt = BtB = 1, then Ā is regular and

Ā

(

Ct

0

)

=

(

0
1

)

If A is perturbed, with B and C remaining constant, then the solution of the equation

Ā

(

x
t

)

=

(

0
1

)
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varies smoothly with A. Observe that t is the (n+1, n+1) component of Ā−1. Cramer’s rule
states that t = det(A)/ det(Ā), so t = 0 if and only if A is singular. Indeed, t is comparable
to the smallest singular value of A and can be used as the defining function for detecting
singularity of A.

3 Thom-Boardman Singularities

The Thom-Boardman stratification of a smooth mapping f : Rm → Rn is defined by a re-
cursive procedure. From the definition, it is hardly apparent how to produce a regular set of
defining equations for each stratum. Computing the corank of Df restricted to a submanifold
P is problematic unless there is a representation of P , either explicitly as an embedding in
Rm or implicitly as the solutions of a set of defining equations. Numerical implementation
of the definition of the Thom-Boardman stratification does not give such a representation.
Boardman [2] proved that there are submanifolds of jet spaces, the Thom-Boardman singu-
larities, that can be used to give implicit equations for the stratification of a generic map.
Specifically, the stratification is obtained by pulling back the Thom-Boardman singularities
by the jet extensions of the map. Since the singularities are submanifolds of the jet space,
systems of regular defining equations exist. Composing these equations with the jet extension
of f gives a system of regular defining equations for the Thom-Boardman stratification of f .
Boardman’s construction of the singularity manifolds is complicated, but with some effort
can be used to produce regular sets of defining equations that can be implemented numeri-
cally. This section describes two algorithms for producing the Thom-Boardman stratification
of a map. More details about these algorithms and their implementation can be found in
Xiang [13].

The defining equations for Σi are relatively easy to obtain. The rank of a matrix is the size
of the largest non-vanishing minor. Let x ∈ Rm be a point at which Df has corank i. Then
there is an (m− i)× (m− i) minor of Df(x) that is non-zero, but all (m− i+1)× (m− i+1)
minors vanish. It is well known that the minors of the matrix are dependent polynomial
equations, so we want to select an independent subset that generates the ideal of all the
(m − i + 1) × (m − i + 1) minors. By reordering coordinates, if necessary, we assume that
the upper left (m − i) × (m − i) minor of Df(x) is not zero. This property then holds for
Df(u), u lying in a neighborhood of x. To obtain defining equations for Σi consider the block
decomposition and factorization of Df(u)

Df(u) =

(

A B
C D

)

=

(

A 0
C D − CA−1B

)(

I A−1B
0 I

)

(1)

with A an invertible (m − i) × (m − i) matrix. From the factorization it is evident that
Df(u) has corank i if and only if D − CA−1B = 0. Thus D − CA−1B = 0 constitutes a
set of i(n −m + i) defining equations for Σi. They have the form g1 ◦ j1(f) where j1(f) is
the 1-jet extension of f and g1 is a function defined on the space of 1-jets. Note that g1 is a
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regular system of equations since its derivative with respect to the variables in D gives a set
of spanning columns for Dg1.

To find the higher strata of the Thom-Boardman stratification, we seek similar equations
gk defined on the k-jets of maps from Rm to Rn. There are two obstacles that need to be
overcome. First, the definition of each stratum needs to be formulated so that we obtain
defining equations that are defined on open sets of Rm rather than just on the restriction of
f to the previous stratum. Second, the higher derivatives of f satisfy symmetry conditions
that need to be taken into account when selecting a minimal set of defining equations. For
general points, expressions for the defining equations become complicated, so it is convenient
to apply coordinate transformations that implement a factorization of Df analogous to the
one described above.

The formulation of the definition of the strata is based upon an elementary observation
from linear algebra about the computation of the null space of one linear map restricted to
the null space of a second. If V is the kernel of a linear map A and W is the kernel of a
linear map B, then V ∩W is the kernel of the “stacked” matrix

(

A
B

)

(2)

This is a symmetric relationship in V and W , so we can regard V ∩W as either the kernel
of A restricted to W or the kernel of B restricted to V . This observation will be used in
the construction of the stratification. If P p ⊂ Rm is a p-dimensional stratum that is locally
the zero set of g : Rm → Rm−p, then the tangent space TxP is the null space of Dg(x).
The next stratum with index j consists of points for which Df |TP has corank j. Now the
dimension of the null space of Df |TP is the same as the dimension of Dg|Q, Q being the
kernel of Df . Thom proved that the sets Σi on which Df has corank i are submanifolds for
generic f , and the procedure described above gives a regular systems of defining equations
for Q. As we proceed through the stratification level by level, we obtain defining equations
g1, g2, . . . , gs that together constitute defining equations for stratum s. The map g1 is the
rational function D−CA−1B composed with Df expressed as above. Each successive gi will
be defined in terms of derivatives of gi−1. Note that the submanifolds P and the functions
g change as s increases, but the subspace Q does not. The equation gs = 0 that identifies
stratum s inside stratum s − 1 will be given by the composition of a function defined on
the space of k-jets with the kth jet extension jk(f) of f . In Boardman’s theory [2] and the
alternate approach of Mather [10], the ranks and coranks of the jets are determined initially
by forming ideals that consist of minors of matrices constructed from partial derivatives of
f . These constructions yield much larger systems of defining equations than the regular sets
we seek. The codimensions of the singularities in the jet space determine the sizes of regular
subsets of defining equations.

Let us now turn to the construction of defining equations for Σi,j to illustrate how co-
ordinate changes are used to simplify the calculations. Since we have ordered coordinates
so that the upper left (m − i) × (m − i) minor is non-singular, we set (f1, . . . , fm−i) = u,
(xm−i+1, . . . , xm) = w and (f1, . . . , fm−i, xm−i+1, . . . , xm) = (u,w) = φ(x). Then φ is a local
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diffeomorphism, and the map f̄ = f ◦ φ−1 represents f in the (u,w) coordinates. These
coordinates implement the matrix factorization of Df described above in the sense that Df̄
has the form

Df̄ =

(

I 0
C̄ D̄

)

with D̄ = D − CA−1B when

Df(u) =

(

A B
C D

)

(3)

Thus the defining equations for Σi of f̄ are g(u,w) = D̄ = 0. Moreover, the null space of Df̄
is the w-coordinate subspace. Therefore, Σi,j will be given by points for which the matrix
Dwg has corank j.

Selecting a set of defining equations to express that Dwg has corank j is more subtle than
was the case for obtaining the defining equations of Σi. Begin the same way, however, by
reordering coordinates and the i(n−m+i) components of g so that the derivatives of the first
(i−j) components of g with respect to the first (i−j) components of v is a nonsingular matrix.
As before, we can perform a coordinate change in which the first (i− j) coordinates from w
are replaced by the first (i − j) components of g. In this new coordinate system, Dwg has
corank j when the derivatives of the last i(n−m+i)−(i−j) components of Dwg with respect
to the final j components of the new coordinates vanish. However, these functions are not
independent: they are second derivatives of components of f̄ and mixed partial derivatives
are symmetric with respect to reordering their indices. Using the symmetry relations, we
pick a maximal independent set of these to obtain defining equations for Σi,j.

The general case proceeds in a similar fashion. Assume that we have computed a regular
system of defining equations g1, . . . , gt for the singularity submanifolds Σi1,···,it for t < s− 1.
We then want to determine equations gs so that g = (g1, . . . , gs) are a regular system of
defining equations for Σi1,···,is . The inductive process we use for defining the gt introduces a
coordinate transformation at each step that makes the defining equations at the next step
into the vanishing of a set of partial derivatives. Specifically, at stage t of the construction,
coordinates are split into three groups: coordinates u that are complementary to the null
space of Df and satisfy fl(x) = ul in the current coordinate system for l ≤ m − i, it−1 − it
coordinates v1, . . . , vt that have been determined inductively so that vt is a subset of the
defining functions gt and the remaining coordinates wt that are a subset of the original
coordinates x. By reordering, we assume that at each stage the components of vt are the
first it−1 − it of wt−1.

Now consider the construction of gs. The first step in constructing gs is to form the
collection of functions h(s) obtained by differentiating gs−1 with respect to the variables ws.
The criterion that corank(Df |Σi1,···,is) = corank(Dg|Kernel(Df)) = is is that the Jacobian
of gs−1 with respect to the variables ws have corank is. The components of this Jacobian
Js are the functions hs. We assume that the first is−1 − is columns of the Jacobian are
independent. Next we apply another coordinate transformation that replaces the coordinates
corresponding to these columns with functions chosen from the set hs so as to form a regular
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(is−1 − is) × (is−1 − is) submatrix of the Jacobian Js. In this new coordinate system, the
Jacobian of gs−1 has a block triangular structure, so its corank is is if and only if its lower
right block vanishes. Thus the component functions in the lower right block of the Jacobian in
the new coordinate system are a set of defining equations for Σi1,···,is . Writing these functions
as partial derivatives of f of order s, we can eliminate equations that are redundant by the
equality of mixed partial derivatives by selecting those whose indices are non-decreasing.
If the jet extension of f is transverse to the appropriate Thom-Boardman singularity, this
subset of functions is a regular subset of defining functions. This finishes the inductive step of
the set of defining functions. This construction is essentially an implementation of Porteous
intrinsic derivatives [11]. Boardman gives combinatorial formulas for the codimensions of the
singularity submanifolds.

An alternative method for computing the ranks of Df and higher derivatives relies upon
the technique of “bordering matrices” from linear algebra [4]. The basic result is the following.
Let A be an n × m matrix of rank i. We want to “embed” A as a submatrix of a square
invertible matrix. Choose an n × (n − r) matrix B and an (m − r) ×m matrix C with the
properties that (A,B) has full rank m and

(

A
C

)

has full rank m. Generic matrices B and C have these properties. Routine linear algebra
calculations imply that

(

A B
C 0

)

is regular and the lower right hand block of size m − r × n − r in its inverse vanishes. We
denote this block by H(A). Further, if we perturb A to a matrix Ā, then the rank of Ā is at
least r and

(

Ā B
C 0

)

remains invertible. The equation H(Ā) = 0 is satisfied if and only if the rank of Ā is r. Since
the inverse of a matrix is a rational function of its components, H is a smooth function.

Carrying out the construction above for A = Df , the equation H(Df) = 0 is a defining
equation for Σi with i = m− r. In solving the equations

(

A B
C 0

)(

E F
G H

)

=

(

I 0
0 I

)

note that the columns of F give a basis for the kernel of A when H = 0. Moreover, we can
differentiate this equation with respect to the components of A to obtain

∂Hp,q

∂Ai,j
= −G(p, i)F (j, q)

This formula and the chain rule give the derivatives of the defining equations H(Df) for Σi.
A second bordering construction with the matrix of derivatives produces a set of (overdeter-
mined) defining equations for Σi,j.
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4 Computing the Thom-Boardman Stratification: an

Example

For maps of Rn → Rn, the singularity submanifold Σ2,1 has codimension 7. Perhaps the
simplest example of a map f : R7 → R7 which has a transversal intersection with Σ2,1 is
given by

yi = xi for 1 ≤ i ≤ 5

y6 = x2
6 + x1x7 + x3

7 (4)

y7 = x2x6 + x3x7 + x4x
2
7 + x5x6x7

We compute the Jacobian of f :

J =



























1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
x7 0 0 0 0 2x6 x1 + 3x2

7

0 x6 x7 x2
7 x6x7 x2 + x5x7 x3 + 2x4x7 + x5x6



























The 2 by 2 submatrix at the lower right corner being zero gives a set of 4 functions

g =











2x6

x1 + 3x2
7

x2 + x5x7

x3 + 2x4x7 + x5x6











(5)

that define Σ2. Differentiation of g yields

Dg =











2dx6

dx1 +6x7dx7

dx2 +x7dx5 +x5dx7

dx3 +2x7dx4 +2x4dx7











(6)

from which we compute the tangent space T of Σ2, as well as the restriction of the original
Jacobian J on the tangent space:

T =



























0 0 −6x7

0 −x7 −x5

−2x7 0 −2x4

1 0 0
0 1 0
0 0 0
0 0 1



























, JT =



























0 0 −6x7

0 −x7 −x5

−2x7 0 −2x4

1 0 0
0 1 0
0 0 x1 − 3x2

7

−x2
7 0 x3



























.
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Thus the conditions dim(ker(J)) = 2 and dim(ker(JT )) = 1 give 9 equations that define
Σ2,1(f), namely the vanishing of the lower 2 by 2 block of J and the five entries in the last
column of JT that are not identically zero. It is clear that 0 is the only solution of this
over-determined system of equations.

Note that the Jacobian of g with respect to the variables x6, x7 that span the tangent
space of Df is the matrix

Dg|Ker(Df)
=











2 0
0 6x7

0 x5

0 2x4











(7)

which clearly has rank 1 if and only if x4 = x5 = x7 = 0. Thus, g together with the last three
components of the second column of this matrix give a regular set of defining equations for
Σ2,1 in this example.

We implemented both algorithms described in §3 and tested them with maps similar to
the one above having an isolated point in Σ2,1. Derivatives of the map were computed using
ADOL-C [5], an automatic differentiation code. This avoids the truncation errors associated
with computing derivatives with finite difference approximations. We began our tests with
a map f that is a modification of the example described above

fi(x) = xi for 1 ≤ i ≤ 5

f6(x) = x2
6 + x1x7 + x3

7

f7(x) = x2x6 + x3x7 + x4x
2
7 + x5x6x7 + x6x

3
7 + x4

7

The 2-jet of this map at the origin still has an isolated point of transversal intersection
with the singularity submanifold Σ2,1. We added the terms of degree 4 in f7 to make the
initial example a bit more complicated analytically than the original example. To further
complicate the numerical tests, we added perturbations to f . The map f is stable [1], so
perturbations also have an isolated point in Σ2,1. The perturbations we studied have the
form (f + εg)(h(x)). Here h is obtained by first using a random number generator to obtain
a linear map z = x+Rx with R a random matrix whose entries are normally distributed in
[0, 0.1]. We then defined h by

hi(x) = zi for i = 1, 2, 3, 5, 6

h4(x) = z4 + (ex2 − 1) sin(x3) + sin(x5x7)

h7(x) = z7 + tan(x4x6)

The function g was defined by

gi(y) = 0 for i = 1, 3, 4, 5

g2(y) = sin(z4z6) + tan(z6z7)

g4(y) = ez3z5 − 1

g7(y) = cos(z7)− 1
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Table 1: Convergence results for ε = 0 and two different starting values of x. Successive lines
of the table are data from successive iterates of Newton’s method. κ is the condition number
of the Jacobian of the defining equations.

test 1 test 2
‖x‖ 1.164210189976914e− 01

1.856627930090916e− 02
1.017859600357246e− 04
4.136391532437480e− 09
2.716823710082874e− 17

1.386971169486891e− 01
2.604948009547404e− 02
1.121651418701914e− 03
2.150917535176937e− 07
7.143642136856968e− 14

κ 7.906258556895635e+00 7.906258556895608e+00

Table 1 gives data from successive iterates of Newton’s method applied to solve the
defining equations when ε = 0. We observed convergence of the iteration at all randomly
chosen points in the ball of radius 0.1 centered at the origin. The origin is the point in Σ2,1.
It is evident from the moderate value of the condition number that the equations are regular.
It is also apparent that the convergence is quadratic. Table 2 shows analogous data when
ε = 0.001 together with the final values of x and the residual norm of the defining equations
at the final values of x. The final test we did with this algorithm was to track the points of
Σ2,1 with increase ε. This continuation succeeded until ε = 1.66, at which point it began to
diverge.

The bordered matrix algorithm that we implemented did not converge as reliably as the
direct calculation of solutions to the defining equations for Σ2,1. From random initial condi-
tions in the ball of radius 0.1, Newton’s method applied to the first example above produced
convergence in only 35 of 100 trials. For the second example, we obtained convergence in
only 32 of 100 trials. When the bordered matrix algorithm converged, its run time was 2− 3
times faster than the direct solution of the defining equations. These tests, especially the
first pair, demonstrate the feasibility of computing the Thom-Boardman stratification of a
generic map by producing numerically and then solving systems of defining equations.
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Table 2: Convergence results for ε = 0.001 and two different starting values of x. Value is
the norm of the defining function values at the final x and κ is the condition number.

test 1 test 2

‖x‖

1.505178047930191e− 01
8.595870501003761e− 02
1.315355832210626e− 02
4.766145141188760e− 04
4.854165624711747e− 04
4.854166485805114e− 04

1.969930058772691e− 01
2.321363786625558e− 02
8.129054141866592e− 04
4.854171586870105e− 04
4.854166485806945e− 04

final x

1.0e− 03∗
−0.03791640257908
−0.00698442166166
−0.00116737559545

0.48319254076764
−0.02524469932930

0.00123626681390
−0.00526018721355

1.0e− 03∗
−0.03791640257888
−0.00698442166186
−0.00116737559544

0.48319254076784
−0.02524469932924

0.00123626681389
−0.00526018721355

value 2.181602477619463e-15 6.029869709471259e-16
κ 7.390959824634281e+00 7.390959824634288e+00

References

[1] V. Arnold, Singularity Theory, Selected Papers. London Mathematical Society Lecture
Notes 53, 1981.

[2] J. Boardman, Singularities of differentiable maps. Inst. Hautes ’Etudes Sci. Publ. Math.
No. 33: 21-57, 1967.

[3] W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, 1999.

[4] W. Govaerts and J. Pryce, A singular value inequality for block matrices. Lin. Alg. Appl.
125: 141-148, 1989.

[5] A. Griewank, D. Juedes, and J. Utke, ADOL-C: A Package for the Automatic Differen-
tiation of Algorithms Written in C/C++’, ACM TOMS, 22, 131-167, 1996.
see also http://www.math.tu-dresden.de/wir/project/adolc

[6] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifur-
cations of vector fields. Springer-Verlag, New York, 1983.

[7] J. Guckenheimer and B. Meloon, Computing Periodic Orbits and their Bifurcations with
Automatic Differentiation, SIAM J. Sci Stat. Comp., 22, 951-985, 2000.

11



[8] J. Guckenheimer and M. Myers, Computing Hopf Bifurcations II. SIAM J. Sci. Comp,
17: 1275-1301, 1996.

[9] J. Guckenheimer, M. Myers, and B. Sturmfels, Computing Hopf bifurcations. I. SIAM
J. Numer. Anal., 34: 1-21, 1997.

[10] J. Mather, On Thom-Boardamn Singularities, in Dynamical Systems, ed. M. M. Peixoto,
Acadmic Press, 233-248, 1971.

[11] I. Porteous, Geometric differentiation— a Thomist view of differential geometry. Pro-
ceedings of Liverpool Singularities Symposium, II (1969/70), pp. 122–127. Lecture Notes
in Math., Vol. 209, Springer, Berlin, 1971.

[12] D. Roose and V. Hlavacek, A Direct Method for the Computation of Hopf Bifurcation
Points. SIAM Journal of Applied Mathematics, Vol. 45: pps. 879-894, 1985.

[13] Y. Xiang, Computing Thom-Boardman singularities. Thesis, Cornell University, 1998.

12


