
Periodic Orbits of Hybrid Systems and

Parameter Estimation via AD

Eric Phipps1, Richard Casey2, and John Guckenheimer3

1 Sandia National Laboratories, PO Box 5800 MS-0316, Albuquerque, NM 87185
etphipp@sandia.gov

2 Projet COMORE, INRIA, 2004 route des Lucioles BP 93, 06902
Sophia-Antipolis, France rcasey@sophia.inria.fr

3 Mathematics Department, Cornell University, Ithaca, NY 14853
gucken@cam.cornell.edu

Rhythmic, periodic processes are ubiquitous in biological systems; for exam-
ple, the heart beat, walking, circadian rhythms and the menstrual cycle. Mod-
eling these processes with high fidelity as periodic orbits of dynamical systems
is challenging because

• (most) nonlinear differential equations can only be solved numerically
• accurate computation requires solving boundary value problems
• many problems and solutions are only piecewise smooth
• many problems require solving differential-algebraic equations
• sensitivity information for parameter dependence of solutions requires solv-

ing variational equations
• truncation errors in numerical integration degrade performance of opti-

mization methods for parameter estimation.

In addition, mathematical models of biological processes frequently contain
many poorly-known parameters, and the problems associated with this im-
pedes the construction of detailed, high-fidelity models. Modelers are often
faced with the difficult problem of using simulations of a nonlinear model,
with complex dynamics and many parameters, to match experimental data.
Improved computational tools for exploring parameter space and fitting mod-
els to data are clearly needed.

This paper describes techniques for computing periodic orbits in systems of
hybrid differential-algebraic equations and parameter estimation methods for
fitting these orbits to data. These techniques make extensive use of automatic
differentiation to accurately and efficiently evaluate derivatives for time inte-
gration, parameter sensitivities, root finding and optimization. The boundary
value problem representing a periodic orbit in a hybrid system of differential-
algebraic equations is discretized via multiple-shooting using a high-degree
Taylor series integration method [GM00, Phi03]. Numerical solutions to the
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shooting equations are then estimated by a Newton process yielding an ap-
proximate periodic orbit. A metric is defined for computing the distance be-
tween two given periodic orbits which is then minimized using a trust-region
minimization algorithm [DS83] to find optimal fits of the model to a reference
orbit [Cas04].

There are two different yet related goals that motivate the algorithmic
choices listed above. The first is to provide a simple yet powerful framework
for studying periodic motions in mechanical systems. Formulating mechani-
cally correct equations of motion for systems of interconnected rigid bodies,
while straightforward, is a time-consuming error prone process. Much of this
difficulty stems from computing the acceleration of each rigid body in an
inertial reference frame. The acceleration is computed most easily in a redun-
dant set of coordinates giving the spatial positions of each body: since the
acceleration is just the second derivative of these positions. Rather than pro-
viding explicit formulas for these derivatives, automatic differentiation can
be employed to compute these quantities efficiently during the course of a
simulation. The feasibility of these ideas was investigated by applying these
techniques to the problem of locating stable walking motions for a disc-foot
passive walking machine [CGMR01, Gar99, McG91].

The second goal for this work was to investigate the application of smooth
optimization methods to periodic orbit parameter estimation problems in neu-
ral oscillations. Others [BB93, FUS93, VB99] have favored non-continuous
optimization methods such as genetic algorithms, stochastic search methods,
simulated annealing and brute-force random searches because of their per-
ceived suitability to the landscape of typical objective functions in parameter
space, particularly for multi-compartmental neural models. Here we argue
that a carefully formulated optimization problem is amenable to Newton-like
methods and has a sufficiently smooth landscape in parameter space that
these methods can be an efficient and effective alternative.

The plan of this paper is as follows. In Section 1 we provide a definition
of hybrid systems that is the basis for modeling systems with discontinuities
or discrete transitions. Sections 2, 3, and 4 briefly describe the Taylor series
integration, periodic orbit tracking, and parameter estimation algorithms. For
full treatments of these algorithms, we refer the reader to [Phi03, Cas04,
CPG04]. The software implementation of these algorithms is briefly described
in Section 5 with particular emphasis on the automatic differentiation software
ADMC++ . Finally, these algorithms are applied to the bipedal walking and
Hodgkin-Huxley based neural oscillation problems discussed above in Section
6.

1 Hybrid Systems

An important feature of many practical nonlinear problems is the existence of
discontinuities or discrete transitions in the problem’s dynamics. For example,
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in the bipedal walking problem presented below, an impact occurs each time
a foot strikes the ground. Modelled as a plastic collision, these impacts create
discontinuities in the external force on the system. When solving these systems
numerically, it is important to not step over these discontinuities since this
can create convergence problems for the numerical method. To this end, we
model systems such as these as hybrid system and treat the discontinuities
and/or transitions explicitly.

Informally, a hybrid system consists of a set of regions (called “charts”)
upon each of which a dynamical system is defined, typically an ODE or DAE.
Charts are allowed to overlap, and may even belong to different spaces. Each
chart V contains an open set U (called a “patch”) whose boundary is contained
within the union of the zero sets of a set of smooth scalar-valued functions
(called “event functions”). It is assumed the closure of U is contained within
V and that each event function is positive in U . A trajectory of the hybrid
system starts with an initial point in some patch U in a chart V and evolves
according to the dynamical system on V . This continues until the boundary
of U is reached, at which point some event function g must be zero. Then a
transition function is applied mapping that point to a new point in a new path
Ū in a new chart V̄ . It is assumed these transitions are instantaneous. The
evolution then continues according to the dynamical system on V̄ . A periodic
orbit in such a system is merely a trajectory that returns to its starting point
after some nonzero time T .

For practical purposes, hybrid systems are implemented by including a
discrete state s which determines which chart the hybrid system currently be-
longs to. All functions defining the hybrid system in that chart (vector field,
event functions, etc.) take this state as an additional argument. Derivatives
with respect to this state are never computed, enabling our automatic differ-
entiation algorithms to operate only on smooth functions. For the algorithms
discussed below, we assume the ODE or DAE on each chart is analytic and the
event functions and transition functions are C1 on their domain of definition.

2 Taylor Series Integration

Moore [Moo62, MDJS64] and Barton, Willers, and Zahar [BWZ71, Ric71]
implemented general Taylor series methods for computing solutions to ODE
iniital value problems in the 1960s and 1970s, followed by work of Corliss
and Chang [CC82] and Griewank et al [GJU96]. Guckenheimer and Meloon
[GM00] extended these methods to solve boundary value problems for locat-
ing periodic orbits of ODEs. At each step of a numerical integration, a degree
d truncated Taylor polynomial solution x(t) =

∑d

k=0
xkt

k is generated using
the Taylor polynomial mode of automatic differentiation [Gri00, Ral81]. In
[GM00], Taylor series coefficients were generated using the ADOL-C pack-
age [GJU96]. Here, we generate Taylor coefficients using a new package
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ADMC++ described in section 5. Typically, we set d = 40. Step sizes are
estimated by examining the growth rates of Taylor coefficients.

Several authors have extended the Taylor series technique to computing
numerical solutions to initial-value problems in DAEs. Chang and Corliss
[CC94] describe computing Taylor series solutions to DAEs representing sim-
ple mechanical systems. Pryce [Pry98] and Nedialkov and Pryce [NP03] show
how to compute Taylor series coefficients for arbitrary DAEs using Pryce’s
structural analysis [Pry01]. Here we assume the DAE has been converted to
an ODE on a constraint manifold:

ẋ = f(x),

F (x) = 0.
(1)

This can be done either explicitly by providing formulas for f and F , semi-
automatically using Pryce’s structural analysis [Pry01], or implicitly using
automatic differentiation and knowledge of the structure of the DAE as is
done for the mechanical system example in Section 6. Given a consistent initial
condition x0 such that F (x0) = 0, an approximate Taylor polynomial solution
p(t) to the ODE initial-value problem ẋ = f(x), x(0) = x0 can be generated
in the standard way, and a step size h computed as described above. While
F (p(h)) will be quite small because of the high order of Taylor series methods,
it will not be zero, in general. Moreover, this constraint error typically grows
quadratically in the number of time steps [HW96]. This can be remedied by
simply projecting each time step back onto the constraints F = 0.

What distinguishes our work is the connection of this method to comput-
ing Taylor series solutions to reduced ODEs written in terms of local param-
eterizations of the constraint manifold M = {x : F (x) = 0}. In particular,
let f : Rn → Rn and F : Rm → Rm be analytic, F (x0) = 0, and assume
kerDF (x0) has dimension m. Define p = n−m, then by the Implicit Function
Theorem there are neighborhoods A ⊂ Rp of 0 ∈ Rp and B ⊂ M of x0 such
that the mapping ψ : A → B defined implicitly by

x = ψ(y) :

{

UT
0

(x− x0) − y = 0

F (x) = 0
(2)

is well-defined and analytic on A. Here the columns of U0 ∈ Rn×p form
an orthonormal basis for kerDxF (x0). Clearly ψ(0) = x0 and F (ψ(y)) = 0
for each y ∈ A. Such a mapping is referred to tangent space projection in
the literature [PR91, PY91, Yen93] and derives from locally projecting the
manifold onto its tangent space. It can be shown that the DAE (1) yields the
ODE

ẏ = UT
0 f(ψ(y)), y(0) = 0, y ∈ A. (3)

Note that evaluating the right-hand side of the above differential equation
requires the solution to the nonlinear system (2), so computing the Taylor co-
efficients of (3) directly would be quite difficult. However, if x(t) =

∑∞
i=0

xit
i
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is a solution to ẋ = f(x), x(0) = x0, and y(t) =
∑∞

i=0
yit

i is a solution to
(3), then we must have y(t) = UT

0
(x(t)−x0). By comparing Taylor coefficient

we then find y0 = 0 and yi = UT
0 xi for i > 0. Since the truncated Taylor

polynomial coefficients agree with the infinite expansions up to degree d, this
relation holds for the truncated solutions as well. Moreover, given a step size
h sufficiently small so that ỹ(h) ∈ A, the next point in the integration is given

by xh = ψ(yh) where yh =
∑d

i=0
yih

i. It can be shown that this is equivalent
to solving

UT
0

(x− x̃(h)) = 0

F (x) = 0.
(4)

where xh =
∑d

i=0
xih

i. Hence, Taylor series integration of the reduced ODE
(3) is equivalent to Taylor series integration of the original ODE ẋ = f(x),
x(0) = x0 where after each time step the projection xh = Π(x̃(h)) given by
the solution to (4) is applied.

Note that these techniques are easily extended to hybrid systems by look-
ing for sign changes in all of the event functions defined for a given chart. If
an event function g changes sign over one step of the integration, the time
of the event can easily be found by applying Newton’s method to the scalar
equation g(x(t)) = 0. There are simple formulas for computing derivatives
of the Taylor polynomial solution with respect to the initial conditions and
model parameters [Gri00, Phi03] that are important for the periodic orbit and
parameter estimation techniques discussed in the following sections.

3 Periodic Orbits

Periodic orbits of a hybrid system of DAEs are trajectories that return to
their starting point after some time T . We implement multiple shooting meth-
ods, using Newton’s method as a root solver, to locate periodic orbits in sys-
tems where each patch has the same dimension n. Incorporation of Newton’s
method into multiple shooting boundary value solvers requires formulation
of regular systems of equations whose roots represent the periodic orbit. The
periodic orbit is discretized by selecting a set of points, times and discrete
states

D = {(xi, ti, si), 0 ≤ i ≤ N}

on the periodic orbit that satisfy two properties:

1. All of the points of the orbit which lie on an event surface are included in
D, and

2. x0 = xN .

In addition, we usually fix t0. We denote by E the set of indices of the xi which
lie on event surfaces and by e the number of elements in E. The equations
that characterize D as a discrete closed orbit are then
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Φ(xi−1, ti − ti−1) = xi, i− 1, i 6∈ E,

Φ(h(xi−1), ti − ti−1) = xi, i− 1 ∈ E, i 6∈ E,

Φ(xi−1, ti − ti−1) = xi, g(xi) = 0, i− 1 6∈ E, i ∈ E,

Φ(h(xi−1), ti − ti−1) = xi, g(xi) = 0, i− 1, i ∈ E,

where h is the transition function applied to xi−1 and g is the event function
that vanishes at xi. In writing these equations, we have suppressed the changes
of discrete state that take place at transitions and use the same symbol Φ to
denote the flows on the patches containing the trajectory segments.

These equations are underdetermined if there are indices that do not lie
in E. The location of the corresponding points on their trajectories has one
degree of freedom that is not fixed by the equation Φ(xi−1, ti − ti−1) = xi

since, given (xi−1, ti−1) this consists of n equations for the n + 1 variables
(xi, ti). Altogether, with x0 = xN and t0 fixed, there are nN + e equations in
the (n+1)N variables (xi, ti). For a hyperbolic periodic orbit, these equations
are a regular system defining a smooth manifold P of dimension N−e [Phi03].
We accept this fact and use a version of Newton’s method that is suitable for
computing points on P , exploiting the fact that we “know” the tangent space
to P . Moving the point (xi, ti) infinitesimally along its orbit yields a tangent
vector to P that has components f(xi) and 1 in the appropriate locations ofD.
Insisting that the Newton updates be orthogonal to these vectors yields a reg-
ular system of equations to be solved for the updates. This strategy subsumes
the definition of an explicit “phase condition” in the case of a system of ODEs
that is not hybrid. The regular system of equations can be viewed as defining
a residual function R whose roots, obtained via Newton’s method, represent
periodic orbits. Jacobian derivatives of R required by Newton’s method are
computed with the methods mentioned in the previous section.

This constitutes a “bare-bones” multiple shooting solver for periodic orbits
of a hybrid system. The sequences of events along the periodic orbit to be
calculated are specified in advance, and no attempt is made to modify these
in the search for a periodic orbit. Similarly the number of mesh points is fixed
and there is no attempt to adapt the mesh to improve the condition number
of the Jacobians for Newton’s method.

4 Parameter Estimation

We now present an optimization method for estimating parameters for pe-
riodic orbit data. For simplicity, we restrict our attention to systems of au-
tonomous ODEs ẋ = f(x, λ). The extension to hybrid systems is straightfor-
ward. Here λ ∈ Rp is a set of free parameters we wish to vary in order to
find a “best fit” of a periodic orbit to empirical data. The method is based
upon an objective function that measures the distance between closed curves.
We apply trust-region based optimization methods to minimize this objective
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function over the space of free parameters λ, assuming that the parameters
are restricted to a region in which there is a family of periodic orbits that
depend smoothly upon the parameters. Here, we only seek a local minimum,
and the regularity of the family of periodic orbits makes this an unconstrained
minimization problem.

Assume a time-series δr = [(t0, x0), . . . , (tN , xN )] representing a reference
periodic orbit is provided (e.g., from empirical data) with period tN = Tr

and a discrete orbit δc = [(s0, y0), . . . , (sN , yN )] with period sN = Tc repre-
senting an orbit in the model is computed via the periodic orbit algorithms
discussed above. We assume the relative phase offset of the orbits is zero (i.e.,
f(y0)

T (x0 − y0) = 0) and that the orbit mesh points have been computed
at the same scaled times, ti/Tr = si/Tc = t̄i, i = 0, . . . , N . We define the
distance between the two discrete orbits as

d(λ) =

N−1
∑

i=1

‖xi(t̄i) − yi(t̄i, λ)‖
2

2 (t̄i − t̄i−1) +

(

log

(

Tr

Tc(λ)

))2

(5)

where the dependence on the free parameters λ has been made explicit. The
first term in this formula is a Riemann approximation to the L2 distance
between the orbits, and the second term takes into account the discrepancy
between the periods. The derivative of d(λ) can be computed directly from
the defining periodic orbit equations presented in Section 3 using automatic
differentiation (see [Cas04]) for more details). While it would be possible to
compute the second derivative ∇2d(λ) analytically as well using AD, we found
a finite-difference approximation by differencing ∇d(λ) to be sufficient to in-
vestigate the feasibility of these algorithms.

With the objective function d(λ) in hand, we applied trust-region mini-
mization algorithms to find a best fit for the free parameters λ. Trust-region
methods are a powerful class of Newton-like methods for solving unconstrained
minimization problems that use a quadratic model for the objective function,
but constrain each iterate to stay in some local neighborhood of the previ-
ous iterate. We implemented a method called the hook step (or “optimal”
step) method [Heb73, Mor77, Sor82]. We followed the algorithms presented
in [DS83] with minor adjustments to make the algorithm less likely to decrease
the trust-region radius [Cas04].

5 Software

Implementations of Taylor series integration, periodic orbit location, and pa-
rameter estimation algorithms rely heavily on automatic differentiation to
quickly and accurately compute derivatives of the underlying equations. We
required an AD package that provides forward, reverse, and Taylor polynomial
mode derivative calculations of matrix-valued functions and chose MATLAB
as the framework for implementing these algorithms. We sought run times
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roughly equivalent to hand-coding the corresponding derivative calculations
in MATLAB itself. For the bipedal walking problem discussed in the next
section, we also required at least third-degree tensor derivatives of Taylor
polynomial coefficients using both the forward and reverse mode (generat-
ing the coefficients of the governing DAE and converting it to an ODE on
a manifold requires two derivatives of the Lagrangian and constraints and
then a third derivative to estimate the derivative of the flow for the periodic
orbit location algorithm). While many AD packages satisfy some of these re-
quirements, none at the time of this work satisfied all of them. We therefore
created a custom AD package named ADMC++ to implement the required
derivative computations.

ADMC++ is an operator overloading-based AD package for differenti-
ating matrix-valued functions written in MATLAB. For efficiency reasons, all
derivative computations are carried out externally to MATLAB in compiled
object code originally written in C++ using the MATLAB MEX r© interface.
Using the MATLAB programming language, a MATLAB class called ama-

trix is provided which overloads many of the matrix-level MATLAB intrinsic
functions (e.g., +, ∗, .∗, /, \ (linear solve), ′ (transpose), (·, ·) (indexing), etc.).
By evaluating a function on amatrix objects, a computational trace [Gri00]
is generated representing the expression graph of the function. The trace data
structure is not stored in the MATLAB workspace, but rather is created in
external memory through the MEX interface.

Once a trace has been generated, derivatives are computed by looping
through the trace in either the forward or reverse directions, and C++ classes
are provided for tangent, adjoint, and Taylor polynomial derivatives. A C++
matrix class is provided that implements any required matrix operations us-
ing the same underlying routines as MATLAB (LAPACK and BLAS). Traces
of the tangent and adjoint computations can be created allowing the compu-
tation of arbitrarily high-degree tensor derivatives. The design of this library
is very similar to that of FADBAD/TADIFF [BS96], except the underlying
data type is a matrix instead of a scalar and the library provides a MATLAB
interface.

By taking the MATLAB interpreter out of the forward and reverse sweeps
of the trace, we are able to improve performance for these derivative com-
putations, especially for the Taylor polynomial calculations that cannot be
completely vectorized to eliminate MATLAB loops. This requires us to evalu-
ate and differentiate each supported MATLAB intrinsic. Given the very large
number of possibly differentiable MATLAB intrinsics, this is an arduous task
indeed, and only a limited number of operations are currently supported.

A Taylor series integration package TSINT and multiple-shooting peri-
odic orbit package TSPO have also been written that implement the algo-
rithms discussed above for a wide variety of ODEs, DAEs and hybrid sys-
tems. These packages are written entirely in MATLAB and are dependent
upon ADMC++ for all required derivative computations. Further details
on these packages can be found elsewhere [Phi03, CPG04].
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Fig. 1. Schematic diagram of the disc foot passive walker. Drawing based on a
diagram of the McGeer walker given in [Gar99].

6 Application to Bipedal Walking

Our first application of these techniques is a periodic orbit location problem
in a rigid body mechanical system. The disc-foot passive walker [CGMR01,
Gar99, McG91] sketched in Figure 1 serves as a simple model of bipedal
walking. It consists of two rigid body legs with unit mass and length connected
at the hip by frictionless pin joints and separated by a distance w. The foot
of each leg consists of a thin disc of radius R. The walker is placed on a flat
plane inclined by an angle α from horizontal. It is assumed one leg is in contact
with the ground at all times (the stance leg) while the other swings freely (the
swing leg). The foot of the stance leg is in rolling contact with the ground
at all times. The only external force on the system other than the contact
forces at the stance foot contact point is gravity. Stable walking motions in
these passive machines shed light on the ability of humans to walk in a stable
manner.

Instantaneously, the system has 4 degrees of freedom: 3 rotation angles of
the stance leg around the contact point and 1 rotation angle of the swing leg
around the hip axis. Deriving ODE equations of motion of the system in terms
of these 4 angles is straightforward, yet algebraically is quite complicated.
Our goal was to see how much automatic differentiation could simplify the
process of generating mechanically correct equations of motion, but still be
able to compute periodic motions of the system to an equivalent level of
accuracy as could be obtained from the original ODE system. We formulated
the equations of motion of the system as a set of Euler-Lagrange differential-
algebraic equations [Gol80, MT95]:

d

dt

∂L

∂ẋ
−
∂L

∂x
= −GT (x)λ −Dxh(x)

Tµ (6a)

G(x)ẋ + g̃(x) = 0 (6b)

h(x) = 0 (6c)
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where L is the Lagrangian (kinetic minus potential energy). Here x represents
the set of generalized coordinates for the system consisting of 3 coordinates
for the center of mass position of each leg and 3 Euler angles of rotation
around the center of mass for each leg (a total of 12 coordinates). The rolling
contact of the stance leg on the ramp gives 2 velocity constraints (Equation
6b) by requiring the instantaneous velocity of the stance leg contact point be
zero. The pin joint at the hip and the requirement that the bottom of the
stance foot lie on the ramp gives a total of 6 position constraints (Equation
6c). The quantities λ and µ in Equation 6a are undetermined multipliers that
must be computed along with the solution. Given algebraic formulas for the
Lagrangian L, position constraint function h, and velocity constraint function
g(x, ẋ) = G(x)ẋ+ g̃(x), automatic differentiation is used to compute the nec-
essary derivatives appearing in the DAE, drastically simplifying the amount
of programming effort required to compute them. The system is clearly hy-
brid with two states. Each chart has one event function given by the height
of the swing foot above the ramp, and one transition function. The transition
function is derived by considering angular momentum conservation around
the new contact point [Phi03].
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Fig. 2. Periodic trajectory of the disc foot walker for one complete step of the system
(two strides of the walker). (a) Stance leg angle θst and swing leg angle measured
from the ramp normal θst + θsw − π. (b) Swing foot height e. (c) Steer φ and lean
ψ. (d) L∞ norm of constraint error for DAE solution.
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We compared the DAE system with a MATLAB ODE model written by
Garcia [Gar98]. The DAE system consisted of approximately 60 lines of MAT-
LAB code that whereas the ODE model had approximately 240 lines and was
much harder to derive and verify. To compare the accuracy of these meth-
ods, the periodic orbit algorithms using Taylor series integration discussed
in section 3 were applied using parameters and initial conditions found in
[CGMR01]. At these parameter values, the system has a stable periodic orbit
(Figure 2). For both systems, 3 mesh points were used in the periodic orbit
solver (1 for each transition plus 1 mesh point not lying on an event surface).
An error tolerance of 1.0e-16 was used in the Taylor series integration, along
with an event solver tolerance of 1.0e-15. For the DAE calculation, the pro-
jection solver tolerance was set to 5.0e-16. For the DAE system, the initial
residual of the periodic orbit equations was 6.9e-5 and 2 Newton iterations
were required to reduce the residual to 1.3e-15. For the ODE system, the initial
residual was 3.5e-5 and also took 2 Newton iterations to reduce the residual
to 1.8e-15. The DAE calculation took approximately 12 times longer than
the ODE calculations. The L2 distance between these orbits was calculated
as discussed in Section 4 and was found to be approximately 3.9e-14. The
L2 distance between the initial orbit for the ODE periodic orbit calculation
and the final orbit was calculated as well, and was found to be approximately
3.2e-5. The eigenvalues of the return map for both the ODE and DAE pe-
riodic orbits were also calculated. The largest difference between eigenvalues
was found to be approximately 7.6e-14 with the magnitude of the largest
eigenvalue equal to 0.70418256213669 (ODE). This agrees with the eigenvalue
of (0.8391560)2 given in [CGMR01] to 2.4e-7, very near the expected error
provided in [CGMR01]. These results show the DAE Taylor series periodic
orbit method has nearly the same accuracy as the ODE method. They pro-
vide strong independent verification of the results in [CGMR01] regarding the
existence of a stable walking motion.

We next apply the techniques described in Section 4 to the Hodgkin-
Huxley model [HH52]. The Hodgkin-Huxley (H-H) equations model electri-
cal excitability of squid axon and are the archetype of conductance-based
models of neural oscillations. They constitute a four-dimensional vector field
with several parameters that produces periodic oscillations in some param-
eter regimes. We used the H-H equations as a test-case for the parameter
estimation algorithm described earlier, using (ḡNa, ḡK , Iext) as active param-
eters. Their “standard values” are (120, 36,−20). We began by fitting the
Hodgkin-Huxley model to an ideal reference orbit generated using the H-H
equations at perturbed parameters values (140, 36,−20). This gave a reference
orbit with period Tr = 11.2082849 ms. We took an approximation δr to this
reference orbit with N = 30 meshpoints, and used the trust-region algorithm
to look for an optimal fit of the Hodgkin-Huxley model to δr, starting from
the standard H-H parameter values. These parameter values give a starting
δc with Tc = 1.4574003e+01. The iteration converged in 8 steps, computing
an optimal value of d(λ∗) = 1.2483041e-12 and ‖relgrad(λ∗)‖∞ = 7.9200748e-
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10 , with parameters λ∗ = (1.3999986e+02, 3.5999964e+01, -1.9999989e+01).
and period T∗ = 11.2082847966. These values are very close to the reference
values.

To examine the effects of noise in the reference orbit on the convergence of
the parameter estimation algorithm, we fixed the starting data at the standard
Hodgkin-Huxley parameter values and added Gaussian noise to the reference
data. For each run, we replaced the voltage time-series {V r

i }
N
i=1

for the refer-
ence orbit with {N(V r

i , σ)}N
i=1

, where N(µ, σ) is the normal distribution with
mean µ and standard deviation σ. As the variance of the noise increased,
the algorithm still converges to a minimum, but the minimum is increasingly
farther away from the noise-free minimum, both in terms of optimal param-
eter values and the minimum value of d(λ) achieved. The results of these
computations are summarized in Table 1 and Figure 3.

Table 1. Results for noisy reference data with increasing variance. The distance
d(λ∗), the norm of the relative gradient and optimal values found for the active
parameters are shown at each value of the variance σ2.

σ2 d(λ∗) ‖relgrad(λ∗)‖∞ ḡNa∗ ḡK∗ Iext∗

0 1.2483e-12 7.9201e-10 1.4000e+02 3.6000e+01 -2.0000e+
0.1 7.6301e-03 3.3220e-09 1.3767e+02 3.5362e+01 -1.9793e+01
0.5 3.8202e-02 6.8566e-10 1.3505e+02 3.4650e+01 -1.9563e+01
2.0 1.5318e-01 1.4228e-05 1.3098e+02 3.3551e+01 -1.9213e+01
4.0 3.0699e-01 1.5196e-06 1.2814e+02 3.2792e+01 -1.8977e+01
16.0 1.2361 6.6402e-08 1.2110e+02 3.0973e+01 -1.8448e+01
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Fig. 3. Effects of noisy δr on convergence to ∇d(λ∗) ≈ 0. The trust-region algorithm
is seen to converge to local minima even for large variance noise in δr. See the output
in Table 1 for more details.

Note that even for large variance σ, the convergence of the trust-region
algorithm is indicated by the small values of relgrad(λ∗). For example, with
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σ = 4 we found a local minimum with d(λ∗) = 1.2361, ‖relgrad(λ∗)‖∞ =
6.6402e-08 and optimal parameter values λ∗ = (1.2110e+02, 3.0973e+01, -
1.8448e+01). These results indicate that the optimization algorithm is robust
with respect to noise in the reference data: a local minimum of the objec-
tive function is still found with a a small value for ‖relgrad‖∞, indicating
good convergence. Moreover, the parameters for the minima with noisy data
approach the noise-free reference data as σ → 0.

7 Conclusions

Taylor series integration and automatic differentiation provide a powerful set
of tools for computing periodic orbits in hybrid systems of ODEs and DAEs,
and for parameter estimation to fit these orbits to data. Taylor series integra-
tion allows numerical trajectories to be computed to high accuracy with large
step sizes and provides dense output for accurate event location. Through the
use of tangent space parameterization, the standard Taylor series algorithm
for ODEs has a simple extension to DAEs formulated as an ODE on a con-
straint manifold. Furthermore, automatic differentiation can be employed to
simplify the conversion of the DAE to an ODE on a manifold, and as shown
in the bipedal walking example, simplify the derivation of the governing DAE
itself. Taylor series integration coupled with automatic differentiation pro-
vides a simple mechanism for computing the derivative of the numerical flow
of the ODE or DAE with respect to initial conditions and model parameters.
These properties, coupled with a simple multiple-shooting framework allow
the accurate computation of periodic orbits using very coarse discretizations
in an efficient manner. Computing these orbits accurately is critical for further
analysis such as parameter estimation, since loss in accuracy directly leads to
a loss in accuracy degrades the performance of Gauss-Newton optimization
algorithms. Maintaining accuracy in the periodic orbit computation is neces-
sary to ensure smoothness of the objective function and the amenability of
Newton-based optimization methods for these parameter estimation problems.

A new automatic differentiation library ADMC++ was presented facil-
itating the derivative and Taylor polynomial calculations required to imple-
ment these algorithms. The library provides the forward, reverse, and Taylor
polynomial automatic differentiation modes for functions written in MATLAB
but performs all derivative calculations in compiled object code for efficiency.
All three modes can be combined to produce arbitrarily high-degree tensor
derivatives of Taylor polynomial coefficients.
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