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Abstract

The task of constructing higher-dimensional invariant manifolds for dynamical systems can
be computationally expensive. We demonstrate that this problem can be locally reduced to
solving a system of quasi-linear PDEs, which can be efficiently solved in an Eulerian framework.
We construct a fast numerical method for solving the resulting system of discretized non-linear
equations. The efficiency stems from decoupling the system and ordering the computations to
take advantage of the direction of information flow. We illustrate our approach by constructing
two-dimensional invariant manifolds of hyperbolic equilibria in R3 and R4.

1 Introduction

Invariant manifolds are important in many application areas. In the context of dynamical systems
theory, stable and unstable manifolds are fundamental geometric structures. They partition phase
spaces into sets of points with the same forward and backward limit sets. We cite three ways in
which problems involving stable and unstable manifolds of equilibria arise.

1. Stable and unstable manifolds play a role in global bifurcation. Homoclinic and heteroclinic
bifurcations occur at non-transverse intersections of stable and unstable manifolds. For exam-
ple, a particular global bifurcation of the Kuramoto-Sivashinsky equation is examined in [19]
using the method for approximating invariant manifolds developed in [18].

2. In studying the structure of weak shock waves for hyperbolic systems of conservation laws, the
admissibility of a traveling-wave ansatz depends on existence of a heteroclinic orbit connecting
the left-state/right-state equilibria; see, for example, [35]. Such an orbit exists if the stable
manifold of ur intersects with the unstable manifold of ul.

3. For systems with multiple attractors whose basins cover all but the set of measure zero, a
basin boundary can often be obtained from the stable manifolds of equilibria with a single
unstable direction. Such delineation of basins is an important practical task. For example,
transient stability analysis of power systems deals with the stability properties after an event
disturbance modeled as a time-localized (fault-on) change in the vector field. The key test is to
determine if a fault-on trajectory ends up inside the desired stability region of the post-fault
system [2]. On the other hand, in designing hierarchical controls, a high-bandwidth part of
the control-structure might be turned off once the system reaches a desired basin of attraction
[1].

This paper presents a fast numerical method for approximating stable and unstable manifolds of
equilibrium points of a vector field. Given a smooth vector field f in Rn and a hyperbolic saddle
point y0, the corresponding invariant manifolds are defined as

W s(y0) =
{

y ∈ Rn | lim
t→+∞

φt
f (y) = y0

}
,

Wu(y0) =
{

y ∈ Rn | lim
t→−∞

φt
f (y) = y0

}
,

1 J. Guckenheimer was partially supported by the National Science Foundation and Department of Energy.
A. Vladimirsky is supported in part by a National Science Foundation Postdoctoral Research Fellowship.
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where φt
f is the time flow of the vector field f . In the vicinity of y0, the original dynamical system

y′ = f(y) (1)

is well approximated by its linearization

y′ = Df(y0)y. (2)

Moreover, by the Stable Manifold Theorem [14], the invariant manifolds of y0 are tangent to the
corresponding manifolds for the linearized system (2), i.e., tangent to the respective stable (Es(y0))
and unstable (Eu(y0)) eigenspaces of the matrix Df(y0).

If the invariant manifold Wu(y0) is only one-dimensional, its approximation can be easily ob-
tained by choosing an initial point in the unstable subspace of (2) and by integrating forward in
time2. However, for higher-dimensional cases, the manifold consists of an infinite number of trajec-
tories, making the task of approximating the manifold much more challenging. This problem has
attracted a considerable amount of attention and we discuss several previously available methods in
section 2.

We note that dynamical systems with multiple time-scales present an additional degree of com-
plexity: for such systems, obtaining a “geometrically satisfactory” representation of the manifold is
often very expensive computationally. Indeed, the most natural idea (to approximate the manifold
by following a finite number of trajectories in Wu for some fixed time T ) will not work very well in
this case. For a simple example, consider the linear vector field

y′ =

 1 0 0
0 10 0
0 0 −1

y (3)

with a saddle point at the origin and Wu(0) coinciding with the x− y plane.
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Figure 1: A simple linear multiple-time-scale example. Trajectories are chosen to be equi-distributed on a circle of

radius Rinit = 2.

Observation 1.1. In Figure 1 we show some typical trajectories in that plane and the images of a
small circle around the origin under the flow φt

f . Two well-known problems with this approach will
be even more pronounced for the non-linear case:

• if one starts with a number of points equi-distributed on a small circle around y0 in Eu(y0),
the speed of those points varies a lot even for relatively tame problems;

2 In the rest of the paper we will mainly refer to the problem of constructing the unstable invariant manifold. The
stable manifold can be constructed similarly by a time-reversal (i.e., by considering the vector field −f).
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• the respective trajectories (Fig.1A) and the φt
f -images of the initial circle (Fig.1B) do not

provide for a good mesh-representation of the manifold object.

The latter reflects an inherent conflict between the goals - respecting the flow direction (which,
after all, defines the manifold) and stressing the geometric properties of the manifold in a mesh
representation.

Our approach reconciles the two objectives: to approximate an invariant manifold of co-dimension
k, we formulate a system of k quasi-linear PDEs satisfied by the manifold’s local parameterization
(section 3); we then solve that system locally in an Eulerian framework (section 4) thus limiting
possible distortions of the mesh due to a variance of speeds for different directions inside the manifold.

The resulting discretized equations are solved very efficiently by decoupling them and ordering
the computation of simplex-patches (added to the earlier computed manifold representation) to
take advantage of the direction of information flow (section 6). Our algorithm can be viewed as
an extension of Ordered Upwind Methods introduced in [32, 33] for static Hamilton-Jacobi PDEs.
These methods solve a boundary value problem in O(N logN) operations, where N is the total
number of mesh-points (section 5). The resulting triangulated mesh approximates a compact subset

Wu
Σ(y0) = {y ∈Wu(y0) | σ(y) ≤ Σ},

where σ(y) is defined as a distance-along-the-trajectory from y to y0, and Σ is a pre-specified
stopping criterion. For a desired mesh-scale ∆, the compactness of Wu

Σ(y0) and the non-degeneracy
of simplex-patches ensure that N = O(∆−k).

In section 7 we use our method to construct a two-dimensional stable manifold of the origin for
the Lorenz system. In section 8 we consider a dynamical system describing two pendula coupled
by a torsional spring and compute two-dimensional unstable and stable manifolds for one of its
saddle equilibria. Though the rate of convergence of the method is not proven, in section 9 we
provide numerical evidence to confirm the first-order global accuracy. This is consistent with the
local truncation error of order O(∆2) analytically derived in section 4.1. We conclude by discussing
the limitations of our approach and possible future extensions in section 10.

2 Prior Methods

A number of previously available techniques for computing invariant manifolds follow the same
general principle: an invariant k-dimensional manifold is grown as a one-parameter family {Mi} of
topological (k − 1)-spheres, where M0 is taken to be a small (k − 1)-sphere around y0 in Eu(y0).
However, the resulting methods are quite diverse as a result of different choices for

• the family-parameter of {Mi} (e.g., integration time, distance along the trajectory to y0,
geodesic distance to y0, etc),

• data structures used to store the Mi’s, and

• the algorithm for producing Mi+1 given Mi.

The simplest implementation of this idea was illustrated in section 1: M0 is approximated by
a finite number of equidistant markers, the family-parameter is chosen to be the integration time,
and Mi+1 is approximated by the position of markers approximating Mi after some time ∆t. As
shown in Figure 1A, initially equi-distributed markers quickly converge and/or drift apart due to
the geometric stiffness3 of the vector field f ; thus, an additional step of re-distributing markers
along Mi+1 is required. Moreover, since the size of the Mi’s varies, additional markers might be
needed to ensure the quality of approximation (e.g., the maximum distance ∆x between adjacent
markers in Mi+1). As a result, an accurate approximation will require that small ∆t is used even if
marker-trajectories are computed with infinite precision.

3 Here and throughout the paper, by geometric stiffness we mean the highly non-uniform rates of separation for
nearby trajectories on different parts of the manifold.
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Another problem with this approach is a highly non-uniform distance between Mi and Mi+1 (see
Figure 1B), which makes them a poor geometric approximation of the manifold even if each (k− 1)-
sphere in the family is known perfectly. A method for alleviating this difficulty was introduced by
Johnson, Jolly, & Kevrekidis in [18]. Their method uses a rescaling of the vector field (“reparame-
terizing to integrate with respect to arclength in space-time”) which ensures the same speed along
all the trajectories, i.e., the family-parameter becomes a distance-from-y0-along-trajectory. Unfor-
tunately, the produced mesh still need not be the best geometric representation of the manifold since
the local distance between Mi and Mi+1 is now determined by the ratio of “Mi-normal” and “Mi-
tangential” components of the rescaled vector field. We note that the computationally expensive
marker-redistribution is still required at each step due to the geometric stiffness (since the rescaling
of the vector field does not change the trajectories).

A method ensuring the constant distance betweenMi andMi+1 was introduced by Guckenheimer
and Worfolk in [15]. The family-parameter is chosen to be the geodesic distance from y0. The
markers on Mi are moved with a unit speed for a time ∆t in the direction outwards-normal to Mi

within the locally determined tangent k−plane. The approximation resulting for Mi+1 might still
require marker addition/redistribution, but only due to the different size of Mi+1 and not due to
the geometric stiffness. A tangent k−plane is locally determined for each marker in Mi using the
adjacent markers and the direction of the vector field. Thus, this procedure becomes very sensitive
wherever f is nearly tangential to Mi, leading to excessively expensive restrictions for the ratio of
∆t/∆x.

Another method also using the geodesic distance as a family-parameter was introduced by
Krauskopf and Osinga in [20, 21, 22]. For a given marker y ∈Mi, a locally normal (n−k+1)-plane
Fy is determined using the adjacent nodes in Mi. Then a shooting method is used to solve the
following boundary value problem: find a point (not necessarily a marker!) z ∈ Mi such that its
trajectory intersects Fy at some point z̃ and ‖z̃−y‖ = ∆t. A collection of z̃’s is used as an approx-
imation of Mi+1; as before, some new markers might be required due to the bigger size of Mi+1. An
explicit bound on the overall computational error is available, and the quality of the resulting mesh
is ensured by adding/removing the markers on Mi depending on the manifold’s local geometry [21].
We note that the above procedure is robust even if the vector field f is locally tangential to Mi,
but the shooting method becomes much more computationally expensive in that case. In addition,
solving the boundary value problem for each marker becomes even more challenging for k > 2, when
the search space for z is not one-dimensional.

Remark 2.1. All of the above methods are explicit in the sense that only the representation of Mi is
used to produce Mi+1 and the order of computation of the markers on Mi+1 is unimportant. Thus,
these methods’ computational complexity is generally proportional to the total number (across all
of the Mi’s) of used mesh points N . However, N will depend not only on the required accuracy in
manifold-approximation, but also on the choice of family-parameter. Moreover, the proportionality
constants involved can be quite large depending on k (e.g., for the marker redistribution) and on
the orientation of f relative to the Mi’s.

Several other numerical techniques are not based on growing a family of Mi’s.
A method introduced by Doedel [11] uses a single computed trajectory in Wu(y0) as an input

for the boundary value solver of AUTO [10] to perform continuation in the ray-angle parameter.
The manifold is approximated between Minit = M0 and Mfinal by a sequence of trajectories {zj}
such that zj(0) ∈ M0, zj(τj) ∈ Mfinal, and ‖zj(τj) − zj+1(τj+1)‖ = ∆. Starting with the initial
trajectory z0, the collocation methods are repeatedly used to produce zj+1 based on zj . If Pj is a
hyperplane transversal to f at zj(τj), then zj+1 is sought with one end point on M0 and the other
lying on Pj distance ∆ away from zj(τj). The resulting sequence {zj} is well-spaced near Mfinal,
but may not be uniformly spaced near M0.

A new method by Henderson [16] is based on integrating an individual trajectory together with
a second-order approximation to the manifold along that trajectory. The surface is constructed as a
collection of k−dimensional strips centered at such trajectories; the use of these (non-intersecting)
strips provides uniform bounds on the spacing of the trajectories. The implementation heavily relies
on the efficient data structures developed earlier for approximating implicitly-defined manifolds [17].
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This method is the first to directly model the curvature information in the direction transversal to
the trajectories.

An algorithm introduced by Dellnitz and Hohmann in [6, 7] uses subdivision and cell-mapping-
continuation techniques to produce an n-dimensional covering of the k-dimensional unstable man-
ifold. A simplified version of this algorithm can be summarized as follows. The computational
domain Q is subdivided into a number of small non-intersecting n-dimensional “boxes”. The initial
covering is determined as a collection of those boxes covering Wu

loc(y0) – a small neighborhood of
y0 in Wu(y0). The iteratively repeated continuation stage adds new boxes to the collection if they
are intersected by a φ∆t

f -image of some box(es) already in the collection. The process stops when no
more boxes within Q can be added. The use of efficient (hierarchical) data structures allows storing
only those boxes actually needed for the covering. The covering’s growth reflects the anisotropy due
to multiple time-scales present in the system, i.e. the more strongly unstable directions are covered
first. The accuracy of the approximation depends upon the size of boxes in the resulting covering
and upon the level of refinement of the initial covering (the relative size of the boxes compared to
Wu

loc(y0)); hence the algorithm can be quite memory-intensive and may converge relatively slowly,
especially for k = n − 1. The efficiency of this algorithm also strongly depends on the contraction
transversal to the manifold: weaker contraction will require a much finer initial covering – otherwise,
the cell mapping will produce a coarse n-dimensional covering of Wu.

We note that the method in [6, 7] is currently the only one implemented for k > 2. Several
other methods briefly described above were formulated for the general case, but, to the best of our
knowledge, the current implementations rely on k = 2.

3 PDE Approach to Manifold Approximation

In contrast to the methods discussed in the previous section, we compute an invariant manifold as
a collection of adjacent k-dimensional simplex-patches. The (k − 1)-dimensional boundary of the
current collection is used to attach new tentative simplexes, whose exact position in Rn is computed
using a partial differential equation for the local parameterization of that manifold.

We begin by considering a relatively simple case of a two-dimensional manifold in R3.
If (x1, x2, g(x1, x2)) = (x, g(x)) = y is a local parameterization of an invariant manifold, then the
vector field evaluated on it should be tangential to the graph of g(x1, x2), i.e.

f (x1, x2, g(x1, x2)) ·

 ∂
∂x1

g(x1, x2)
∂

∂x2
g(x1, x2)
−1

 = 0, (4)

should hold wherever this parameterization is valid. Our general method can be outlined as follows:

• The above first-order quasi-linear PDE can be solved to “continue” the manifold since the
boundary condition for g is specified on the last-previously-computed-manifold-“boundary”.

• The initial “boundary” is approximated by a discretized small circle around y0 in Eu(y0).

• Once a new triangle-patch of the manifold is computed and Accepted, the computational
“boundary” (AcceptedFront) is modified to include it, new tentative (or Considered) patches
are added to the computational domain and the PDE is solved on them using the new (local)
coordinates.

This process is discussed in detail in section 6 and illustrated in section 7. Here, we simply note
that, unlike a general quasi-linear PDE, equation (4) always has a smooth solution as long as the
chosen parameterization remains valid. Thus, switching to local coordinates when solving the PDE
allows us to avoid checking the continued validity of the parameterization.

The above derivation can be repeated to obtain a single PDE defining an invariant manifold of
co-dimension one in Rn: the number of equations corresponds to the number of linearly independent
vectors orthogonal to the manifold’s tangent space, i.e., to the manifold’s co-dimension.
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In this spirit, we now consider the general problem of constructing a k-dimensional invariant
manifold of a vector field f : Rn → Rn. Switching to a suitable coordinate system, we assume
that the manifold’s local parameterization is (x1, . . . , xk, g1(x1, . . . , xk), . . . , gn−k(x1, . . . , xk)) =
(x, g(x)) = y ∈ Rn, where x ∈ Rk and g : Rk 7→ Rn−k. As in the co-dimension one case, the PDE
is derived from the condition that the vector field evaluated on the manifold should lie in its tangent
space. Therefore, for every j ∈ {1, . . . , (n− k)},

k∑
i=1

∂gj

∂xi
(x1, . . . , xk)fi(x, g(x)) = fj+k(x, g(x)) (5)

should locally hold as long as the above parameterization is valid. This coupled system of (n − k)
quasi-linear PDEs can again be used to “continue” the manifold since the boundary conditions for
the gj ’s are specified on the last-previously-computed-manifold-“boundary”. In this case, the initial
“boundary” is approximated by a discretized (k − 1)-sphere around y0 in Eu(y0) and the manifold
grows as new k-dimensional simplexes are Accepted. The construction of manifolds of co-dimension
2 is illustrated in section 8.

Remark 3.1 (A historical note).
The PDE approach for characterizing invariant surfaces goes back to at least 1960s. In particular,

the existence and smoothness of solutions for equations equivalent to (5) are the subjects of Sacker’s
analytical perturbation theory [30, 25]. Previous numerical techniques based on this formulation
included time-marching finite difference schemes in “special coordinates” [9], iterative methods [8]
based on a discrete version of Fenichel’s graph transform [13], collocation methods [12], and spectral
methods [24]. However, all this work was done for invariant tori computations, resulting in two very
important distinctions from our method:

1. These prior methods assume the existence of a coordinate system in which the invariant torus
is indeed globally a graph of the function. Such a coordinate system may be defined explicitly
[9] or implicitly [8]. In the latter case it can be defined using normal/tangent bundles of
a (previously constructed) invariant torus of a slightly perturbed vector field. This implies
availability of a global mesh, on which the PDE can be solved.
For invariant manifolds of hyperbolic equilibria, such a mesh is not available a priori and has
to be constructed in the process of “growing” the manifold (Section 6.5).

2. For the invariant tori computations, the solution function g has periodic boundary conditions;
hence, the discretized equations are inherently coupled and have to be solved simultaneously.
For approximation of Wu(y0), all characteristics of the PDE start at the initial boundary
(chosen in Eu(y0)) and run “outward”. Knowledge of the direction of information flow can
be used to decouple the discretized system, resulting in a much faster computational method
(Section 5).

4 Eulerian Discretization

Not surprisingly, the characteristics of Eqn. 4 are exactly the (projections of the) trajectories of the
original vector field. Thus, any attempt to solve it in the Lagrangian-framework (i.e., by the method
of characteristics or ray shooting) would bring us back to all the problems discussed in section 1.
On the other hand, it was demonstrated in [33] that the discretized (semi-Lagrangian and Eulerian)
equations resulting from certain non-linear first order PDEs can be solved very efficiently. This was
our motivation for locally recasting this problem in a fully Eulerian framework.

For a two-dimensional invariant manifold in R3 (as formulated in Eqn. 4), let G(x1, x2) be
a piecewise-linear numerical approximation of the solution g(x1, x2). Consider a simplex yy1y2,
where yi =

(
xi

1, x
i
2, G(xi

1, x
i
2)

)
=

(
xi, G(xi)

)
and y = (x1, x2, G(x1, x2)) = (x, G(x)). We assume

that the vertices y1 and y2 are two adjacent mesh points on the AcceptedFront (the discretization
of the current manifold “boundary”). Thus, G(xi)’s are known and can be used in computing G(x).
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Define the unit vectors Pi = x−xi

‖x−xi‖
and let P be a matrix with Pi’s as its rows. This square

matrix is invertible since x is chosen some distance away from the AcceptedFront. We note that a
directional derivative for G in the direction Pi can be computed as

vi(x) =
G(x)−G(xi)
‖x− xi‖

. (6)

Therefore, if v is a column vector of vi’s, then ∇g(x) ≈ ∇G(x) = P−1v, yielding the discretized
version of Eqn. (4) :[

P−1v(x)
]
1
f1(x, G(x)) +

[
P−1v(x)

]
2
f2(x, G(x)) = f3(x, G(x)). (7)

This non-linear equation can be solved for G(x) by the Newton-Raphson method or any other robust
zero-solver. In addition, it has an especially simple geometric interpretation if the local coordinates
are chosen so that G(x1) = G(x2) = 0. Setting ŷ = (x, 0), we reduce the problem to finding the
correct “tilt” for a simplex yy1y2. If u is a unit vector normal to ŷy1y2, then solving Eqn. (7) is
equivalent to finding a number α ∈ R such that f(ŷ + αu) lies in the plane defined by y1, y2, and
y = ŷ + αu. (See Figure 2.)

y 1

y2 

^ y 

y 

Figure 2: Geometric interpretation of Eqn. 7. The one-dimensional search-space corresponds to the manifold’s

co-dimension.

This geometric interpretation can be extended to the general case4 of a k-dimensional invariant
manifold in Rn. In this case, the AcceptedFront is a (k − 1)-dimensional mesh discretizing the
currently computed manifold “boundary” and we consider a k-dimensional simplex yy1 . . .yk, where
y1, . . . ,yk ∈ Rn form a (k− 1)-dimensional simplex in AcceptedFront and y is a Considered point
near it. A local parameterization g(x) satisfying the system (5) is numerically approximated by
G(x), i.e. we assume yi =

(
xi,G(xi)

)
and y = (x,G(x)), where x,xi ∈ Rk and G : Rk → Rn−k.

We choose the parameterization so that G(xi) = 0 and let ŷ = (x,0). Let
{
u1, . . . ,u(n−k)

}
form

an orthonormal basis for the orthogonal complement of the k-plane ŷy1 . . .yk. Then the task of
linearly approximating the system (5) is equivalent to finding the real numbers α1, . . . , α(n−k) such
that, for y = ŷ +

∑n−k
i=1 αiu

i, the vector f(y) lies in the k-plane defined by y,y1, . . . , yk.
The described discretization procedure is similar in spirit to an implicit Euler’s method for solving

initial value problems since yi’s are assumed to be known and the vector field is computed at yet-
to-be-determined point y.

4 Of course, the explicit discretization formula is also available. We omit it here for the sake of brevity and
notational clarity.
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4.1 Local Truncation Error & Upwinding Condition

Let L be the Lipschitz constant of f and let ν be the upper bound of ‖∇g‖ on a ∆−neighborhood
of x. For k = 2, suppose that y1 =

(
x1, G(x1)

)
and y2 =

(
x2, G(x2)

)
lie on the manifold, and

y = (x, G(x)) solves (7). This means that f(y) lies in the plane of yy1y2 and can be expressed as
a linear combination

f(y) = β1(y − y1) + β2(y − y2), (8)

where the real coefficients β1 and β2 satisfy the equation

PT

[
β1‖x− x1‖
β2‖x− x2‖

]
=

[
f1(y)
f2(y)

]
. (9)

If f(y) is not parallel to y1y2, then β1 + β2 6= 0, and a linear approximation of y’s trajectory
(i.e., the straight line through y in the direction f(y)) will intersect the line y1y2 at the point

ỹ = β1y1
+β2y2

β1+β2
. We note that

‖y − ỹ‖ =
‖f(y)‖
|β1 + β2|

. (10)

Since away from equilibriums ‖f(y)‖ is bounded from below, (10) implies |β1 +β2|−1 = O(‖y− ỹ‖).
Using the above notation, we can re-write Eqn. (7) in the form

G(x) =
β1

β1 + β2
G(x1) +

β2

β1 + β2
G(x2) +

f3(x, G(x))
β1 + β2

. (11)

For x̃ = β1x1
+β2x2

β1+β2
we can now express

‖y − ỹ‖2 = ‖x− x̃‖2 +
(
f3(x, G(x))
β1 + β2

)2

= ‖x− x̃‖2 +
(
f3(y) ‖y − ỹ‖

‖f(y)‖

)2

.

Therefore,

‖y − ỹ‖2 = ‖x− x̃‖2 ‖f(y)‖2

‖f(y)‖2 − (f3(y))2
.

Thus, O(‖y− ỹ‖) = O(‖x− x̃‖) provided |f3| << ‖f‖. This condition can be satisfied by a suitable
choice of the coordinate system; e.g., if the point x is chosen so that f3(x̃) = 0. In that case, the
“correction term” f3(y)/(β1 + β2) in formula (11) is of the order O(‖x− x̃‖2).
For the solution g(x) of PDE 4,

g(x) = g(x̃)+∇g(x)·(x−x̃)+O(‖x−x̃‖2) = g(x̃)+∇g(x)· β1(x− x1) + β2(x− x2)
β1 + β2

+O(‖x−x̃‖2).

Combining the above with (8),

g(x) = g(x̃) +
f1(x, G(x)) ∂

∂x1
g(x) + f2(x, G(x)) ∂

∂x2
g(x)

β1 + β2
+O(‖x− x̃‖2) and

|g(x)−G(x)| ≤

∣∣∣∣∣g(x̃) +
f1(x, G(x)) ∂

∂x1
g(x) + f2(x, G(x)) ∂

∂x2
g(x)

β1 + β2
−G(x)

∣∣∣∣∣ +O(‖x− x̃‖2)

≤

∣∣∣∣∣g(x̃) +
f1(x, g(x)) ∂

∂x1
g(x) + f2(x, g(x)) ∂

∂x2
g(x)

β1 + β2
−G(x)

∣∣∣∣∣ +
2Lν

|β1 + β2|
+O(‖x− x̃‖2).

Since g solves the PDE,

|g(x)−G(x)| ≤
∣∣∣∣g(x̃) +

f3(x, g(x))
β1 + β2

−G(x)
∣∣∣∣ +

2Lν
|β1 + β2|

+O(‖x− x̃‖2)

≤
∣∣∣∣g(x̃) +

f3(x, G(x))
β1 + β2

−G(x)
∣∣∣∣ +

L(2ν + 1)
|β1 + β2|

+O(‖x− x̃‖2).
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Setting C = L(2ν + 1)/‖f(y)‖ and recalling (10), (11),

(1− C‖y − ỹ‖) |g(x)−G(x)| ≤
∣∣∣∣g(x̃) +

f3(x, G(x))
β1 + β2

−G(x)
∣∣∣∣ +O(‖x− x̃‖2)

=
∣∣∣∣g(x̃)− β1

β1 + β2
G(x1)− β2

β1 + β2
G(x2)

∣∣∣∣ +O(‖x− x̃‖2).

Let xm = (x1 + x2)/2. Since x̃ is on the line x1x2 and it was assumed that that G(xi) = g(xi),
the linear approximation yields

g(x̃) = (β1G(x1) + β2G(x2))/(β1 + β2) +O(‖x̃− xm‖2) +O(‖x1 − x2‖2).

Thus,

|g(x)−G(x)| ≤
O

(
‖x̃− xm‖2

)
+O

(
‖x1 − x2‖2

)
+O(‖x− x̃‖2)

(1− C‖y − ỹ‖)
. (12)

If x̃ lies in between x1 and x2, and if the triangle xx1x2 has sides of length ≤ ∆, then the
formula (12) yields a local truncation error of order O(∆2). Correspondingly, we expect the global
approximation error of order O(∆) for the entire mesh. The rigorous analysis of the global error
is outside the scope of this paper, but in Section 9 we provide numerical evidence to confirm the
first-order accuracy.

The requirement that x̃ should lie in between x1 and x2 ensures that interpolation (rather than
extrapolation) is used for G(x̃). Moreover, it corresponds to the fundamental stability condition
for solving first-order PDEs: the mathematical domain of dependence should be included in the
numerical domain of dependence. For our problem this means that G(x) should be computed using
the correct triangle - the triangle through which the corresponding (approximate) trajectory runs.
Thus, having computed y = (x, G(x)) by (7) using two adjacent mesh points yi and yj , we need to
verify an additional upwinding condition: the linear approximation to y’s trajectory should intersect
the line yiyj at the point ỹ = (x̃, G(x̃)) lying between yi and yj (see Figure 3) or, equivalently,
f(y) should point from the newly computed simplex yyiyj . If the upwinding criterion is satisfied

f(y)

~y

f(y)

~yyi yi

y y

yj yj

Figure 3: Examples of acceptable (Left) and unacceptable (Right) approximations of f (y). The range of upwinding

directions is shown by dotted lines; the local linear approximation to the trajectory is shown by a dashed line; ỹ is

its intersection with the line yiyj . In the second case the upwinding criterion is not satisfied and the update for y

should be computed using another segment of AcceptedFront.

(i.e., β1, β2 ≥ 0), the formula (10) provides the length of the linear approximation of y’s trajectory
inside yyiyj . Both the upwinding condition and the formula (10) can be similarly extended for
k > 2.
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5 Ordered Upwind Method

The Ordered Upwind Methods (OUMs) were originally introduced by Sethian and Vladimirsky to
solve a class of problems in anisotropic control theory and anisotropic front propagation described
by static Hamilton-Jacobi-Bellman PDEs [32, 33]. A finite-difference discretization of a non-linear
boundary value problem normally leads to a system of N non-linear coupled discretized equations,
where N is the total number of mesh points in the computational domain. The solution to that
system is usually obtained iteratively, while each iteration involves recomputing the values at all of
the mesh points. Such iterative schemes can be quite slow even in conjunction with Gauss-Seidel
relaxation techniques. OUMs provide an alternative by using the partial information about the
direction of information flow to essentially decouple the system and to solve the equations one-by-
one. Several extensions of these methods were introduced for hybrid control problems [34] and for
phase-space multiple-arrivals computations [31].

The decoupling introduced in [32] hinges on the notion of “optimality” and the variational prop-
erties of the PDEs arising in the control-theoretic context. This formulation was heavily used in
proving convergence to the viscosity solution of the Hamilton-Jacobi-Bellman PDE [33]. However,
the more general idea behind the methods was to allow space-marching for the boundary value prob-
lems - not unlike explicit forward-time marching for initial-boundary value problems. In essence, the
solution can be “marched” (on the mesh) from the boundary using the characteristic information,
and a new (smaller) boundary value problem can be posed using the newly computed “boundary”
- the current divide between the already-computed (Accepted) and not-yet-touched (Far) mesh
points. The mesh discretization of that “new boundary” is referred to as AcceptedFront; the not-
yet-Accepted mesh points which are adjacent to the AcceptedFront are designated Considered. A
tentative value can be computed for each Considered mesh point x under the assumption that its
characteristic intersects the AcceptedFront in some vicinity of that mesh point (designated NF (x)).
All Considered points are sorted based on the SortV alue (usually defined as the time-to-travel to
x from the boundary along its characteristic). A typical step of the algorithm consists of picking
the Considered x̄ with the smallest SortV alue and making it Accepted. This operation modifies
the AcceptedFront (x̄ in, other mesh points possibly out), and causes a possible recomputation of
all the not-yet-Accepted mesh-points near x̄.

This “space-marching” is based on the principle of “local” solution reconstruction from char-
acteristics and on some notion of an entropy-like condition (i.e., no characteristics emerging from
shocks). Both of these are applicable for a much wider class of the first-order PDEs. In [31] Ordered
Upwind-like Methods were successfully used to treat the linear Liouville PDE. The applicability of
OUMs to general quasi-linear first-order PDEs is still an open question [36]. However, the particular
computational problem considered in this paper has an additional simplifying property: the PDEs
(4) and (5) are solved only locally and hence the solution remains smooth at every point. On the
other hand, unlike in the previous OUMs, the mesh is not known in advance and is built in the pro-
cess of computation. In adding a tentative simplex-patch (with a Considered vertex) we attempt
to provide for “good” geometric properties of the mesh (e.g., simplex aspect ratio) and to ensure
that the parameterization is locally well-conditioned (e.g., ‖∇g‖ should be small on that simplex).
The vector field near AcceptedFront determines the order in which the correct “tilts” for tentative
simplex-patches are computed and the Considered mesh points are Accepted. This ordering has
the effect of reducing the approximation error (a mesh point y first computed from a relatively-far
part of NF (y) is likely to be recomputed before it gets Accepted). Below we outline the general
structure of the algorithm and provide a detailed description of individual components in section 6.
As in the original OUMs, the computational complexity of the algorithm is O(N logN), where the
(logN) factor results from the necessity to maintain a sorted list of Considered mesh points.
Ordered Upwind Method for Building Invariant Manifolds.

1. Use the linearization (Eu(y0)) to initialize AcceptedFront and one “layer” of Considereds.

2. Evaluate the tentative coordinates for Considereds.

3. Find the Considered mesh point ȳ which is the closest (in the sense of trajectory distances)
to AcceptedFront.
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4. Move ȳ to Accepted and update the AcceptedFront.

5. Remove/Add the Considered mesh points to reflect changes to AcceptedFront.

6. Recompute the coordinates for all the Considered y such that ȳ ∈ NF(y).

7. If Considered is not empty (and “stopping criteria” are not met) then go to 3.

6 Implementation Details

The current implementation is specifically geared towards two-dimensional manifolds in Rn, even
though a generalization of most of the following is straightforward (except for 6.3 and parts of 6.5
which explicitly rely on k = 2). Our goal is to construct a simplicial complex approximating the
manifold with the preferred triangle side of length ∆ (but definitely less than 2∆). Throughout this
section we call a mesh-triangle s adjacent to y if y is one of the vertices of s; we also refer to mesh
points yi and yj as adjacent (or connected) if they are both adjacent to the same triangle.

6.1 Initialization

The algorithm is initialized using the linearization of the vector field. Eu(y0) is determined as a
span of eigenvectors of Df(y0) corresponding to the eigenvalues with positive real part.

Any simple closed curve around y0 in Eu(y0) can be used as an initial boundary I, provided
that curve is transversal to the linearized vector field. In the examples considered in the following
sections, I was chosen to be a circle of radius Rinit centered at y0. More generally, the transversality
condition can always be satisfied by choosing an ellipse corresponding to the relevant eigenvectors.

The initial boundary I is then approximated using N0 Accepted mesh points so that the distance
between all adjacent mesh points y1 and y2 is at most ∆. For each such adjacent pair, the segment
y1y2 is placed onto the AcceptedFront and an equilateral triangle is constructed with the vertices at
y1, y2 and ŷ, where the new Considered mesh point ŷ lies in Eu(y0) and ‖y0−ŷ‖ = Rinit+∆

√
3/2.

(See Figure 4.)

y
0

Accepted mesh points
Considered mesh points
AcceptedFront
Tentative Simplexes

Figure 4: Initialization of AcceptedFront in Eu(y0) (left) and changes to AcceptedFront once the first of

Considered points is Accepted (right). The newly added/accepted triangle generally does not lie in Eu(y0); once

accepted, it defines the plane in which the new tentative triangles are initially chosen.

6.2 Computing coordinates for Considereds

Once the correct “tilt” is computed, each Considered mesh point y is a vertex of a triangle with the
other vertices y1, y2 on the AcceptedFront. Initially, however, that triangle is built to be locally
tangential to the manifold, i.e., only ŷ is known at first instead of y (see Figure 2). If y1 and y2

are on I, then ŷ is chosen in Eu(y0), as described above; otherwise, the position of ŷ is selected in
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the plane of the previously Accepted triangle adjacent to y1 and y2 (as described in section 6.5).
Given ŷ, the discretized version of the PDE(s) is solved to obtain the “normal component(s)” of
y. As described in section 4, the newly computed y is a valid Considered point if it satisfies the
“upwinding condition”. If that condition is not satisfied, we re-compute y using other segments on
AcceptedFront near ŷ. In general, given two adjacent mesh points yi and yj on AcceptedFront,
we can form a “virtual simplex” ŷyiyj which is then used to compute the value for y even if it is
not directly adjacent to yi or yj . A NearFront NF (ŷ) is defined as a collection of segments on
AcceptedFront within the distance RNF from ŷ.
NF (ŷ) is used to restrict the set of virtual simplexes, which will be potentially checked to find the
one satisfying the upwinding criterion, - the vector f(y) should be pointing out of the simplex used
to compute y (Figure 5 illustrates this for a simplified case ŷ = y).

y1 y2 y3 y4 y5

y

f(y)

R
NF

 = 1.4 ∆

Figure 5: Use of NF (ŷ) to build virtual simplexes for evaluating y. The first evaluation is performed using y2

and y3 as the Accepted mesh points adjacent to ŷ; the resulting approximation for f(y) shows that the upwinding

condition is not satisfied and that a virtual simplex using y3y4 should be considered next.

Remark 6.1. Generally, one needs to select the value for RNF based on the behavior of the
vector field near AcceptedFront - if the locally-tangential components dominate the locally-normal
components, it will not be possible to satisfy the upwinding criterion unless RNF is sufficiently large.
(Note that this will also increase the local truncation error of Section 4.1 by a factor of RNF .)
On the other hand, this truly becomes a problem only if this local-tangentiality holds everywhere
along the AcceptedFront: the fact that Considered mesh points are ordered based on SortV alue
allows for a subsequent recomputation of coordinates of y once the position of AcceptedFront
changes. (See Figure 6.)

y1 y2 y3 y4

z1 z2 z3

AcceptedFront
Tentative Simplexes
Approximate Trajectories

Figure 6: Ordering acceptance of Considered based on SortV alue decreases the computational stencil; this reduces

both the minimum sufficient RNF and the local truncation error. Even though all three zi’s can be computed using

y1y2, this is not really necessary. Once z1 becomes Accepted both z2 and z3 can be computed from z1y2; once

z2 becomes Accepted, z3 can be recomputed using z2y3. Thus, in this example, valid coordinate updates will be

eventually computed even if RNF = ∆.
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6.3 Relaxing the upwinding condition

The AcceptedFront is a one-dimensional object and the very first evaluation of y’s coordinates will
indicate the correct search-direction to satisfy the upwinding condition (Figure 5).

Unfortunately, f(y) gives only an approximation of the direction of information flow since the
“normal” components (i.e., y− ŷ) are computed numerically from the first-order accurate discretiza-
tion of the PDE. As a result, when the adjacent segments in NF (ŷ) do not lie on the same line, it
is possible that the upwinding condition will not be satisfied by any virtual simplex (see Figure 7).

y3

f(y2)

y2,3

y2

ŷ

f(y2,3)

y1,2

f(y1,2)

y1

f(y1)

Figure 7: Deadlock situation: according to f(y1,2), y’s trajectory should intersect y2y3; according to f(y2,3),

the trajectory should intersect y1y2. Thus, neither virtual simplex satisfies the strict upwinding condition and the

relaxation of the criteria is needed. The directions of f(y1) and f(y2) show that the update y1,2 satisfies the relaxed

criterion.

Remark 6.2. Thus, we use the following relaxation of the upwinding criterion:
Let ŷ be a Considered point and let yi,j be its new coordinates computed from a virtual simplex
s = ŷyiyj . The relaxed upwinding condition is satisfied if there exists a point ỹ on an AcceptedFront
segment yiyj such that the projection of f(ỹ) onto s is collinear with ỹŷ. In practice, an alternative
version of this condition is easier to verify: it suffices to check that the projections of f(yi) and
f(yj) onto the plane of s lie outside of that simplex.

Remark 6.3. As formulated in Section 4.1, the upwinding criterion is implicit: it cannot be verified
until the tentative value yi,j is computed. In contrast, the above relaxed upwinding criterion is
explicit in nature since it only concerns the directions of vector field on yiyj .
We note that, even when an explicit (relaxed) upwinding criterion is used, the “tilt” (y − ŷ) is still
computed from the implicit formula (7). Moreover, in such cases we still have ‖ỹ− y‖ = O(RNF ∆)
and the local truncation error derived in Section 4.1 is still valid.

The above reasoning clearly uses the fact that k = 2. In general, the AcceptedFront will be a
(k− 1)-dimensional object and both the search in NF (ŷ) and the upwinding-relaxation procedures
will have to be more complicated.

In our implementation, the relaxed upwinding is only used to deal with the deadlocks at Considered
points tagged as Lagging (immediately adjacent to more than two segments of AcceptedFront yet
possessing no valid update). In all other cases, relaxation is postponed since subsequent modifica-
tions to AcceptedFront may allow for the strict upwinding condition to be satisfied. As a result,
the relaxation is applied very infrequently (e.g., at 24 mesh points out of 77500 in the example
considered in section 8).

6.4 Computing the SortValue and sorting Considereds

Our decoupling orders the acceptance of Considered points based on their “distance-along-the-
trajectory-to-y0”. That distance σ(y) can be estimated as a sum of the “distance-along-the-
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trajectory-to-AcceptedFront” and σ(ỹ), where ỹ is the intersection of y’s trajectory with a segment
yiyj on the AcceptedFront (see Figure 3).

Once the new coordinates for a Considered point y are computed and the upwinding criterion is
satisfied, we obtain a linear approximation to y’s trajectory and can estimate its SortV alue: ‖y−ỹ‖
can be computed by formula (10) and σ(ỹ) can be approximated by linearly interpolating σ(·) on
yiyj . Since y is computed from yiyj , we recall that f(y) = β1(y − yi) + β2(y − yj) for some
β1, β2 ≥ 0 and

SortV alue(y) = σ(y) ≈ ‖y − ỹ‖+ σ(ỹ) ≈ ‖f(y)‖+ β1σ(yi) + β2σ(yj)
β1 + β2

. (13)

If the (relaxed) upwinding criterion for y cannot be satisfied by any segment in NF (y), then we leave
y = ŷ and assume SortV alue(y) = +∞. Such a Considered point will never get Accepted unless
the upwinding criterion is later satisfied in the subsequent re-computations (triggered by changes to
AcceptedFront near y).

We use a heap-sort data structure to maintain the sorting of the Considered points based on
their SortV alues. As a result, selecting ȳ (algorithm stage #3) can be performed in O(1) operations,
but every time a considered point’s SortV alue changes, its position in the heap-sort should change
as well. This re-sorting can be performed in O(logK) operations, where K < N is the current
number of Considered mesh points.

Remark 6.4. As noted in section 5, the general OUMs require using T (y), the time-to-travel-
along-the-characteristic, as a SortV alue. However, this choice is dictated by the necessity to build
the “correct” global (weak) solution to the PDE - any other ordering will risk running through the
shocks and/or violating the entropy conditions [36]. In our current work, the characteristics are
the trajectories of a smooth vector field and the solution is computed only locally, hence shocks
cannot occur if ∆ is sufficiently small. This smoothness of the solution enables us to use different
sorting criteria, including σ(y) (as above), d(y) (the geodesic distance-to-y0), and the geodesic (or
along-the-trajectory) distance to AcceptedFront. Our particular choice (SortV alue = σ(y)) is a
result of an empirical trade-off: it requires a lesser RNF than (SortV alue = d(y)) and generally
decreases the length of AcceptedFront as compared to (SortV alue = T (y)).

6.5 Changing AcceptedFront and extending the mesh

Every Considered point y is a vertex of at least one tentative triangle yy1y2, where y1 and y2 are
adjacent mesh points on the AcceptedFront. As a Considered mesh point ȳ becomes Accepted, this
tentative triangle becomes fully accepted and the AcceptedFront has to be modified accordingly.
(Note: the newly added triangle will always use the segment y1y2 adjacent to ȳ - even if that point
was computed using some other segment yiyj in NF (ȳ).)
The changes to AcceptedFront proceed in two stages:

1. Removal from AcceptedFront of each segment yiyj shared by two fully accepted triangles (or
used by just one such triangle if both yi and yj are on the initial boundary I).

2. Adding to AcceptedFront segments ȳyj , for all AcceptedFront mesh points yj adjacent to ȳ.

Once the AcceptedFront has been modified, it may be necessary to extend the mesh near ȳ. The
existing mesh includes Accepted points and a narrow band of Considered points nearAcceptedFront.
If two mesh points yk,yl 6∈ I are adjacent, then we will refer to ykyl as a perimeter segment if that
segment is used as an edge by a unique triangle. The AcceptedFront plays the role of an approximate
boundary for (locally) solving the PDE. Correspondingly, if y is Accepted but not on AcceptedFront,
then there should be no perimeter segments adjacent to y. Moreover, if ykyl is on AcceptedFront
then it should not be a perimeter segment either. Yet if one of these points was just Accepted, the
segment may be on the perimeter of the existing mesh and some local mesh-building is required
to create the second triangle adjacent to ykyl. The following heuristic algorithm is similar to the
“advancing front mesh generation” method described in [27].
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Let L = ‖yk −yl‖ be the length of a perimeter segment ykyl. Let γ be the smallest outer angle
formed by this segment, i.e., γ = min(∠yjykyl, ∠ykylym), where yjyk and ylym are perimeter
segments adjacent to ykyl. Also, since yk,yl 6∈ I, there already exists a unique fully accepted
triangle skl with these two vertices.
A second triangle adjacent to ykyl is created by one of the following three procedures:

1. If γ ≥ π, then we introduce a new mesh point ŷ (in the plane defined by skl) to form an
isosceles triangle with ykyl as its base and sides ykŷ, ylŷ of length L1, where

L1 =


2L if L ≤ ∆

2 ;
∆ if ∆

2 < L ≤ ∆
0.55 ;

0.55L if ∆
0.55 < L.

(See Figure 8A.) The constants used above are purely heuristic and are intended to balance
our preference for nearly-regular triangles against the desired mesh-scale ∆; see [27] for further
details.

2. If ∠yjykyl = γ is acute, then a triangle yjykyl is added to the mesh. If ‖yjyl‖ > 2∆, then
that triangle is split in two by adding a new Considered mesh point ŷ (See Figure 8B.)

3. If γ ∈ [π
2 , π), then we compute Rjkl and Rklm, the radii of circles passing through the respective

triples of points. (The radius is assumed +∞ if the corresponding outer angle is ≥ π.) Without
loss of generality, assume that Rjkl ≥ Rklm. If Rklm < L1, then a triangle ykylym is added
to the mesh without adding any new mesh points. (See Figure 8C.) Otherwise, we create a
new isosceles triangle ŷykyl, as described above (see # 1).

yj

yk yL

ym

y
^ yj

yk yL

ym

y^

A B

yj

yk yL

ym

C

Figure 8: Local Mesh Generation: three different procedures for extending the mesh at ykyl. New segments are

shown by a dashed line. If created, the new mesh point is labeled ŷ. In all examples, the mesh is assumed pre-existent

below the polygonal perimeter.

We note that if a new mesh point is created, then the choice of ŷ merely fixes the local coordinate
system in which the “normal” components of y are next computed from NF (y) (algorithm stage
#6) as described in section 6.2.
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Remark 6.5. The local mesh-generation step above provides no provable guarantee for the quality
of the resulting triangles (aspect ratio, minimum angle, etc). Nevertheless, we note that

1. In practice, the generated mesh is fairly well-behaved. (E.g., in the example considered in
section 7, the minimum angle present in the mesh is > 18o and the vast majority of triangles
have minimum angles > 30o.)

2. The aspect ratio of the constructed triangles does not directly affect the quality of manifold
approximation. Every Considered mesh point y is computed using all the segments in NF (y),
not only the immediately adjacent triangles.

3. Additional post-processing procedures (diagonal swapping and mesh smoothing) can be used
to improve the aspect ratios once the manifold is constructed. See [27] for further details.

4. Our mesh-generation method requires O(1) operations for each Accepted point. More sophis-
ticated (and more computationally expensive) mesh generation procedures can be used to
obtain triangles with guaranteed minimum angles. For example, mesh-quality guarantees can
be obtained for Delaunay triangulation methods [5] and for hybrid advancing-front / Delaunay
triangulation methods [29].

5. Our method clearly uses the fact that k = 2. For the general case k > 2, the mesh extension
step would require building a (local) simplicial complex in the manifold tangent space com-
patible with the current polytope boundary (i.e., AcceptedFront). This construction has to
be performed only locally and no mesh quality (aspect ratio) guarantees are required. Thus,
any hyper-surface meshing method can be used (e.g., [4], [17]).

6.6 Stopping criteria

The stopping criterion used in our implementation is the unavailability of any Considered points
with σ(y) ≤ Σ, where Σ is a pre-specified (max-distance-along-the-trajectory) parameter. Using
the heap-sort data structure, the criterion can be checked by a single comparison: the algorithm
stops as soon as SortV alue(ȳ) > Σ, where ȳ is the current first element on the heap.

We note that other stopping criteria (Euclidean or geodesic distance, time-along-trajectory, total
number of simplexes, etc) can be used independently of the chosen SortV alue.

6.7 Algorithm features & possible optimizations

The algorithm we have described has the worst-case computational complexity of O(RNFN logK),
where N is the total number of mesh points, RNF provides the maximum number of re-computations
for a Considered point, and K is the maximum number of mesh points marked Considered at the
same time (typically, ≈

√
N). This is different from the O(N) complexity of the explicit methods of

section 2. Nevertheless, this additional cost is justified since it results in a reduction of discretization
errors; see, for example, Figure 6 and the discussion of local truncation errors in Section 4.1. In
addition, the overall computational efficiency of our method is much better since the “constant
coefficients terms” in the computational cost are largely dependent on the geometry of the manifold
rather than on the geometric stiffness of the vector field (see Remark 2.1).

Remark 6.6. For k > 2, a generalization of the algorithm described above will have the same
asymptotic complexity of O(RNFN logK). However, a (constant factor) increase in cost appears
for k < n− 1. In that case, a system of (n− k) PDEs has to be solved to update each Considered
point (section 3). The geometric argument in section 4 shows that solving the discretization of that
system requires an (n− k)-dimensional Newton-Raphson method. This contrasts our method with
the approaches introduced in [18], [21] and [7], for which the computational cost of updating a single
marker increases with the manifold dimension.

Remark 6.7. Given our method of construction, the manifold approximation always contains the
(approximate) trajectory of each already Accepted mesh point. (This stems from the upwinding
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criteria and is independent of our choices of SortV alue and/or stopping criteria.) That property is
similarly possessed by the methods introduced in [18] and [6], but not by those in [15] or [20].

Remark 6.8. Our algorithm may terminate before Σ is actually reached: given the particular
choices for the method-parameters (desired mesh-scale ∆, initialization radius Rinit, and NearFront
radius RNF ), it might be impossible to obtain an accurate (upwinding-condition-satisfying) update
for any of the current Considered points. Such Considered points will have SortV alue = +∞
and, for the sake of efficiency, will not be placed onto the heap-sort. We note that such “early
termination” can be easily determined in O(K) operations by checking if σ(yj) + ∆ << Σ for
any yj on the final AcceptedFront. For the examples in this paper, the suitable parameter values
were obtained empirically. A better implementation would address this adaptively: RNF can be
increased and/or ∆ can be decreased (by refining the current AcceptedFront) whenever a possibility
of early termination is detected. In addition, a valuable extension would be to vary these parameters
automatically based on the detected information about the manifold geometry (e.g., curvature), the
vector field’s tangency to AcceptedFront and on the current error estimate. We note that such
adaptive versions are already available for some of the prior methods mentioned in Section 2 (e.g.,
[21]).

7 Example: the Lorenz System

We consider the classical example of the Lorenz system [23] :

x′ = ς(y − x);
y′ = ρx− y − xz;
z′ = −βz + xy; (14)

with the canonical parameter values: ς = 10, β = 8
3 , and ρ = 28.

In this case, the system has three fixed points: the origin and (±6
√

2,±6
√

2, 27). The eigenvalues
for the Jacobian at the origin are λ ≈ −22.8, −2.67, 11.8; thus, the origin has a two-dimensional
stable manifold. The ratio of the eigenvalues suggests (at least locally) the geometric stiffness similar
to that encountered in Eqn. (3).

In addition, the stable manifold of the origin has complicated geometry: it spirals into the
famous “butterfly-like” chaotic attractor and also twists around the z-axis; see Figure 9. As a
result, it became a de-facto standard for testing methods for the invariant manifold approximation
(e.g., compare with [22], [15], [7], [16]).

We initialize the AcceptedFront by subdividing the circle of radius Rinit = 2 around the origin
in Es(0) into N0 = 21 segments (i.e., ∆ = 0.6). We start by placing 21 “hanging-simplexes” into
the list of Considered and proceed as described in section 5. The calculation stops once we Accept
everything with the trajectory-arc-length less than the specified Σ. For the computation in Figure
10, RNF was set to 4∆; the resulting mesh contained 116082 mesh points and 230011 simplexes.

Based on the visual and numerical evidence, the produced triangulated surfaces seem to converge
to Ws

Σ(0) as the accuracy parameters (Rinit and ∆) tend to zero. Aside from comparing Figures 9
and 10 with those in [22], etc, we also note the indirect evidence of two sample trajectories appearing
to lie on the manifold in Figure 10. These trajectories are obtained by integrating backwards in time
the initial conditions ±εe, where ε is small relative to Rinit and e is a unit eigenvector corresponding
to the eigenvalue λ ≈ −22.8. Animated movies visualizing the growth and structure of this manifold
are available at http://www.math.cornell.edu/~vlad/manifold_movies/lorenz.html.

Based on a O(∆2) local truncation error of the discretized equation 7, we expect the first-
order of convergence of the approximation to W s

Σ(0). Unfortunately, there is no known closed-form
parameterization for this manifold, which makes computing global approximation errors difficult.
Even computing the distance between two such triangulated surfaces (obtained for different ∆’s) is
not a trivial task. We rely on the examples of section 9 to numerically test the order of convergence
of our method.
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Figure 9: The invariant manifolds of the origin (two views; rotated around z−axis). The stable manifold (displayed

semi-transparent) is computed up to Σ = 120 and the color indicates the trajectory-arc-length σ. The unstable

manifold (in black) is computed by integrating initial conditions in Eu(0) forward in time.

8 Example: Pendula Coupled by Torsion

To demonstrate the applicability of our method to constructing invariant manifolds of higher co-
dimension, we consider here a test problem of two simple pendula coupled by a torsional spring.

ψ′′1 (t) = − sin(ψ1(t)) + ε(ψ2(t)− ψ1(t)),
ψ′′2 (t) = − sin(ψ2(t)) + ε(ψ1(t)− ψ2(t)), (15)

This problem is discussed in detail in [3]; here, we only reproduce some basic properties of the
system.

In (15), ψi is the angular position of the i-th pendulum, the full state of the system can be
recorded as (ψ1, ψ2, ψ

′
1, ψ

′
2) and the full phase space is therefore four-dimensional. As written above,

the system is conservative with the total energy given by

E =
(ψ′1)

2

2
+

(ψ′2)
2

2
− cos(ψ1)− cos(ψ2) +

ε (ψ1 − ψ2)
2

2
. (16)

The constant ε corresponds to a scaled Hooke’s law coefficient and we are interested in investigating
the system for ε << 1 (e.g., ε = 0.01, 0.05). We would like to construct the invariant manifolds of the
saddle point at z0 = (π, π, 0, 0) (i.e., both pendula standing upright with zero angular velocity). The
eigenvalues of the Jacobian matrix are ±

√
1− 2ε and ±1; thus, both stable and unstable manifolds

are two-dimensional and there are no multiple time scales in the linearized system near z0. However,
the energy level E = 2 corresponding to this saddle is singular: it contains both the stable and
unstable manifolds of all the equilibria of the form zm = ((2m+ 1)π, (2m+ 1)π, 0, 0). At the same
time, for i 6= j, this energy level does not contain any points of the form ((2i+ 1)π, (2j + 1)π, ·, ·)
— because of the torsional spring, the potential energy at those points is higher than E(z0).
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Figure 10: Stable manifold of the origin computed up to the trajectory-arc-length Σ = 120. The color indicates σ.

Two sample trajectories are shown for verification purposes.

Figure 11 shows the projections of the entire energy level and of sample trajectories in Wu(z0)
into the configuration plane (ψ1, ψ2) for different values of ε. The configuration space has a periodic
structure (the behavior at (ψ1, ψ2) is the same as at (ψ1 + 2πm,ψ2 + 2πm)). The uncoupled system
(for ε = 0) is doubly periodic and, as a result, for small ε the configuration plane clearly has a
cellular structure. The cells are the squares, whose vertices are at the points ((2m+ 1)π, (2n+ 1)π)
and whose boundaries correspond to the state where one of the pendula is upright and the dynamics
is especially sensitive.
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Figure 11: Projection into the configuration space: the energy level and a single (typical) orbit in Wu(z0) for

ε = 0.05 and ε = 0.01. The light green regions are unattainable due to the energy conservation.

Several types of connecting orbits inside the energy level can be determined and are very useful in
assessing the accuracy of the invariant manifold computations. For example, there are heteroclinic
trajectories connecting each zm with zm±1 (corresponding to the pendula moving in unison) and
homoclinic orbits lying along the “antidiagonals” ψ1+ψ2 = (4m+2)π (corresponding to the pendula
departing from zm in opposite directions and moving in symmetry until the spring pulls them back).

Here, we present several views of Wu(z0) for ε = 0.01. Animated movies visualizing the growth
and structure of the manifold for ε = 0.1 are available at
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In our computation, we initialized the AcceptedFront on a circle of radius Rinit = 0.5 in Eu(z0),

used ∆ = 0.1, and computed the manifold up to σmax = 15.5. We note several algorithmic differences
from the previous example. An energy conserving method could be built to essentially reduce the
search space to a single dimension (i.e., except at zm, the energy level is three-dimensional and
the invariant manifolds have co-dimension one inside it). Instead, we have chosen to implement the
method in the full 4-dimensional phase space, thus illustrating the construction of a manifold of
co-dimension 2. A system of two quasi-linear PDEs is solved to obtain each Considered point y (see
Eqn. 5); the solution to the discretized nonlinear system is obtained by a standard two-dimensional
Newton-Raphson method (e.g., see [28]). The resulting triangulated mesh approximates Wu(z0).
However, once the AcceptedFront is sufficiently close to z±1, the numerical losses in energy result in
“retracting” along the unstable manifolds Wu(z1) and Wu(z−1); see Figure 12Right. This “folding
onto itself” is a numerical artifact rather than a feature of Wu(z0).

Figure 12: Projection of Wu(z0) onto the (ψ1, ψ2) plane. (Σ = 15.5; coloring indicates σ; a total of 77500

mesh points) Computed with (Left) and without (Right) “projection onto the energy level” procedure. Black lines

indicate the “cell” and homoclinic/heteroclinic trajectories. The light green “ink spots” indicate regions unattainable

due to the energy conservation (as in Figure 11). The right picture clearly shows the loss of energy in the process of

computation.

To handle this problem, we implement an additional step of projection onto the energy level:
immediately before a Considered mesh point y is Accepted, we solve an initial value problem

y′(t) = −∇E(y(t)), y(0) = y,

until the first intersection y(t̃) with the level set E = 2. If that point is within (∆/10) from y, we
set y = y(t̃) and continue as described in Section 6; otherwise, the algorithm terminates since the
local energy loss after solving the PDE is considered too large.

This results in a much better approximation of Wu(z0); see Figure 12Left. Unfortunately, this
projection procedure becomes unstable near all zm’s since both Wu(zm) and W s(zm) lie in the
same energy level E = 2, which becomes singular at each zm. Thus, our implementation artificially
stops the manifold from growing too close to those points, i.e., tentative triangles are not added to
segments of AcceptedFront which are within Rrestrict = 0.3 from zm.

Figure 13 shows two homoclinic orbits of z0 and two heteroclinic orbits connecting z0 to z1

and z−1. These trajectories appear to lie on the computed manifold approximation, indirectly
confirming convergence to Wu

Σ(z0). However, a direct verification of convergence for this example
is hard due to the lack of analytic formula for Wu(z0).
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Figure 13: Two different (rotated) views of the projection of Wu(z0) into the (ψ1, ψ2, ψ′1) space. Conservation of

energy is enforced by the projection procedure. Coloring is used to indicate the fourth coordinate (ψ′2) ranging from

−2.07 (blue) to 2.07 (red). The seeming self-intersection is a 3D-projection side effect. The thin black lines indicate

the “cell”. The thick black lines indicate sample homoclinic and heteroclinic trajectories.

9 Example: an Egg Carton Surface

Finally, in order to test the rate of convergence numerically, we consider a simple example for which
the invariant manifold is apriori known. Given a smooth function g(x, y) we consider a system

x′ = η1x;
y′ = η2y;
z′ = −µz + µg(x, y) + η1xgx(x, y) + η2ygy(x, y). (17)

If η1, η2 and µ are positive, then the point (0, 0, g(0, 0)) is a saddle and the graph of g(x, y) is
its unstable manifold. For testing purposes, we have chosen an “egg carton” function g(x, y) =
0.27 sin(2πx) sin(2πy); see Figure 14. Of course, the choice of (η1, η2, µ) also influences the compu-
tational error; e.g., a bigger µ will obviously make this an easier problem since µ is the rate at which
all trajectories are pushed towards the manifold.
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Figure 14: An “egg carton” function g(x, y) = 0.27 sin(2πx) sin(2πy).

For every mesh point (x, y, z), the approximation error E is the distance to the manifold surface.
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An upper bound is readily available as E(x, y, z) ≤ |z − g(x, y)| and can be used to compute the
bound on L2 and L∞ errors for entire mesh. In these tests we have used Σ = 1.5 and two different
values for µ (1 and 1/4). All computations were repeated for the “isotropic” case η1 = η2 = 1 (see
Figure 15) and for the “anisotropic” case η1 = η2/5 = 1 (see Figure 16).
As expected, we observe a quadratic growth of the number of mesh points N and a linear decay of
the approximation error in all of the examples.

Parameters µ = 1
∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3940 0.034316 0.103143
∆0 × 2−1 r0 × 2−1 14039 0.016671 0.056432
∆0 × 2−2 r0 × 2−2 53271 0.008582 0.028589
∆0 × 2−3 r0 × 2−3 208626 0.004168 0.015052
∆0 × 2−4 r0 × 2−4 829158 0.002086 0.007570

Parameters µ = 0.25
∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3894 0.046520 0.152055
∆0 × 2−1 r0 × 2−1 13936 0.023853 0.081145
∆0 × 2−2 r0 × 2−2 53159 0.012685 0.043746
∆0 × 2−3 r0 × 2−3 208502 0.005986 0.021406
∆0 × 2−4 r0 × 2−4 828884 0.002969 0.011011

Figure 15: Isotropic case (η1 = 1, η2 = 1). The x− y projection of the mesh (color indicates trajectory-arclength
σ) and the table of error bounds.

Parameters µ = 1
∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3629 0.038158 0.090629
∆0 × 2−1 r0 × 2−1 13429 0.018711 0.049707
∆0 × 2−2 r0 × 2−2 51466 0.009302 0.024855
∆0 × 2−3 r0 × 2−3 204446 0.004601 0.011553
∆0 × 2−4 r0 × 2−4 815410 0.002374 0.006496

Parameters µ = 0.25
∆ Rinit N L2 Error L∞ Error

∆0 = 0.05 r0 = 0.2 3621 0.040681 0.127953
∆0 × 2−1 r0 × 2−1 13425 0.020136 0.059774
∆0 × 2−2 r0 × 2−2 52066 0.010428 0.026192
∆0 × 2−3 r0 × 2−3 205321 0.005296 0.013102
∆0 × 2−4 r0 × 2−4 815905 0.002631 0.007336

Figure 16: Anisotropic case (η1 = 1, η2 = 5). The x−y projection of the mesh (color indicates trajectory-arclength
σ) and the table of error bounds.

10 Conclusions

We have introduced a fast algorithm for approximating invariant manifolds of saddle points of the
vector fields in Rn. The chief advantage of this method is its efficiency: all the examples presented in
sections 7 and 8 take under 90 seconds to compute on a Pentium III 850 MHz processor with 256Mb
RAM. Our approach is new and many related issues remain open. Possible directions for future work
include higher-order methods, error bounds and estimates (possibly using an interval arithmetic im-
plementation), adaptive and parallel methods, exploration of robustness under parameter variation
and proofs of convergence. The previously available methods described in section 2 are more devel-
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oped (with many extensions available), but, to the best of our knowledge, are substantially more
time-consuming on the problems with multiple time-scales.

The perspective of building the manifold as a collection of simplexes, each of them satisfying a
locally posed PDE, is quite general. For example, customized stopping criteria can be used to treat
manifolds converging to attracting limit sets. We are also planning to investigate the applicability
of our approach to approximating invariant manifolds of saddle-type cycles (see [19] and [26] for the
existing methods).

Our current implementation relies on k = 2 for the local mesh-generation procedure only. We
expect that a combination of our approach with robust techniques for higher-dimensional mesh
extension will yield fast methods for the general case (see Remark 6.5).

Finally, we note that some of the ideas illustrated above may be useful in the context of prior
methods, which grow the manifold as a collection of (k − 1)-dimensional topological spheres. In
particular, we believe that the method defined in [20, 21] can be substantially accelerated by using
parts of Mi+1 as they become available (as opposed to using Mi only and producing the entire Mi+1

at once). Further speed up can be attained by ordering the computation of markers (first compute
those, whose trajectories are “the least tangential” to Mi) and using a discretized system-solver
instead of the time-consuming shooting methods.

Acknowledgments: The authors would like to thank S. Vavasis, K. Lin, O. Junge, H. Osinga, B.
Krauskopf, and R. Sacker.
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