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The Hodgkin and Huxley equations model action potentials in squid giant axons. Variants of 
these equations are used in most models for electrical activity of excitable membranes. 
Computational tools based upon the theory of nonlinear dynamical systems are used here to 
illustrate how the dynamical behavior of the Hodgkin Huxley model changes as functions of two 
of the system parameters. 

1. Introduction A nerve cell's response to constant electrical stimulation 
varies according to the cell's characteristics as well as the experimental setting. 
Two common types of responses are single voltage pulses (action potentials) 
and trains of impulses of various lengths (Jack et al., 1975). The space-clamped 
Hodgkin and Huxley equations for the nerve impulse (denoted HH throughout 
this paper) are a system of four nonlinear ordinary differential equations that 
relate the difference of electric potential across the cell membrane of a squid 
giant axon to the membrane's permeability to Na + and K + ions as a response 
to an externally applied current stimulus. The equations contain several 
auxiliary parameters (Hodgkin and Huxley, 1952b) representing equilibrium 
potentials of ions, maximum conductance of ion channels and temperature. 
The work of Hodgkin and Huxley was a landmark of biophysics and their 
equations are a prototype for most quantitative models for the electrophysio- 
logical properties of membranes that have been studied subsequently. Despite 
the importance of HH, understanding of the qualitative properties of their 
solutions is fragmentary (Hille, 1992). 

We study systematically how an axon changes its type of response from 
repetitive firing to single action potentials, in the context of the HH equations. 
Our approach relies upon the use of multiparameter bifurcation theory, a part 
of the modern theory of nonlinear dynamical systems. In particular, we 
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describe how periodic and equilibrium solutions change as functions of the 
parameters representing the stimulus intensity I and the potassium reversal 
potential 17 K. By assuming that this two-parameter system is generic we 
describe the codimension one and two bifurcations that appear to divide the 
parameter plane into regions with different structurally stable phase portraits. 
The work described here is probably of more interest for the computational 
tools that it introduces than for the particular results about the HH equations. 
It establishes a methodology for obtaining much more extensive dynamical 
information from models of electrically excitable membranes than has been 
available heretofore. Our results point towards inherent limitations in the 
possibilities for qualitatively capturing the complete repertoire of dynamical 
behavior displayed by the HH equations in a planar vector field. 

The HH equations are given in Section 2 and their bifurcations are described 
in Section 4. We present bifurcation diagrams for HH on the I x V K plane that 
are conjectured on the basis of symbolic calculations, numerical computations 
and visual examination of a large number of phase portraits. The singular 
points of these bifurcation diagrams are characterized in terms of codimension 
one and two bifurcations of vector fields in the plane, which are described in 
Section 3. We examine two values of the potassium permeability 0K and use this 
information to illustrate the sensitivity of the HH equations to changes in other 
parameters. Between the two chosen values of OK there is a codimension three 
bifurcation whose unfolding has been determined (Guckenheimer, 1986). The 
changes between the bifurcation diagrams are consistent with this analysis. 
Our results are discussed briefly in Section 5. 

2. The Space Clamped HH Equations. The HH equations (Hodgkin and 
Huxley, 1952) relate the difference in electric potential across the cell 
membrane (V) and gating variables (m, n and h) for ion channels to the stimulus 
intensity (I) and temperature (T), as follows: 

f I~=-G(V, m, n, h)+I 
rh = qb(T)[(1 -- m)a,,( V) - mfl,,( V)] 

where 2 stands for dx/dt and ~ is given by (I)(T)=3 (T-6"3)/1~ The other 
functions involved are: 

G(V, m, n, h)=ONam3h(V - l?Na) + 0Kn4(V-- IFK) + 0L(V-- IFL) 
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and the equations modeling the variation of membrane permeability are: 

tim(V) = 4e v/18 

V +  10"~ 

ah(V)=O.O7e v/2~ 

~ , (V)  = 0 . 1 2 5 e  v/s~ 

/?h(V) = (1 W e  ~v + 3~176 - 1  

with q,(x) = {1/(eX- 1 ) i f x r  
i fx=O. 

Notice that ey(V) +/3r(V) r 0 for all V and for y = m, n or h. The parameters gio. 
and ~o. representing maximum conductance and equilibrium potential for the 
ion were obtained from experimental data by Hodgkin and Huxley, with the 
values given below: 

gNa = 120 mS/cm 2, gk -- 36 mS/cm 2, gL = 0.3 mS/cm 2, 

VNa = - -  115 mV, 17K= 12 mV, 17L= 10.599 mV. 

The values of VNa and 17 K can be controlled experimentally (Hodgkin and 
Huxley, 1952a; Jack et al., 1975). For all the results in this paper we use the 
temperature T=6.3~ and, except where stated explicitly, all the other 
parameters involved in HH have the values quoted above that we call H H  
values. 

The HH equations define a four-dimensional vector field that determines 
how values of (v, m, n, h) evolve in time. For fixed parameter values the four- 
dimensional space representing values of (v, m, n, h) will be filled with curves, 
called trajectories that are the solutions to the HH equations. The geometry of 
how the trajectories partition the four-dimensional space constitutes the phase 
portrait of the dynamical system. Prominent features of the phase portraits are 
special trajectories: equilibrium points at values of (v, m, n, h) at which the HH 
equations vanish and periodic orbits consisting of trajectories that return to 
their initial point some later time (Guckenheimer and Holmes, 1983). The 
stable manifold of an equilibrium or periodic orbit is the set of trajectories that 
approach it in forward time. Similarly, the unstable manifold of an equilibrium 
or periodic orbit is the set of trajectories that approach it in backwards time. 

3. A Bifurcation Dictionary. As parameters of a dynamical system are varied 
qualitative changes in the phase portrait may occur at special values of the 
parameters. These changes are called bifurcations. In generic families of vector 
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fields only limited patterns of bifurcation occur (Guckenheimer and Holmes, 
1983). Bifurcations in generic two-parameter families of systems have been 
studied extensively. They form organizing centers (Thorn, 1975), whose 
structure can be used as the key ingredient in guiding computation of the 
bifurcation diagrams for specific examples. The bifurcations that occur in our 
study of HH are listed below. In each case we consider a parametrized family of 
ordinary differential equations, 2 =f(x,  #), with x c R" and/t  ~ R 2, undergoing 
bifurcation at/t =/ t  o and we describe its behavior for values of the parameter/~ 
near /~o. The codimension of a bifurcation is the minimum dimension of a 
parameter space in which the bifurcation may occur in a persistent way. For 
each bifurcation of codimension two there is a "map" of parameter space, called 
a bifurcation diagram, showing the different local qualitative phase portraits of 
the differential equation that correspond to each subset of parameter values. 
Detailed descriptions and analysis of the different types of bifurcations can be 
found in the current literature, for instance Dangelmayr and Guckenheimer 
(1987), Guckenheimer (1986) and Guckenheimer and Holmes (1983). 

Codimension 1 bifurcations. 
Saddle node or fold (sn). Two equilibrium points coalesce and disappear. 

Hopf bifurcation (h). The amplitude of a periodic orbit decreases until it is 
reduced to a point and disappears while its period approaches a positive limit 
a s / ~ - - * # 0  �9 

Saddle loop or homoclinic bifurcation (sl). The amplitude of a periodic orbit 
may increase until it captures a saddle point and disappears, its period tending 
to infinity as P~#o .  

Twisted saddle loops (tsl) (Chow et al., 1988). An orientation reversal along 
a homoclinic orbit may occur in systems whose dimension is larger than two. A 
generic homoclinic orbit is in a two-dimensional ribbon which is invariant 
under the flow with tangents in the directions of the weakest contraction and 
expansion at the saddle point. A twisted saddle loop occurs if this ribbon is not 
orientable. 

Doable cycle or saddle node of cycles (dc). Two periodic orbits coalesce and 
disappear. 

Period doubling (pd). At a period doubling bifurcation a periodic orbit 
changes its stability, while a periodic orbit of twice its period coalesces with the 
bifurcating periodic orbit. 

Codimension 2 bifurcations. 
Cusp (c). Three equilibrium points coalesce into one. 

Takens-Bogdanov bifurcation (tb). The linearization of F(x, #o) at the 
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equilibrium point has a double zero eigenvalue. Adjacent to the tb bifurcation 
are curves of saddle node, saddle loop and Hopf bifurcations. The cycle 
involved in the Hopf bifurcation is destroyed at a saddle loop. 

Neutral saddle loop (nsl). The stability of the periodic orbit involved in a 
saddle loop bifurcation is determined by the sum of two eigenvalues of the 
saddle. In a two-parameter family of vector fields this stability may change at a 
point where the sum of eigenvalues is zero (Guckenheimer, 1986). A curve of 
double cycles terminates at this point. 

Twisted neutral saddle loop (tsl). When a neutral saddle loop occurs along a 
twisted homoclinic orbit its unfolding is substantially different than in the 
orientation preserving case (nsl) that occurs in the plane. There are adjacent 
curves of orientation and twisted saddle loop bifurcations, as well as a curve of 
period doubling bifurcations (Chow et al., 1988; Kokubu,  1988; Yanagida, 
1987). 

Saddle node loop (sni). At a saddle node there is a homoclinic orbit 
(Schecter, 1987). Adjacent to a saddle node loop are curves of the saddle nodes 
and saddle loops. 

Degenerate Hopf bifurcation (dh). There is a degeneracy in the way in 
which periodic orbits collapse onto an equilibrium point at a Hopf bifurcation 
(dh) (Takens, 1974). 

4. HH Bifurcations. This section describes the bifurcations of the HH 
equations and the techniques that were used to find them. The bifurcations are 
divided into two categories: local and global. Local bifurcations are those that 
can be calculated in terms of the derivatives of the HH equations at the 
equilibrium points. Global bifurcations can be studied only by numerically 
integrating the HH equations. Our analysis of local bifurcations used the 
computer programs Macsyma, Mathematica and Maple. For y = m, n or h the 
equation for 3~ in HH is linear in y, so the last three components of an 
equilibrium solution (V,, M, ,  N, ,  H , )  of HH can be written as functions of V,: 

C~y(V,) for y=m, n, h. y ,  = = 

Substituting y ,  for y=m, n, h in the first equation we obtain: 

G(V,, mo~(V,), noo(V,), h~(V , ) )=f (V , )=I .  (1) 

Thus, for fixed l? K there is exactly one value o f / f o r  which (V,, m,,  n,,  h,)  is at 
equilibrium. Note that derivatives of HH are independent of I. 

When I?~: has the HH value of + 12 mV,f is  monotonic and HH has a unique 
equilibrium for each value of/.  For fixed lower values of V K there are two saddle 
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node bifurcations as / is  varied, creating a region with three equilibria. The two 
curves of saddle nodes terminate at a cusp point; see also Holden et al. (1985). 
The saddle node curves in the I x 17 K plane were computed parametrically with 
V, as the independent parameter. The equations describing the saddle node 
curves involve the determinant of the matrix of first derivatives of HH at an 
equilibrium point. We calculated an explicit expression for this determinant 
symbolically with the computer programs Macsyma, Maple and Mathema- 
tica. By solving the equation which the determinant vanishes for 17 K at 
equilibrium values of (V,, m,, n,,  h,), we obtained the curve 17K(V,) of 
parameter values corresponding to zero eigenvalues. 

To determine the parameter values at which Hopf bifurcation occurs, it is 
necessary to compute eigenvalues of the matrix of first derivatives of HH at an 
equilibrium point. There is a pair of purely imaginary eigenvalues when the 
characteristic polynomial x 4 + c3 x3 + c2x 2 + c l x  + c o of this matrix satisfies 
simultaneously the third degree equation c2+CoC~-ClC2Ca=O and the 
inequality c~c 3 > 0. Again, we computed this equation symbolically, assuming 
a given value of V,, and solved it for 17 K. The graph we obtained for the solution 
of this equation and inequality disagrees slightly with the findings of Holden et 

al. (1983) for the HH value of 0K. Takens-Bogdanov bifurcations occur when 
the equations defining Hopf bifurcations and saddle node bifurcations are 
satisfied simultaneously. 

The saddle node and Hopf bifurcations are the only codimension one 
bifurcations that can be computed explicitly from HH without numerical 
integration. The presence of double cycles where the two periodic orbits 
created at Hopf bifurcation points coalesce and disappear has been established 
previously (Hassard and Shiau, 1987; Labouriau, 1989; Rinzel and Miller, 
1980) and the existence of saddle loops emanating from the (tb) points is 
predicted by bifurcation theory (Guckenheimer and Holmes, 1983). To 
determine further information about global bifurcation we rely upon numerical 
integrations that were performed with the computer programs kaos and 
DsTool (Back et al., 1992). These programs establish a graphical interface and 
display for investigating bifurcations of dynamical systems. They allow one to 
mark points in a two-dimensional parameter space with identifying symbols 
and to display phase portraits that correspond to these points. The computed 
data for local bifurcations were displayed in the parameter space window. By 
searching for the boundaries of parameter regions yielding structurally stable 
dynamics and using our knowledge of the unfoldings of codimension two 
bifurcations, we deduced the location of curves along which global bifurcations 
occur. We obtain a consistent picture of the bifurcation diagrams for HH in the 
two-dimensional I x  17 K parameter plane. These diagrams have not been 
proved to be correct, but they are based upon strong numerical evidence. 

A qualitative depiction of the bifurcation diagram resulting from our 
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numerical investigations is shown in Fig. 1. It is difficult to adequately depict 
the different regimes on an accurate diagram since some of the regions are very 
small. Figure 2 shows two phase portraits for (vk, I ) = ( - 7 ,  -0.03647) and 
(vk, I ) =  ( -5 .155,  -0.03647). Figure 2a shows a phase portrait with a single 
equilibrium point (a saddle with two stable and two unstable eigenvalues 
depicted by a cross) and a stable limit cycle projected onto the (h, v) plane. In 
Fig. 2b there are three equilibrium points. The saddles are depicted by crosses 
and the sink is depicted by a triangle. The middle saddle in this picture has a 
single unstable eigenvalue, and of the separatrices of the unstable manifold of 
this point is involved in the global bifurcations that are illustrated in Figs 3 and 
4. 

Prominent features of the bifurcation diagram in Fig. 1 include a curve of 
double cycles (dc), which enters the cusp region with three equilibrium points 
and terminates at a degenerate Hopf bifurcation (dh) close to the Takens-  
Bogdanov point (tb). These double cycles are the ones described by Labouriau 
(1989). The curve of saddle loops (sl) emanating from the Takens-Bogdanov 
point crosses the Hopf curve beyond the degenerate Hopf point and then turns 
sharply. From this sharp bend, it proceeds almost parallel to the saddle node 
curve (sn). Details of the phase portraits in this part of the bifurcation diagram 
are shown in Fig. 3. A section is drawn across the diagram with I =  -0.03647 
and values of vk ( -  5.155, - 5.153, - 5.15, - 5.14822, - 5.1482 and - 5.129) 
that lie in six different regions of the bifurcation are used to compute phase 
portraits. In the first five of these regions there are three equilibrium points, two 
of which are shown in Figs 3a-e. One of these equilibrium points is a saddle 
with one unstable eigenvalue throughout  the region. We illustrate the 
differences in the dynamical behavior by drawing part of one unstable 
separatrix for this saddle, projected into the (h, v) plane. The diagrams show 
the saddle point as a cross in the upper right portion of each diagram. A second 
equilibrium point appears in the diagrams. In Figs 3a and b the parameters lie 
to the left of the bifurcation curve and the second equilibrium is a saddle with a 
pair of complex, unstable eigenvalues. In Figs 3c, d and e the second 
equilibrium is a sink. In Fig. 3a the unstable separatrix approaches a stable 
limit cycle (only part of which is shown so that the behavior near the saddle can 
be seen more clearly). Between Figs 3a and b a saddle loop bifurcation occurs 
so that the separatrix in Fig. 3b tends to the third equilibrium point, a sink that 
is not shown. The Hopf bifurcation occurs between Figs 3b and c. Between Figs 
3c and d the saddle loop branch of bifurcations is crossed once more and in 
Fig. 3d the stable limit cycle coexists with two sinks in the flow. Between Figs 
3d and e, the branch of double cycles is crossed. The separatrix in Fig. 3e tends 
to the sink in the diagram. Finally, Fig. 3f shows part of the trajectory in the 
parameter region where there is a single equilibrium point, the sink that lies 
outside the diagram. 
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ts l  sl 

-- 4~ 

sl / 

/ 

Figure 1. Schematic representation of the bifurcation diagram for HH on the Ix  I7 K 
plane with JK = 36. Phase portraits for each region in the two-dimensional diagram 
are shown. Stable equilibrium points are shown as solid dots, saddle points with 
two-dimensional unstable manifolds are unfilled dots, stable limit cycles are closed 
curves with solid lines and unstable periodic orbits are dashed lines. One 
dimensional unstable manifolds of equilibrium points are shown together with 
curves of the "weak stable manifolds" of equilibrium points with three-dimensional 
stable manifolds. The bifurcation curves and codimension two bifurcations are 
labeled with abbreviations described in the text. The numbers and dotted lines 
correspond to the location of parameter values, for which numerically computed 

phase space information is displayed in Figs 2, 3 and 4. 
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As the curve of saddle loop bifurcations is followed beyond the region 
described above, two events occur. First, the twist type of the saddle loop 
changes at a point we have not identified. Second, a point of codimension two 
bifurcation at which there is twisted neutral saddle loop occurs close to 
(vk, I ) = ( - 6 . 1 ,  -0 .7) .  As described by Chow et al. (1988) there are three 
codimension one curves passing through this codimension two point in the 
bifurcation diagram. Figure 4 shows phase portraits for six different values of 
vk ( -7 .158,  -7.157549, -7.15753, -7.15744, -7.1574388, -7 .157)  with 
I =  - 1.65. Throughout  this region there are three equilibrium points, but only 
the saddle with a single unstable real eigenvalue is shown. Figure 4a with 
vk = - 7.158 shows one of the unstable separatrices of this saddle accumulating 
on a stable limit cycle in an oscillatory manner. Figure 4b represents a 
parameter value very close to the untwisted saddle loop. Figure 4c has 
parameters that lie between the saddle loop and period doubling bifurcations. 
The unstable separatrix tends to a sink that lies above the picture, but there is 
still a stable limit cycle. This limit cycle becomes unstable as the period 
doubling bifurcation curve is crossed. Figure 4d shows the separatrix together 
with a portion of another trajectory that begins near the unstable equilibrium 
point outside the picture and proceeds past the saddle to the sink. Figure 4e 
comes from a parameter value that is close to the twisted, "once-rounding" 
saddle loop. Figure 4f shows the separatrix at parameter values farther to the 
right of the twisted saddle loop. 

When OK is decreased from the HH value of 36 mS/cm 2 the Takens-  
Bogdanov point in the I x lTK plane moves towards the cusp point and past it. 

I I 

(b) 
0 2 0  E 

(a) 

, , 

I P I 

h 

- 1 0 0  - 1 0 0  
0 . 4  0 0 . 9  

Figure 2. Two phase portraits for parameter values (a) (vk, I) = ( - 7, -0.03647) and 
(b) (vk, I ) =  (-5.155,  -0.03647) from the bifurcation diagram depicted in Fig. 1. 
The phase space is projected onto the (h, v) coordinate plane. Stable equilibrium 
points are marked by triangles and saddle points are marked by crosses. Stable limit 

cycles are plotted. 
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Figure 3. Details of six-phase portraits corresponding to different parameter values 
in Fig. 1. The phase space is projected onto the (h, v) coordinate plane. In all cases 
I= -0 .03647 .  The values of vk are: (a) -5.155, (b) -5.153, (c) -5.15,  (d) 
- 5 . 1 4 8 2 2 ,  (e) -5.1428 and (f) -5.129. In phase portraits (a)-(e) a single unstable 
separatrix of a saddle indicated by a cross is shown. A second equilibrium point is 
denoted by a cross (saddle) or triangle (sink). The trajectories that leave the bottom 
of the region return through the left-hand side. In all cases there is a stable 
equilibrium point above and to the right of the region of phase space in the diagram. 
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Figure 4. Details of six phase portraits corresponding to different parameter values 
in Fig. 1. The phase space is projected onto the (h, v) coordinate plane. In all cases 
I = - 1 . 6 5 .  The values of vk are: (a) -7.158, (b) -7.157549, (c) -7.15753, (d) 
-7.15744, (e) -7.1574388 and (f) -7.157. In (a), (b), (e) and (f) a single unstable 
separatrix of a saddle point is plotted. In (c) a portion of a stable limit cycle (between 
the two "passes" of the separatrix) is shown, in addition to the unstable separatrix. 
In (d) a portion of a trajectory that starts near an equlibrium to the left of the figure 
is shown. Trajectory segments that exit from the bottom of the plots return through 

the left-hand side. 

- 5 . 8  - 5 . 8  
0 .4  0 .4  0 .45  
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This agrees qualitatively with the findings of Holden et al. (1985), but their 
results differ from ours in the value of 0K, for which the Takens-Bogdanov 
point moves past the cusp. The unfolding for the codimension three bifurcation 
in which cusp and Takens-Bogdanov bifurcations coincide has been analysed 
by Guckenheimer (1986) and Dumortier et al. (1987). The geometry of the 
unfolding of this codimension three bifurcation can be visualized by drawing a 
two-dimensional sphere that encloses the codimension three point in the three- 
dimensional parameter space of the unfolding (Guckenheimer, 1986). 

To further explore the effect of this codimension three bifurcation on the 
bifurcation diagrams of HH we decreased OK from the HH value of 36 mS/cm 2 
to 12 mS/cm 2 and computed another bifurcation diagram in the I x 17 K plane. 
The new bifurcation diagram is shown in Fig. 5. Among its features are a curve 
of double cycles (dc) that terminates at a neutral saddle loop point (nsl) near 
(vk, I )=  (-0.6824,  1.9088) instead of a double Hopf bifurcation as in the 
unfolding of the codimension three bifurcation. The point (nsl) does not lie on 
the saddle loop branch emanating from the Takens-Bogdanov point (tb), 
however. Instead it ends on a saddle loop that encloses both equilibrium 
points. This branch of saddle loops ends on both branches of saddle nodes at 
saddle node loops (snl). The codimension two point is located very close to the 
upper branch of saddle nodes. 

snl 
_ snl 

tsl  

tns l  sl 

tb 

.6a 

nsl  sl ."" snl 

f 

6 f /  

$n 

Figure 5. Schematic bifurcation diagram and phase portraits on the two- 
dimensional invariant manifold for H H  with 0K=12 on the I x  I7~ plane. The 

conventions are the same as those of Fig. 1. 
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Some of the details of the portion of the bifurcation diagram near the cusp 
are illustrated in the phase portraits shown in Fig. 6. Parameter values are 
selected along a line 6 v k - 5 I =  27.3 in the (vk, I) plane that is approximately 
parallel to the saddle node curve that forms one side of the cusp. Figure 6a 
corresponds to (vk, I) = (8.6, 4.86) and gives a phase portrait outside the cusp 
region. There is a single equilibrium point and a stable limit cycle. Figure 6b is 
inside the cusp region of the bifurcation diagram within (vk, I ) =  (7.3, 3.3). 
There are no sinks and the limit cycle attracts almost all trajectories. Figure 6c 
with (vk, I ) =  (7.2, 3.18) lies on the opposite side of the Hopf curve and has a 
sink, but the saddle separatrices of the middle saddle still tend to the limit cycle. 
Between Figs 6c and d, there is a saddle loop bifurcation at which the unstable 
periodic orbit created in the Hopf bifurcation disappears. In Fig. 6d, with 
(vk, I)=(7.125, 3.09), there is still a stable limit cycle, but one unstable 
separatrix now tends to the stable equilibrium. Between Figs 6d and e there is a 
second saddle loop bifurcation and a new unstable periodic orbit is created that 
"surrounds" all three equilibrium points. In Fig. 6e, with (vk, I ) =  (7.1, 3.06), 
both saddle separatrices tend to the stable equilibrium. Finally, stable and 
unstable periodic orbits collide in a double cycle bifurcation between Figs 6e 
and f. In Fig. 6f with (vk, I) = (7.05, 3), no periodic orbits remain and almost all 
trajectories tend to the stable equilibrium. 

The branch of twisted saddle loops (tsl) that was present at the higher value 
of 9K remains. It starts on the saddle node curve at another saddle node loop. 
The twisted saddle loops still pass through a neutral point (tnsl) near 
(vk, I) = (-4.16922, 1.400666), at which bifurcation curves of period doublings 
(pd) and doubled saddle loops (dsl) originate. Our proposed bifurcation 
diagrams for HH near the cusp points appear to be compatible with the 
unfolding of the Takens-Bogdanov cusp codimension three bifurcation, 
although the diagrams drawn here are sufficiently far from the codimension 
three bifurcation that significant differences with its unfolding exist. 

5. Discussion. Our results illustrate the comlexity of patterns of multiple 
attracting states and bifurcation in the HH equations. There are many 
possibilities for the patterns of repetitive response and single action potentials 
as the coefficients of HH vary. Much of the complexity that we find is confined 
to small regions of the parameter space, however. Finding some of the patterns 
experimentally may be difficult for this reason. Even so, our bifurcation 
diagrams can be used to make predictions about periodicity and hysteresis in 
space clamped experiments on squid axons. Slowly varying the imposed 
potential I in such an experiment corresponds to moving along a line of 
constant ffi~ in the I x  17~: plane. By varying both ionic concentration of 
potassium and the voltage potential in an experiment, it may be possible to 
produce experimental versions of the bifurcation diagrams presented here. 
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Figure 6. Phase portraits for six different parameter values shown in Fig. 5: (a) (8.6, 
4.86), (b) (7.3, 3.3), (c) (7.2, 3.18), (d) (7.125, 3.09), (e) (7.1, 3.06) and (f) (7.05, 3). 
The phase space is projected onto the (h, v) coordinate plane. In (a), (e) and (f) one 
unstable separatrix of the middle saddle point is shown. In (b), (c), and (d) both 
unstable separatrices of the middle saddle are shown. In (e) a stable limit cycle that is 

not the limit of the unstable separatrix is plotted. 
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Matching experimental data to the bifurcation diagrams of models may 
provide a sensitive test for discriminating among models and estimating model 
parameters. Such studies have been undertaken for homogeneous chemical 
reactors (Maselko et  al., 1986), but  the inability to efficiently compute  the 
bifurcation diagrams for realistic models has been a limiting factor in the use of 
this type of analysis. Our  work introduces computat ional  tools that overcome 
this difficulty for the Hodgkin-Huxley  model of voltage-clamped action 
potentials in squid axons. The use of these methods to make comparisons 
between experimental data and compartmental  models of a conditionally 
bursting neuron have been pursued by Guckenheimer et  al. (1993). 

Simpler models of action potential for nerve impulses based upon planar 
vector fields have been extensively studied. While these models display many 
aspects of solutions to the Hodgkin-Huxley  equations (Fitzhugh, 1961; Kepler 
et  al., 1992; Nagumo et  al., 1900), some of the features of H H  dynamics 
described here cannot be found in systems of planar vector fields. In particular, 
the twisted homoclinic orbits that we find in the Hodgkin-Huxley  system 
cannot occur in planar systems for topological reasons. Thus, our analysis 
provides a means of demonstrat ing the inherent limitations in aggregating 
variables in the H H  system to produce a planar vector field with the same 
qualitative properties as the original equations. 
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