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Abstract Establishing, maintaining, and modifying the
phase relationships between extensor and flexor muscle
groups is essential for central pattern generators in the
spinal cord to coordinate the hindlimbs well enough
to produce the basic walking rhythm. This paper in-
vestigates a simplified computational model for the
spinal hindlimb central pattern generator (CPG) that
is abstracted from experimental data from the rodent
spinal cord. This model produces locomotor-like activ-
ity with appropriate phase relationships in which right
and left muscle groups alternate while extensor and
flexor muscle groups alternate. Convergence to this
locomotor pattern is slow, however, and the range of
parameter values for which the model produces appro-
priate output is relatively narrow. We examine these
aspects of the model’s coordination of left-right activ-
ity through investigation of successively more compli-
cated subnetworks, focusing on the role of the synaptic
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architecture in shaping motoneuron phasing. We find
unexpected sensitivity in the phase response properties
of individual neurons in response to stimulation and a
need for high levels of both inhibition and excitation
to achieve the walking rhythm. In the absence of cross-
cord excitation, equal levels of ipsilateral and contralat-
eral inhibition result in a strong preference for hopping
over walking. Inhibition alone can produce the walk-
ing rhythm, but contralateral inhibition must be much
stronger than ipsilateral inhibition. Cross-cord excita-
tory connections significantly enhance convergence to
the walking rhythm, which is achieved most rapidly
with strong crossed excitation and greater contralateral
than ipsilateral inhibition. We discuss the implications
of these results for CPG architectures based on unit
burst generators.

Keywords Central pattern generator · Computational
model · Locomotion · Rodent spinal cord · Hindlimb ·
Bursting

1 Introduction

The neuromuscular system of a walking mammal re-
peatedly executes a complex sequence of correctly
phased contractions and relaxations of more than a
dozen muscles in each hind leg, comprising groups of
flexors and extensors pulling and pushing at the hips,
knees, ankles, feet, and digits (Kiehn and Kjaerulff
1996). The rodent spinal hindlimb locomotor central
pattern generator (RSHL CPG), which is primarily
active in the lower thoracic and lumbar spinal seg-
ments, coordinates the correct phasing of the various
leg muscles’ activity (flexion-extension) for effective
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locomotion. Roughly speaking, during normal loco-
motion, the flexor muscles of one side of the animal
are active out of phase with the flexor muscles of the
other side, and there is similar cross-cord alternation of
extensor muscle activity. At the same time, the flexor
muscles of one side of the animal are active out of
phase with the ipsilateral extensor muscles. We call this
simultaneous ipsilateral flexor-extensor antisynchrony
and contralateral flexor-flexor/extensor-extensor anti-
synchrony the fundamental locomotor rhythm of the
RSHL CPG.1 This behavior is manifest in vivo and in
experiments in vitro in which the spinal cord is removed
intact from the rodent and the CPG is activated with
neuromodulators. Walking-like phasing of motoneuron
activity, monitored from their action potentials in the
ventral roots, is known as f ictive locomotion in these
spinal cord experiments (Butt et al. 2002; Kiehn and
Butt 2003). Motoneuron activity measured in the ven-
tral roots from the second lumbar spinal segment (the
L2 ventral roots) monitors primarily activity of flexor
motoneurons, while activity measured in the ventral
roots from the fifth lumbar spinal segment (the L5
ventral roots) monitors primarily activity of extensor
motoneurons. In isolated spinal cord experiments on
rodents, flexor and extensor activation is roughly bal-
anced, with each motoneuron group exhibiting a duty
cycle of approximately fifty percent (Butt et al. 2002).
Note that sensory feedback is not present in the fictive
locomotion studies and that these experiments are usu-
ally done with spinal cords of newborn animals that
have not begun to walk, so the resetting properties
of the fundamental locomotor rhythm in these exper-
iments may differ from the in vivo behavior of older
animals.

Complementary to these experiments are abstract
models of animal gait consisting of coupled oscilla-
tors (Golubitsky et al. 1998, 1999). Among the most
analytically tractable are “phase oscillator” models that
reduce each oscillator to a limit cycle and assume that
the coupling between oscillators depends only upon
their phase differences. The mathematical theory of
coupled cell networks investigates which patterns of
synchrony and other phase relationships between cells
can arise robustly, purely as a consequence of the net-
work architecture (Stewart et al. 2003; Golubitsky and
Stewart 2006), without assuming that the cells’ intrinsic
dynamics can be described solely in terms of phase.
In the context of locomotion, coupled cell network

1Equivalently described as simultaneous ipsilateral flexor-
extensor antisynchrony and contralateral flexor-extensor syn-
chrony.

theory has been used to demonstrate minimal net-
work structures for CPGs that are able to produce all
primary and secondary bipedal and quadrupedal gaits
(Pinto and Golubitsky 2006; Buono and Golubitsky
2001; Buono 2001). The presence of symmetries in the
coupling architecture is essential to the theory, but its
results concerning the existence or absence of certain
kinds of phase relationships are largely independent of
the details of the dynamics intrinsic to each compo-
nent oscillator in isolation. Though quite powerful for
proving an abstract CPG model’s capacity to produce
particular gaits stably, the theory provides less guid-
ance regarding other questions relevant to modeling
locomotor activity, given a concrete choice of oscillator,
e.g. for how broad a range of parameters do particular
phase relationships persist? How strong (or weak) must
synaptic coupling be in order to produce a desired gait?
If multiple stable phase relationships are possible for a
given set of parameters, how large is each gait’s basin
of attraction? What kinds of transitions between gaits
occur as synaptic coupling strengths change?

This paper presents a modeling study designed to
bridge the gap between fictive locomotion experi-
ments and abstract models by investigation of a more
experimentally-based model for the RSHL CPG. Our
model incorporates biophysically realistic model oscil-
latory neurons synaptically coupled with an architec-
ture compatible with experimental data and exhibit-
ing a number of symmetries. According to theory, the
symmetries present in the coupling network imply that
the CPG model should be able to reproduce basic
locomotor gaits—but which ones actually appear, how
robustly, and for what synaptic strengths?

One important aspect of real CPG activity about
which mathematical theory is relatively silent, and
which in part motivates this study, is transient behavior.
Biological locomotor CPGs have the ability to respond
quickly to fast changes in stimulation without extended
transients, i.e. they can restore their stable rhythm
rapidly following perturbation. An animal must be able
to compensate for sudden changes in posture or terrain
within a few periods of the locomotor cycle (Hultborn
1998). Such perturbations occur continually during free
movement, an environmental constraint that distin-
guishes the chief functional considerations for loco-
motor CPGs from those of CPGs governing other
rhythmic behaviors, such as digestion, circulation, or,
to a lesser extent, respiration. Rapid resumption of
the fundamental locomotor rhythm after perturbation
(stability) is essential for successful walking move-
ment, as is near-instantaneous adaptation of the rhythm
and phasing of neuromuscular output in response
to higher order commands and sensory input. The
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models we investigate do not have this property, sug-
gesting the need for further study of the resetting prop-
erties of fictive locomotion in both experiments and
models.

1.1 Rhythmic patterns

Dynamical systems principles identify gaits with sym-
metry properties of networks of coupled oscillators.
Patterned activity in the isolated rodent spinal cord (in
preparations where the whole cord is removed from the
animal and pharmacologically stimulated) takes four
basic forms: total synchrony, rhythmic left-right alter-
nation (ipsilateral synchrony), hopping, and fictive lo-
comotion (Nishimaru and Kudo 2000; Kullander 2005;
Dottori et al. 1998). In synchronous activity, motoneu-
rons in the L2 (predominantly flexor-related) and L5
(predominantly extensor-related) segments show regu-
lar, periodic bursts of activity, such that motoneurons in
L2 fire in phase with motoneurons in L5, and motoneu-
rons on one side of the cord fire in phase with motoneu-
rons from the other side. Rhythmic left-right alterna-
tion is marked by ipsilateral intersegmental synchrony
between L2 and L5, and intrasegmental alternation of
activity between motoneurons on either side of the
midline. Hopping is characterized by intrasegmental
cross-cord (left-right) synchrony (for example, left and
right flexor motoneurons fire synchronously), but alter-
nation of periodic bursts in the ipsilateral L2 and L5
segments. During fictive locomotion, there is both ipsi-
lateral intersegmental and contralateral intrasegmental
alternation, meaning that L2 motoneurons on one side
of the cord are active out of phase with ipsilateral L5
motoneurons and contralateral L2 motoneurons, but
are active in phase with contralateral L5 motoneurons.
Fictive locomotion corresponds to a normal walking
pattern. Spontaneous spinal activity in intact rodents
progresses from synchronous to rhythmic left-right al-
ternation to fictive locomotion as the animals proceed
normally through the stages of pre- and post-natal de-
velopment (Kullander 2005).

A large number of studies have established that
a variety of neurotransmitters and other chemical
agents, alone or in combination, can elicit locomotor-
like patterns in the isolated rodent spinal cord:
Serotonin (5-HT), NMDA, NMA, extracellular K+,
dopamine (DA), acetylcholine (ACh), noradrenaline
(NA) (Sqalli-Houssaini et al. 1993; Cowley and Schmidt
1997; Bracci et al. 1998; Kiehn and Kjaerulff 1996;
Hinckley et al. 2005; Zhong et al. 2006b; Wilson et al.
2005; Hochman et al. 1994; Kiehn et al. 1999; Beato
and Nistri 1999). Additional experiments have demon-
strated that individual interneurons of the L2 and L5

segments prefer to fire at relatively fixed phases in
the locomotor cycle (Tresch and Kiehn 1999; Tresch
and Kiehn 2000; Raastad and Kiehn 2000; Beierholm
et al. 2001; Zhong et al. 2006a, b). In neonatal animals,
gap junctions synchronize local motoneuron pools,
while chemical synapses synchronize or antagonize mo-
toneurons in spatially distinct pools (Tresch and Kiehn
2002).

1.2 Neuron types

In our model of the RSHL CPG, we simplify the
neuronal organization of the spinal locomotor net-
work to three functional classes: Motoneurons (MNs),
commissural interneurons (CINs), and groups of in-
terneurons that participate in locomotor rhythm gen-
eration, collectively called rhythmogenic interneurons
(RGNs). Motoneurons innervate the muscles of the
hindlimbs directly, and their axons form the ventral
roots from which recordings of fictive locomotor activ-
ity are made. Commissural interneurons have axonal
processes which cross the midline of the spinal cord;
they are responsible for all left-right communication,
and presumably play a critical role in coordinating
the proper phasing of flexor-extensor alternation be-
tween the two sides. Rhythmogenic interneurons are
probably a heterogeneous group of interneurons which
provide the rhythmic drive for the motor pattern. They
have not yet been definitively identified, but since the
fictive locomotor rhythm is generated from the lum-
bar region, then bursting activity should emanate from
either a distinct subpopulation of neurons that burst
endogenously, or from an as yet unspecified network of
tonically active neurons which interact synaptically to
generate the oscillatory drive for bursting. Ongoing and
future anatomical, electrophysiological, and molecular
genetic studies should further illuminate the subpop-
ulation organization of the neuron types present in
the CPG (Kullander 2005; Kiehn and Kullander 2004;
Wilson et al. 2007).

Motoneurons are distributed throughout the spinal
cord, with significant motoneuron pools driving flexor
muscles located in L1 and L2, and motoneuron clusters
driving extensor muscles in L5 and L6 (Kiehn et al.
2000). All cross-midline communication between hemi-
cords is mediated by CINs (Puskár and Antal 1997),
which may synapse onto MNs or other CINs, as well as
other interneurons (Birinyi et al. 2003), and which are
distinguished by the direction of their axonal projec-
tions (rostral, caudal, rostral and caudal, intrasegmen-
tal) (Eide et al. 1999; Stokke et al. 2002). CINs from
each of the projective classes may be either excitatory
or inhibitory. Though NMDA application can evoke
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stable, locomotor-like rhythmic bursting in pharmaco-
logically isolated motoneurons (Kjaerulff and Kiehn
2001), and 5-HT enhances CIN excitability (Zhong
et al. 2006a, b), neither type of neuron appears to burst
intrinsically in vivo .

As stated above, the composition of the rhythm
generating component of the locomotor CPG is not
known at present. A small percentage of ventromedi-
ally located, but otherwise unidentified, interneurons
have been found to exhibit pacemaker-like burst oscil-
lations when treated with neuromodulators (Hochman
et al. 1994; Kiehn and Kjaerulff 1996), and some in-
terneurons that express the HB9 homeodomain tran-
scription factor, a genetic marker, burst rhythmically
in the presence of 5-HT, NMDA, and DA (Wilson
et al. 2005; Hinckley et al. 2005). The exact functions of
the various oscillatory subpopulations remain unclear
(Crone et al. 2008), but their bursts are consistent
with fictive locomotion, and there is some evidence
that they might form excitatory glutamatergic synap-
tic connections with motoneurons that are rhythmi-
cally active during fictive locomotion (Brownstone and
Wilson 2008). The locomotor rhythm may be funda-
mentally a network oscillation, but it is possible that
endogenously bursting interneurons also play a role in
rhythmogenesis.

Real interneurons (CINs and RGNs) may be either
excitatory or inhibitory, and they may act monosy-
naptically or via polysynaptic pathways, but in our
CPG models we simplify connections as having func-
tionally excitatory or functionally inhibitory effects.
For example, two paths for cross-cord inhibition have
been demonstrated experimentally: direct, monosynap-
tic CIN to contralateral MN inhibition, and indirect,
polysynaptic CIN to contralateral MN inhibition via
excitation of an intermediate interneuron (Butt and
Kiehn 2003; Quinlan and Kiehn 2007). For model-
ing purposes, we treat both pathways as functionally
equivalent (monosynaptic) CIN to contralateral MN
inhibition.

The CPG models we consider here do not include
feedback to the RGN neurons from the MNs, and CINs
do not participate in rhythmogenesis. Though intrinsic
currents may boost oscillations or contribute to postin-
hibitory rebound, phase relationships in the networks’
output are largely independent of which membrane
currents are present in the model MNs and CINs. In
this paper, we do not focus on the intrinsic properties
of the MN and CIN neurons, which may act primarily
to amplify the effects of synaptic currents (Lee and
Heckman 2000) stemming from RGN inputs. Instead
we explore the functional implications of the strength
and pattern of synaptic coupling.

1.3 Network organization and rhythmogenesis

Excitatory and inhibitory chemical synaptic connec-
tions are known to exist between various populations
of CINs and MNs (Butt et al. 2002; Butt and Kiehn
2003; Birinyi et al. 2003), and at least excitatory con-
nections are presumed to exist between RGNs and
other CPG neurons, since rhythmogenesis continues in
the presence of blockers of inhibitory synaptic trans-
mission. The known inhibitory synaptic pathways in-
volve GABAA and glycine (Butt and Kiehn 2003),
while the excitatory synaptic pathways are glutamater-
gic (Kjaerulff and Kiehn 1997). In the neonatal spinal
cord, localized groups of MNs show gap junction cou-
pling (Kiehn et al. 2000; Tresch and Kiehn 2002), and
there may be gap junctions between CINs and potential
RGNs as well (Zhong et al. 2006a, b; Wilson et al. 2005).

There are cross-commissural synaptic connections
throughout the lumbar and thoracic regions, involv-
ing both excitation and inhibition; there may be con-
siderable redundancy in the organization of recipro-
cal inhibitory and excitatory connections in the CPG
(Cowley and Schmidt 1997). Functionally speaking,
intrasegmental communication between hemicords is
largely inhibitory, implying that left-right alternation is
mediated primarily through a combination of monosy-
naptic and polysynaptic inhibition (Kremer and Lev-
Tov 1997; Butt and Kiehn 2003; Quinlan and Kiehn
2007). Intrasegmental and descending (from L2 to L5)
intersegmental commissural synaptic pathways have
been extensively mapped (Kjaerulff and Kiehn 1997;
Bracci et al. 1997; Butt and Kiehn 2003), culminating
in a broadly accepted and highly useful diagrammatic
model of the CPG’s organization (Fig. 1) (Butt and
Kiehn 2003; Endo and Kiehn 2008; Kiehn 2006; Kiehn
et al. 2008; Nishimaru et al. 2006; Quinlan and Kiehn
2007). The cross-cord connections in this model in-
clude contralateral extensor-extensor and flexor-flexor
inhibition, as well as contralateral flexor-extensor and
extensor-flexor excitation (Butt and Kiehn 2003). The
output of the network’s complicated mix of monosy-
naptic and polysynaptic inhibition and excitation can-
not be captured by the diagrammatic model alone,
however. Our understanding of the CPG’s dynamic be-
havior may be significantly augmented by studying dy-
namic computational models, such as those presented
in this paper.

The locomotor rhythm in the CPG appears to be
generated predominantly by rostral portions of the
lumbar spinal cord, propagating caudally, but the exact
nature of the rhythmogenesis has not been conclusively
determined through experiment. Multiple studies have
found that interneurons in the L2 segment are active
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during both flexor and extensor phases of the fictive
locomotor rhythm (Cazalets et al. 1995, 1996; Butt and
Kiehn 2003). The L4–L5 segments are also capable
of independent rhythmogenic activity: experiments in
which the spinal cord is divided transversely at L3
(via complete sectioning or Vaseline barriers in split-
bath experiments) have demonstrated excitability to
rhythmic bursting in both rostral and caudal segments
(Beato and Nistri 1999; Cazalets and Bertrand 2000;
Christie and Whelan 2005). Neuromodulator-induced
oscillatory activity may differ between the rostral and
caudal areas, depending on the neuromodulators used
(Christie and Whelan 2005), and there appears to be
a gradient of intrinsic rhythmic ability that is maxi-
mal in lower thoracic and upper lumbar segments and
that weakens along the rostral-caudal axis (Tresch and
Kiehn 1999). There is general consensus that loco-
motor rhythmogenesis emerges from (endogenous or
network) bursting activity, and intra- and intersegmen-
tal synaptic connections coordinate and set the phas-
ing of bursting activity to produce fictive locomotor
patterns.

This scenario is compatible with coupled oscillator
models, the approach taken in this paper. We assume
that each network of neurons driving a group of ex-
tensor or flexor muscles is capable of generating an
oscillatory output without input from the remainder
of the network. This contrasts with traditional “half-
center” models in which reciprocal inhibition of toni-
cally spiking neurons results in bursting with an alter-
nating rhythm. Endogenous oscillations of the right and
left halves of the spinal cord have been observed to per-
sist when the spinal cord is cut longitudinally (Kjaerulff
and Kiehn 1996), supporting this hypothesis. There is
general consensus among experimentalists that excita-
tory interneurons are the primary components of the
rhythmogenic kernel, and that flexor-extensor alterna-
tion is coordinated in large part by a combination of
monosynaptic and polysynaptic inhibition. The func-
tional organization of our model reflects this arrange-
ment, but represents groups of neurons as single cells
and collapses polysynaptic pathways into functionally
equivalent monosynaptic connections.

Our proposed architecture also accords with sug-
gestions for modular organization of locomotor CPGs
using “unit burst generators” (UBGs) as basic building
blocks (Grillner 1981; Kiehn and Kjaerulff 1998). In this
framework, UBGs capable of independent oscillation
each control the activity of different synergistic muscle
groups. Synaptic network connections coordinate the
relative phases of the oscillators, but they are not nec-
essary for the establishment of oscillations. The models
studied here instantiate coupled oscillator models for

the RSHL CPG with bursting oscillators and synaptic
coupling based on the information described above.

2 Computational models

The thrust of our current modeling study is to examine
possible synaptic mechanisms that contribute to orga-
nizing the rhythmic alternation of bursts in the RSHL
CPG. For simplicity, we use endogenously bursting
cells to represent the oscillatory kernels in the CPG,
and these RGNs are the only intrinsically oscillatory
elements in our models. As previously stated, it is un-
known whether rhythmogenesis in the biological CPG
is produced by endogenous bursters, network-based
oscillation, or both. We may thus view the RGNs as
modeling burster involvement in rhythmogenesis or as
a simplified way of modeling oscillatory subnetworks
that normally produce rhythmic bursting. In both cases,
a single cell model is used to represent the underlying
oscillatory network. Under either interpretation of the
RGNs in the model, we are able to focus on the effects
of different configurations of synaptic coupling on the
phasing of oscillatory elements in the CPG.

We use conductance-based, Hodgkin-Huxley-style
model neurons with well-studied properties as compo-
nents of our model network. In the absence of detailed
information about the active conductances in different
classes of spinal neurons, model cells with only a small
number of active conductances are used. Our RGN
model incorporates the minimum number of currents
required for bursting (three dynamic variables evolving
on different time-scales), and our MN and CIN model
have the minimal intrinsic currents needed for tonic
spiking capability. Along with speeding computations,
these reductions remove any amplification of or inter-
ference with synaptic effects by the neurons’ intrin-
sic currents, which simplifies our study of the effect
of synaptic coupling in setting phase relationships be-
tween the oscillatory components. As more experimen-
tal information emerges regarding the various neuronal
classes in the CPG, we can revise our neuron models to
investigate the influence of specific intrinsic currents on
the network’s behavior.

Recognizing that they are necessarily incomplete
representations of the real CPG, we have tried to strike
a balance between biological realism and analyzability
in building our models. Neither the models’ synaptic
connectivity nor single neuron representations incor-
porate all known biological features, but our models
eschew the strong simplifying assumptions underlying
the phase oscillator modeling approaches that are often
used to study the role of CPGs’ synaptic architectures
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in gait patterning. Instead, we try to maintain enough
biophysical and anatomical accuracy in the models’
representations of the biological system to be able to
relate (qualitatively or semi-quantitatively) our com-
putational investigations to experiments. In a manner
analogous to laboratory experiments where some (sub-
sets of) cells are isolated from the rest of a preparation
in order to isolate one or a few features, we study small
networks to focus on the roles of particular subsets of
synapses in patterning CPG output.

2.1 Full model

The full model comprises twelve neurons, four each
of MNs, RGNs, and CINs. One neuron of each type
represents the activity of corresponding networks of
similar neurons in the (left or right) L2 (flexor) and
L5 (extensor) segments of the spinal cord. The neurons
are connected by sixty synapses (32 inhibitory, 28 ex-
citatory); the network architecture of the model is best
described by the wiring diagram in Fig. 1.

Neuronal models RGNs, MNs, and CINs are rep-
resented as single compartment, Hodgkin-Huxley-
style model neurons, with equations as given in the
Appendix and parameter values as listed in Table 1.
The equations for all three neuron types were adapted
from model I of Butera et al. (1999a), originally devel-
oped for respiratory neurons from the pre-Bötzinger
complex of neonatal rats; we refer to this model with its
original parameter values simply as the pre-Bötzinger
model. Both the pre-Bötzinger model and the RGN
model include a fast activating, slowly inactivating per-
sistent sodium current, INaP, that helps set the baseline
excitability of the cells and is the slow current responsi-
ble for bursting. The bursts are square-wave, or Type
I, with spike frequency adaptation. Current injection
increases the burst frequency while decreasing burst
duration (Butera et al. 1999a); burst frequency and
duty cycle can be controlled independently by adjusting
the maximal persistent sodium conductance and the
leak reversal potential (Tien 2007). The RGN model’s
endogenous burst characteristics (period, duty cycle,
etc.) are listed in Table 2. We constrain our models

Fig. 1 Diagram of the full CPG model
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Table 1 CPG neuron species
parameter values

Parameter CIN/MN RGN

C 21 10
Iapp 2 0
gNa 45 28
VNa 50 50
θm −37 −34
km −5 −5
gNaP – 3.3
VNaP – 50
θmNaP – −40
kmNaP – −6.3
θh – −47.89
kh – 9
τh – 7,000
gK 11.2 11.2
VK −85 −85
θn −29 −29
kn −4 −3.6
τn 10 10
gL 3.4 2.8
VL −50 −60.8

to parameter regimes with duty cycles of at least fifty
percent, which is the appropriate range for walking
gaits.

The persistent sodium current has been shown
to partially underlie spike initiation in mouse spinal
motoneurons (Kuo et al. 2006), it contributes to
pacemaker-like voltage oscillations in Hb9 interneu-
rons (Ziskand-Conhaim et al. 2008; Tazerart et al.
2008), and blockade of INaP may disrupt fictive locomo-
tion (Tazerart et al. 2007). The prevailing interpretation
of the currently available experimental data is that INaP

plays a role in rhythmogenesis in the mouse spinal
CPG, but there is not complete unanimity on this point.
Given our ansatz that rhythm generation in the CPG
may be modeled using endogenously bursting neurons,
however, there are advantages to using INaP as the slow
current underlying burst oscillations in the RGNs. It
is consistent with several experimental results, and it
accords with other models of the mammalian locomo-
tor CPG (Rybak et al. 2006b). Furthermore, it enables
us to use an established oscillator model with well-
characterized burst dynamics (Butera et al. 1999a; Best
et al. 2005; Izhikevich 2000) for our models of the net-

Table 2 RGN reference
burst characteristics

Characteristic Value

Period 2,309 ms
Duty cycle 0.5289
Spike number 28
Mean ISI 44.59 ms
Min ISI 28.34 ms
Max ISI 100.93 ms

work, allowing the effects of the synaptic connectivity
be more interpretable.

MNs and CINs share a set of current balance equa-
tions that omit the INaP terms from the pre-Bötzinger
model formulation. They are capable of tonic spiking,
but not bursting, and are set to a parameter regime
chosen so as to leave them passive but capable of
being excited to spike repeatedly in response to small
depolarizations. They act as conduits for the burst
depolarizations from the RGNs, with their responses
being modified by an array of synaptic inputs. We are
aware that there are many more conductances that
have been characterized in these neurons, but we opt
for simplified neuronal models in order to focus more
fully on the roles of the synaptic interactions in pattern
formation.

Synaptic model A synapse model with continuously
voltage-dependent neurotransmitter release (Destexhe
et al. 1994, 1998) is used for both excitatory and
inhibitory synapses. Model parameters are given in
Table 3. In this synapse model’s original formulation,
parameters were chosen to match fast AMPA receptor
kinetics; the synaptic activity profile is similar to the
parameter set chosen for the CPG synapses. The model
equations have the form:

Isyn = gsyns(V − Vsyn) (1)

ṡ = αsynT∞(Vpre)(1 − s) − βsyns (2)

T∞(Vpre) = (1 + exp(−(Vpre − Vp)/Kp))
−1 (3)

Here s represents the level of neurotransmitter re-
leased into the synaptic cleft and thus actively affecting
the post-synaptic cell. The neurotransmitter release
rate is determined by Eq. (2), and depends on the
presynaptic membrane voltage, Vpre, and the amount
of neurotransmitter already released. The parameter
Kp controls the sharpness of the change in the neu-
rotransmitter release rate in response to changes in
presynaptic voltage. Smaller Kp values produce rapid
release, approximating spike-evoked synaptic transmis-
sion, while larger Kp values produce gradual release,
resembling graded synaptic transmission. For our cho-
sen Kp value, our models’ synaptic activity is effectively
spike-evoked.

The value of the synaptic reversal potential, Vsyn,
determines whether the synapse is excitatory or in-
hibitory; the parameter values match estimates of
synaptic reversal potentials in the neonatal rat (Raastad
et al. 1998). In all other respects (activation time
constants, etc.) inhibitory and excitatory synapses are
identical. The model synapses are non-adapting, as nei-
ther synaptic facilitation nor depression have yet been
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Table 3 Synaptic parameters Parameter Description Units Value

gsyn Maximum synaptic conductance mS/cm2 –
Vsyn Synaptic reversal potential mV −53 (inhibitory),

0 (excitatory)
αsyn Open-closed transition rate s−1 2.162
βsyn Closed-open transition rate s−1 0.2162
Kp Transmitter voltage-response steepness mV 4
Vp Synaptic half-activation voltage mV −20

shown to play a strong role in information transfer in
the RSHL CPG (Raastad et al. 1997).

2.2 Derived models

The full model is a dynamical system with 88 phase
space variables and over 700 parameters. Even con-
sidering the symmetries of the model, the wiring dia-
gram is complicated. Tracing the downstream phasing
effects of some connections is not easy, and the size of
the model makes numerical simulation computationally
demanding. Brute-force exploration of the space of

synaptic weightings for the full model is neither feasible
nor likely to be particularly enlightening. To facilitate
analysis and speed computations, we concentrate on
two sets of subnetworks that have obvious functional
importance for the operation of the full model. By
studying the phasing characteristics of the derived mod-
els, we gain insight into the potential output repertoire
and properties of the full model.

Two-cell models The first set of subnetworks consists
of two-cell models, both shown in Fig. 2(a): (1) 2-I, a
pair of reciprocally inhibitory RGNs, and (2) 2-E, a

Fig. 2 Diagrams of reduced
CPG models. Lines with
f illed arrowheads as
endpoints indicate excitatory
synaptic connections; lines
with open circles as endpoints
indicate inhibitory synaptic
connections. (a) Left:
rhythmogenic kernel (2-I),
right: mutually excitatory pair
(2-E). (b) Bi-directional
inhibitory ring (4-IR).
(c) Two half-center oscillators
with cross-excitation (4-CE).
(d) Bi-directional inhibitory
ring with cross-excitation
(4-IRCE)

(a) (b)

(d)(c)
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pair of mutually excitatory RGNs. 2-I is the two-cell
rhythmogenic kernel present on each side of the full
model, with each RGN reflecting the flexor or extensor
rhythmogenic networks on that side. This is a variation
on the usual half-center oscillator configuration, com-
prising two reciprocally inhibitory endogenous bursters
rather than coupled tonically spiking neurons. Reduc-
tion to the 2-I model accords with the hypothesis that
this subnetwork drives the rhythm of flexor-extensor
alternation in each hemicord. The excitatory pair
2-E, not present in the full model, is a reduction of
the excitatory cross-midline communication route that
is mediated by CINs, collapsing the CINs together with
the RGNs on each side. We use it to determine the
range of excitation strengths that produce rapid syn-
chronization of contralateral flexor-extensor pairs.

Four-cell models The second set of derived models
consists of three four-cell networks, whose diagrams
are shown in Fig. 2(b–d): (1) 4-IR, a bi-directional in-
hibitory ring of RGNs, (2) 4-CE, two half-center oscilla-
tors with cross-excitation between contralateral flexor
and extensor RGNs, and (3) 4-IRCE, a bi-directional
inhibitory ring of RGNs with cross-excitation. These
networks are three plausible arrangements for coor-
dinating flexor-extensor burst alternation across the
midline in order to set up the fundamental locomotor
rhythm. They may be considered reductions of the full
model in which most of the excitatory connections have
been removed and the MNs and CINs have been col-
lapsed together with the RGNs. The resulting networks
possess minimal sets of functional synaptic connections
that (potentially) suffice to produce the fundamental
walking rhythm robustly (cf. Figure 9 of Beato and
Nistri 1999).

2.3 Model evaluation

We focus on three questions in testing our mod-
els: Is the phase configuration corresponding to the
fundamental locomotor rhythm observed and stable?
How quickly can the system establish the fundamental
rhythm starting from a different, unorganized state?
What are the phase resetting properties of the CPG
model when the locomotor rhythm is interrupted and
restarted?

The first question poses a minimal functional test
of the aptness of our models as representations of the
RSHL CPG. The isolated rodent spinal cord produces
motoneuronal output resembling the fundamental
locomotor rhythm when treated with certain neuro-
transmitters and other chemical agents, and neona-
tal rodents naturally develop the ability to crawl and

walk. Hence we evaluate the capability of our mod-
els to produce the phase relationships required for
the fundamental locomotor rhythm as their default
behavior.

The second question is prompted in part by the
behavior of the spinal CPG in whole-cord fictive
locomotion experiments: the neuronal networks in
the rodent spinal cord self-organize so as to stably
produce walking-like patterns when activated (with
neurotransmitters or electrical stimulation) from an
unorganized state; switching from non-walking to walk-
ing states in the intact animal may occur similarly.
Alternatively, the CPG in the intact animal may main-
tain itself in one of a number of pre-locomotor states
(‘idling’) from which it can rapidly switch to locomo-
tor activity; the CPG should then self-organize into
one of these pre-locomotor configurations when start-
ing from an unorganized state. Under either scenario
the models should converge to fundamental locomotor
rhythm from a wide range of initial conditions, possibly
via a distinct sequence of intermediate, pre-locomotor
configurations.

The third question investigates the ability of the
models, once they have established the fundamental
locomotor rhythm, to respond to fast changes in stim-
ulation without extended transients, i.e. rapid recovery
from perturbation. This is essential for escape behavior
in the lamprey (Grillner 2003), for example, and this
functional criterion has been used to rule out single
component modulation as a mechanism for controlling
burst frequency in models of the lamprey swimming
CPG (Lansner et al. 1998).

We address these questions not only for the full
model but also for each subnetwork model, testing sev-
eral combinations of synaptic coupling strengths. View-
ing the models from a dynamical systems perspective,
each rhythmic locomotor pattern or gait (synchrony,
hopping, walking, etc.) corresponds to a periodic orbit
in phase space. The biologically motivated questions
above may be recast in terms of the existence, stability,
basin of attraction, and phase response properties of
various periodic orbits of the models, with particular
emphasis on the orbit associated with the fundamental
locomotor rhythm. If the periodic orbit corresponding
to a particular locomotor pattern exists and is stable in
a given model, then the model’s convergence to that
periodic orbit from a point in phase space away from
the orbit, i.e. a point representing an unorganized initial
state or the model’s state after perturbation from a sta-
ble locomotor pattern, is determined by the topography
of the orbit’s basin of attraction.

This last mathematical fact allows us to address
all three of the questions above with computational
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experiments that track the progression of the CPG
models’ phase configurations. The trajectories of the
models (through phase configuration space), when
started from a wide range of initial conditions, reveal
the topography of the basin(s) of attraction of the mod-
els’ stable phase configuration(s). If the fundamental
locomotor rhythm is reproducible and stable for a given
model, then the model will converge to it from many
initial conditions (question one), and the rate at which
the model converges from ‘random’ initial conditions
directly reflects the system’s ability to establish the fun-
damental locomotor rhythm when starting from unor-
ganized initial states (question two). The third question
may be investigated directly by starting the model in
the fundamental locomotor rhythm, applying a pertur-
bation at a particular phase of the locomotor cycle,
and tracking the model’s recovery to the fundamental
locomotor rhythm. Much of the information that can be
garnered from this direct approach, however, can also
be inferred from the shape(s) of the basin(s) of attrac-
tion of the model’s stable phase configuration(s): a per-
turbation that interrupts the fundamental locomotor
rhythm effectively restarts the model from a different
phase configuration which lies in the basin of attraction
of (one of) the model’s stable phase configuration(s).
Thus from the shape(s) and convergence rate(s) of
the model’s basin(s) of attraction, we can infer the
rates and target configurations following phase re-
setting perturbations of the fundamental locomotor
rhythm.

We therefore study our models’ behavior in regions
of phase space (potentially) containing periodic orbits
that correspond to various gaits, investigating their con-
vergence and phasing behavior as synaptic strengths are
systematically varied.

Target phase conf igurations In the full model, ipsi-
lateral reciprocally inhibitory pairs of RGN cells are
responsible for setting up the basic flexor-extensor al-
ternation for each side, and thus we consider antipha-
sic alternation of flexor and extensor bursts (phase
difference of 0.5) to be the target configuration of the
2-I subnetwork. Similarly, cross-cord excitation plays a
role in synchronizing contralateral pairs of flexors and
extensors, so that burst synchrony (phase difference
0) is the target configuration for the 2-E model.
The four-cell (and full) models may possess several
potentially stable phase configurations of biological
interest, including complete synchrony, hopping, and
walking. We prefer that walking be the most stable
phase configuration of an RSHL CPG model, and con-
sider that to be the target configuration of each four-
cell model.

Coupling strength There is no clearly articulated stan-
dard by which modelers or experimentalists classify
synaptic coupling as strong or weak. One measure
of relative synaptic strength is the size of the maxi-
mal synaptic current in comparison to the strongest
intrinsic current, typically the spiking sodium cur-
rent. Other studies involving conductance-based neural
models subjected to synaptic input (both excitatory and
inhibitory) have used maximal synaptic currents whose
ratios to the maximal spiking sodium current magni-
tude range from order 0.00001 to 1 (Acker et al. 2003;
Nadim et al. 1995; Butera et al. 1999b; Prinz et al. 2003),
classifying synaptic input strength as weak or strong in
an apparently ad hoc fashion. Here we propose a more
systematic terminology for synaptic coupling strength
based on the ratio of maximal synaptic current to the
maximal inward spiking current: Coupling with a ratio
of order less than 0.01 is ‘weak,’ between 0.01 and 0.1
is ‘intermediate,’ and above 0.1 is ‘strong.’ Since the
parameter gsyn is proportional to the ratio of maximal
synaptic current to the maximal inward spiking cur-
rent, we use gsyn as a convenient proxy for coupling
strength in the remainder of this paper. For our models,
gsyn ≤ 0.5 provides effectively weak coupling, i.e. ratio
to maximal INa ≤ O(0.01), and gsyn ≥ 5 corresponds to
effectively strong coupling.

Testing protocols For both two- and four-cell models,
we assess their stable phase configurations and sensi-
tivities to initial phasing conditions. We first consider
a single uncoupled RGN cell evolving along the stable
periodic orbit corresponding to its endogenous burst
cycle. We term this periodic orbit the individual refer-
ence orbit or individual reference burst, and we choose
the start of the active segment of the individual refer-
ence burst as reference phase 0. The initial conditions
defining the individual reference orbit are given in
Table 4.

For each two-cell network, we begin both of its
neurons in an uncoupled state, i.e. gsyn = 0. We fix
the initial conditions of one neuron, designated the
‘leader,’ at the point corresponding to reference phase
0. The initial conditions of the other neuron, designated
the ‘follower,’ are set to correspond to a phase θ ∈
[0, 1]. The synaptic strength is then set to its chosen
value (coupling is symmetric), the synaptic activation

Table 4 Initial conditions for RGN reference burst trajectory

Phase variable Value

V −54.35234971337889
n 0.00087326528619
h 0.56373041060320
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variables are initialized to 0, and the evolution of the
two-cell model from this initial phase offset is simulated
by numerically integrating for at least 15 burst cycles.
The phase offset (relative phase) between the leader
and follower neurons is calculated for the ith burst cycle
as (ti

F − ti
L)/T mod 1, where ti

{L,F} is the starting time
of the ith burst of the leader or follower, respectively,
and T is the period of the burst cycle.2 For both the
2-I and 2-E networks, 50 evenly spaced initial follower
phases θ ∈ [0, 1] were used as initial conditions. Cou-
pling strengths gsyn ranged from 0.0001 to 40 for 2-I and
from 0.00001 to 20 for 2-E.

We would expect the 2-I model to tend towards the
antiphase configuration (θi → 0.5) and the 2-E model
to tend towards synchrony (θi → 0). We considered a
two-cell model to have functionally converged to a ‘tar-
get’ configuration if its Euclidean distance (in phase)
to the target configuration shrank to less than 0.05 and
remained within that bound for the duration of the
simulation

For each four-cell model, we designate neuron 1
(corresponding to the left flexor) as the reference neu-
ron against which all relative phases are measured. We
fix the initial conditions of neuron 1 at reference phase
0, the start of the active segment of the individual refer-
ence burst. The initial conditions of the other neurons
are set to correspond to random phases θi, i = 2, 3, 4,
chosen uniformly in [0, 1]. The coupling strengths and
synaptic variables are then initialized, and the model is
simulated for at least 8 burst cycles. The phase offset
�θn

i of the ith neuron’s nth burst is measured with re-
spect to the nth burst of neuron 1, i.e. �θn

i = (tn
i − tn

1)/T
mod 1, where tn

i is the starting time of the nth burst of
cell i and T is measured as for the two-cell case.

The four-cell models’ coupling architectures do not
preclude them from producing the basic bipedal gaits
(Pinto and Golubitsky 2006). However, precisely which
gaits the different models preferentially produce can-
not be determined by inspection of their wiring dia-
grams alone, divorced from the underlying dynamics of
their oscillatory components. Potentially stable phase

2For the networks examined in this paper, the period of the
burst cycle of each coupled RGN stabilized within a few cycles
(typically fewer than four) to a value close (within 0.1–5%) to the
period of the uncoupled RGN burst cycle, regardless of whether
the phase differences between component neurons converged.
The period T here can be taken as the period of the individual
(uncoupled) reference burst or as the (stable) period of the
coupled burst without any qualitative difference in the results,
and only a very slight quantitative difference in the measured
phase offsets. The results in the next section use the coupled burst
period.

configurations (‘target’ configurations) in our notation
include:

1. complete synchrony: �θi = 0, ∀i
2. rhythmic left-right alternation: �θ3 = �θ4 = 0.5,

�θ2 = 0
3. hopping: �θ2 = �θ4 = 0.5, �θ3 = 0
4. walking: �θ2 = �θ3 = 0.5, �θ4 = 0
5. 1/4-rotated: �θ2 = 0.25, �θ3 = 0.5, �θ4 = 0.75

Configurations 1–4 correspond to activity patterns seen
in whole-cord fictive locomotor experiments in neona-
tal rodents, translated into strict phase relationships
constrained by the symmetries of the synaptic architec-
tures. (Wider ranges of phasing, including asymmetries
and overlaps in flexor-extensor activation, are possible
during various locomotor gaits and postures in intact
and decerebrate animals (Pearson and Rossignol 1991;
Yakovenko et al. 2005); greater symmetry in flexor-
extensor activation patterns is seen in other fictive lo-
comotion experiments (Kiehn and Kjaerulff 1996, 1998;
Kiehn et al. 2000; Kiehn and Butt 2003). In isolated
spinal cord experiments in rodents, where sensory feed-
back is removed, the measured duty cycles for flexor
and extensor motoneuron activity are both close to
50% (Butt et al. 2002).) Configuration 5 has no bio-
logical counterpart in this context, but its appearance
would serve to indicate a failure of the CPG model to
produce biologically relevant output.

Each model was simulated starting from 100 random
initial phase configurations for each set of inhibition
and/or excitation strengths. We calculated the Euclid-
ean distance from the various target configurations
listed above for each of the 100 trajectories at each
burst cycle. For a given initial phase configuration, if
the model’s distance to a target configuration shrank to
less than 0.15 (which would be achieved with a phase
difference of 0.05 for each neuron, for example) and
remained within that bound for the duration of the
simulation, the model was said to have converged
to that target configuration. The mean and variance
of the population distance to the different target
configurations are useful indicators of the models’
global convergence behavior. The proportion of sim-
ulations that evolve to phasing arrangements near a
given configuration is indicative of the size of the target
configuration’s basin of attraction; the rate of accu-
mulation reflects both the stability of the target phase
configuration and the influence of the chosen synaptic
strength.

Inhibitory gsyn values were 0.001, 0.01, 0.1, 1, 5, 10,
15, 20; excitatory gsyn values were 0.0001, 0.001, 0.01,
0.1, 1, 5. For some simulations of the 4-IR and 4-
IRCE models, ipsilateral and contralateral inhibitory
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gsyn values were the same (symmetric inhibition), while
for other simulations ipsilateral and contralateral inhi-
bition were different (asymmetric inhibition).

Except for locating periodic orbits, we performed
all calculations with PyDSTool, a software package
written in C and Python for the simulation and analysis
of dynamical systems (Clewley et al. 2007). The inte-
gration routine was a fifth-order variable-time step im-
plicit method with eighth-order dense output (Radau5,
Hairer and Wanner 1991) for stiff systems, with relative
and absolute error tolerances of 10−10 for both solvers.
Phenomena of interest, such as spike peaks or the onset
of the actively spiking segment of the burst cycle, were
detected during integration by testing for zero cross-
ings of appropriately defined event functions at each
time step. Using the integrator’s dense output and a
bisection method, these were located to within an accu-
racy of 10−8. The individual reference orbit was found
using multiple shooting with automatic differentiation
(Guckenheimer and Meloon 2000), as implemented in
the ADMC++ automatic differentiation package for
MATLAB (Phipps 2003), with error less than 10−12.

3 Results

3.1 Full model

We simulated the full CPG model under many combi-
nations of inhibitory and excitatory coupling strengths
for many initial conditions, but we did not exhaustively
search the (high dimensional) space of plausible synap-
tic weights. The computational costs incurred by such a
survey would be prohibitive, while the volume of data
collected would pose significant organizational and in-
terpretive challenges. We chose instead to begin explor-
ing the synaptic weight space of the full CPG model
interactively, systematically varying the strengths of
synapse groups that intuition suggested should play
leading roles in setting the relative phasing of the CPG
output, i.e. MN bursts. These synapse groups included,
for example, reciprocal inhibition between ipsilateral
flexor and extensor RGNs, and contralateral excitation
from CINs to RGNs of a different type. Though the
strengths of the various synapse groups changed rel-
ative to one another, cross-midline and rostral-caudal
(flexor-extensor) symmetry in synaptic coupling was
maintained.

Partial output from a typical simulation of the full
CPG model is presented in Fig. 3 (simulations were
usually run for 10–20 burst cycles). In this example,
there is initially approximately 50% overlap between
the active phases of the flexor and extensor RGNs on

each side, while each flexor RGN begins roughly out
of phase with the contralateral extensor RGN. That
is, the initial phasing is the opposite of the proper
walking pattern. Within three burst cycles, however,
simultaneous ipsilateral flexor-extensor alternation and
cross-cord flexor-extensor synchronization have been
established, and this fundamental locomotor rhythm
is henceforth stably maintained. The transition to the
walking configuration is effected through the elonga-
tion of the active segments of both flexor RGNs and
the simultaneous shortening of the active segments of
both extensor RGNs during the first two cycles. The
pattern of this transient period, namely changes in
the durations of overlapping active segments for some
subset of RGNs, is typical of trajectories of the full
model that ultimately lead to the fundamental walking
rhythm. Every combination of RGNs whose burst du-
rations transiently vary is possible, depending on the
initial phasing conditions and the exact set of synap-
tic strengths. In our simulations, spike timing and the
duration of the active spiking segment of RGN bursts
typically varied up to 50% and in some cases more
than doubled, but the RGN interburst interval showed
much less variability (5–15%). Once the model settled
into a stable phase configuration, whether synchronous
or alternating, the intraburst and interburst intervals
also stabilized, with minimal overlap between opposing
RGNs’ active segments.

Note that the output from the CINs and MNs shown
in Fig. 3 follows the bursting pattern and phasing of
their respective driving RGNs almost perfectly, with
the CINs and MNs firing spike for spike with the
RGNs. This activity pattern held for a wide range of
(contralateral and ipsilateral) CIN-CIN and CIN-MN
coupling strengths. By reducing the strength of excita-
tory coupling from their driving RGNs, the CINs and
MNs could be driven to fire once every two or three
RGN action potentials; this had no effect on the phas-
ing of MN/CIN bursts relative to the RGNs. Neither
inhibitory nor excitatory cross-cord synaptic connec-
tions from CINs to MNs (respectively, CINs) had any
noticeable effect on the phasing of MN (CIN) bursts
(relative to the bursts of the MNs’ (CINs’) driving
RGNs), but intermediate-strong excitatory CIN-MN
(CIN-CIN) synaptic connections could change spike
timing and spike number within MN (CIN) bursts.

It is common for a computational model to be pre-
sented as successfully reproducing the behavior of a
given biological system with little accompanying dis-
cussion of how tightly the model’s parameters must be
tuned in order to obtain appropriate output. Figure 3
shows “correct” output from the CPG model, in that
the system does eventually reproduce the fundamental
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Fig. 3 Sample output of the full CPG model. The y-axes record
membrane voltage in mV; the x-axes record time in seconds.
Output from neurons associated with left or right flexor or exten-
sor output are organized along the rows. Columns are organized
by neuron type. In this example, the initial RGN phasing was
�θ2 = 0.3, �θ3 = 0.65, �θ4 = 0.71 mod 1, taking the left flexor
RGN as neuron 1. Synaptic coupling strengths were 0 except:
ipsilateral RGN-MN and RGN-CIN flexor-extensor inhibitory
gsyn = 5 (synapses {(3, 2), (4, 1), (9, 8), (10, 7)}, {(3, 6), (4, 5),

(9, 12), (10, 11)}), ipsilateral RGN-RGN inhibitory gsyn = 20
(synapses {(3, 4), (4, 3), (9, 10), (10, 9)}), contralateral CIN-CIN
and CIN-RGN inhibitory gsyn = 5 (synapses {(5, 11), (11, 5), (6,
12), (12, 6)}, {(5, 9), (11, 3), (6, 10), (12, 4)}), ipsilateral RGN-
CIN and RGN-MN excitatory gsyn = 40 (synapses {(3, 5), (4, 6),
(9, 11), (10, 12)}, {(3, 1), (4, 2), (9, 7), (10, 8)}), contralateral
CIN-RGN excitatory gsyn = 0.01 (synapses {(5, 9), (11, 3), (6, 10),
(12, 4)})

locomotor rhythm. From the fifth burst cycle onwards,
the relative phasing of MN (and CIN and RGN) bursts
differs by less than 0.5% from the configuration we
denoted as walking in the previous section. Achieving
this behavior required significant tuning of the synaptic
weights, and deviation from a relatively sensitive bal-
ance of coupling strengths for some apparently critical
sets of synapses either dramatically slowed the model’s
convergence to the fundamental locomotor rhythm or
destroyed convergence entirely. Table 5 reports the
synaptic strength ranges for which the model reliably
converged to the fundamental locomotor rhythm, and
it summarizes the rough organization of the synapses
into distinct groups according to their heuristic roles
in establishing and/or modulating convergence to the
walking mode.

Twenty ‘critical inhibitory synapses,’ comprising five
functional groups, required relatively high gsyn values
in order for the fundamental locomotor rhythm to be
produced reliably. Twelve of these synapses act primar-
ily to promote ipsilateral flexor-extensor alternation; in

particular, the minimum strength of reciprocal inhibi-
tion between ipsilateral RGNs was quite high (gsyn ≥
15). For the minimum strengths listed for ipsilateral
critical inhibitory connections, without compensatory
excitation, contralateral CIN-CIN and CIN-RGN in-
hibitory gsyn ≥ 5 were lower bounds for cross-cord inhi-
bition. Thus all of the critical inhibitory synapses must
be functionally strong for the normal locomotor pattern
to emerge. Though the overall level of inhibition in
the full CPG model could be doubled, the gsyn ratios
between the sets of inhibitory synapses had to remain
within a relatively narrow range. That is, from a given
combination of inhibitory synaptic weights such that
the full model rapidly and reliably produced the funda-
mental locomotor rhythm, varying the gsyn value for any
one set of inhibitory synapses by more than approxi-
mately ±10% typically destroyed or slowed the model’s
convergence to the walking configuration. The strength
of ipsilateral RGN-RGN inhibition was an exception:
for a given ‘successful’ synaptic weighting, ipsilateral
RGN-RGN inhibition could typically be doubled or
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Table 5 Roles of different synapse groups in establishing the fundamental locomotor rhythm in the full model

Role Functional group Synapses Strengths Effect(s)

Conduit Ipsilateral RGN-MN excitation (3, 1), (4, 2), (9, 7), (10, 8) 2 ≤ gsyn ≤ 10 –
synapses Ipsilateral RGN-CIN excitation (3, 5), (4, 6), (9, 11), (10, 12) 2 ≤ gsyn ≤ 10 –

Ipsilateral RGN-RGN F-E inhibition (3, 4), (4, 3), (9, 10), (10, 9) gsyn ≥ 15 �

Critical Ipsilateral RGN-MN F-E inhibition (3, 2), (4, 1), (9, 8), (10, 7) gsyn ≥ 5 �

inhibitory Ipsilateral RGN-CIN F-E inhibition (3, 6), (4, 5), (9, 12), (10, 11) gsyn ≥ 5 �

synapses Contralateral CIN-CIN inhibition (5, 11), (11, 5), (6, 12), (12, 6) gsyn ≥ 5 �

Contralateral CIN-RGN inhibition (5, 9), (11, 3), (6, 10), (12, 4) gsyn ≥ 5 �

Modulatory Contralateral CIN-RGN F-E excitation (5, 10), (11, 4), (6, 9), (12, 3) 0.5 ≤ gsyn ≤ 2 ↑
excitatory Contralateral CIN-CIN F-E excitation (5, 12), (12, 5), (6, 11), (11, 6) gsyn ≥ 0.1 ↑↓
synapses Contralateral CIN-RGN (weak) excitation (5, 9), (11, 3), (6, 10), (12, 4) gsyn ≥ 0.01 ↓

Contralateral CIN-MN inhibition (5, 7), (11, 1), (6, 8), (12, 2) – –
Relatively Contralateral CIN-MN F-E excitation (5, 8), (11, 2), (6, 7), (12, 1) – –

ineffectual Contralateral CIN-RGN F-E (weak) inhibition (5, 10), (11, 4), (6, 9), (12, 3) – –
synapses Contralateral CIN-MN F-E (weak) inhibition (5, 8), (11, 2), (6, 7), (12, 1) – –

Contralateral CIN-MN (weak) excitation (5, 7), (11, 1), (6, 8), (12, 2) – –

Effects of synapses with strengths in the given ranges are indicated by various symbols: (�) approximate lower bounds for convergence;
(↑) faster convergence; (↓) slower/disrupted convergence; (—) minimal effect on convergence

tripled without adversely affecting the convergence of
the model to the fundamental locomotor rhythm. Ex-
cept for the value given for ipsilateral RGN-RGN inhi-
bition, the strengths of the inhibitory synapses for the
example shown in Fig. 3 reflect the lowest gsyn values
of the critical inhibitory synapses that were required to
produce the fundamental locomotor rhythm reliably.

For a given set of inhibitory synaptic weights, several
combinations of excitatory synaptic strengths typically
led to the walking configuration, but the convergence
behavior of the model was often particularly sensi-
tive to changes in the amount of excitation. Varying
the strength of a few key excitatory connections by
±10% could slow or destroy convergence to walking,
but which excitatory connections were ‘key’ and what
effects they had depended on the configuration of
the other inhibitory and excitatory synaptic weights.
Almost always, however, the strengths of the ‘mod-
ulatory excitatory synapses’ greatly affected the con-
vergence behavior of the model. In particular, con-
tralateral CIN-RGN flexor-extensor/extensor-flexor
excitation, within rather narrow bounds, increased
the rate of convergence to the walking configuration
(to within 2–3 burst cycles), while any contralateral
extensor-extensor or flexor-flexor CIN-RGN excita-
tion of moderate or greater strength tended to disrupt
the fundamental locomotor rhythm significantly. Con-
tralateral CIN-CIN excitatory gsyn ≥ 0.1 could either
enhance or impair convergence to walking, depending
on the values of other synaptic weights.

The strength of excitatory ‘conduit synapses’ con-
necting RGNs to ipsilateral MNs and CINs, once above
the threshold to stimulate MN (respectively, CIN) spik-
ing in response to RGN activity, had no effect on the

phasing of CPG output. The lower values of the ranges
given in Table 5 for these synapses record the minimum
strengths such that RGN bursts stimulated MN/CIN
bursts, and the upper values indicate the maximum
strengths used in simulations of the full CPG model.

The remaining synapses, some of which one would
expect to be rather weak, based on biological intuition,
were ‘relatively ineffectual,’ i.e. altering their strengths
elicited little change in the output of the model. With
contralateral flexor-extensor/extensor-flexor CIN-MN
connections, for example, so long as the critical in-
hibitory synapse strengths were above the minimum
gsyn values listed in Table 5, neither excitation nor
inhibition with gsyn ≤ 10 had any noticeable effect
on the model’s behavior. Contralateral CIN-RGN
flexor-extensor/extensor-flexor inhibition was similarly
ineffectual. As reflected in Table 5, there was no
range of strengths for which the relatively ineffectual
synapses appeared to have much, if any, importance
for convergence to or maintenance of the fundamental
locomotor rhythm, relative to the critical inhibitory or
modulatory excitatory synapses.

Though we did not simulate all combinations of
synaptic strengths, our exploration of the synaptic
weight space for the full CPG model leads us to make
two heuristic observations regarding coupling strength
and oscillator phasing.

First, the strength of reciprocal inhibition between
ipsilateral flexor and extensor RGNs was the primary
determinant of the speed with which each side con-
verged into flexor-extensor alternation, with strong
inhibition (gsyn ≥ 15) being necessary to achieve alter-
nation rapidly (within 2–3 burst cycles). The relative
phasing of ipsilateral flexor and extensor output tended
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to drift without strong reciprocal inhibition between
the flexor and extensor RGNs. With weak to mod-
erate reciprocal inhibition, flexor-extensor alternation
might be achieved after six or more burst cycles, or
not at all, depending on initial conditions. For a given
level of reciprocal inhibition, excitatory inputs to the
RGNs from contralateral CINs (flexor-flexor/extensor-
extensor) could disrupt the flexor-extensor alternation,
depending on the phasing of the contralateral flexor-
extensor pair.

Second, both strong ipsilateral reciprocal inhibi-
tion and strong contralateral inhibitory and excitatory
synaptic coupling onto the appropriate RGNs were
needed in order to establish the fundamental locomotor
rhythm within 2–3 burst cycles. Without strong ipsilat-
eral reciprocal inhibition, there could be cross-cord syn-
chrony (either extensor-extensor or flexor-extensor)
without ipsilateral flexor-extensor alternation. Lack of
cross-cord excitation typically led either to independent
flexor-extensor alternation on each side (without fixed
phasing between sides), or occasionally to hopping ac-
tivity, with the latter more likely with stronger cross-
cord inhibition onto RGNs.

In general, for a given set of synaptic weights, some
initial conditions led the model to settle rapidly into a
steady pattern, such as synchrony or the fundamental
locomotor rhythm, while others did not. The stronger
the overall level of synaptic coupling, the more likely
the model was to converge to a fixed pattern and the
more rapidly it did so.

These heuristic insights into the influence of various
synapse groups on phasing support our architectural
choices in deriving two-cell and four-cell reduced mod-
els. We used the two- and four-cell models to exam-
ine systematically the phasing roles of critical sets of
synapses, as well as to investigate more thoroughly
some unexpected behaviors of the full CPG model,
such as its parametric fragility, the need for strong
coupling, and non-monotonic cycle-to-cycle variability
in phasing, intraburst and interburst intervals. With the
2-I and 2-E models (Section 3.2) we specifically investi-
gate the phenomena of our first heuristic observation
by focusing on RGN-RGN interactions in isolation
and testing phasing behaviors as synaptic strength and
initial conditions are varied. To better understand the
second heuristic observation, we use the various four
cell models to explore in greater detail the roles of
connections representing the ‘critical inhibitory’ and
‘modulatory excitatory’ synapses of the full model
(Section 3.3). Both the two- and four-cell model studies
below bear on the general observation that stronger
synaptic coupling correlated positively with more rapid
convergence.

3.2 Two-cell models

Figure 4 shows the evolution of relative phase in the 2-I
model of two mutually inhibitory RGNs for six repre-
sentative coupling strengths. The θ0-axis represents the
initial follower phases, and the vertical θn-axis displays
the follower phases (relative to the leader) after n burst
cycles. Instantaneous convergence to antiphase would
produce the horizontal plane given by θn = 0.5, while
the uncoupled system would produce 45-degree sloped
plane given by θn = θ0. Figure 5 shows the evolution of
relative phase in the 2-E model of two mutually exci-
tatory RGNs for six representative coupling strengths;
the axes are the same as for the 2-I model.

2-I model For coupling strengths below 1, the 2-I
model did not achieve the antiphase configuration from
any initial conditions in less than 20 burst cycles; for
coupling strengths greater than 20, every initial condi-
tion led to the antiphase configuration within three cy-
cles, and most within two. None of the higher coupling
strengths tested achieved the antiphase configuration
within one cycle from every initial condition. As seen
in Fig. 4, gsyn = 20 is approximately the lowest coupling
strength for which the transient period is short enough
for the model to meet our biologically motivated expec-
tations of “rapid” phase resetting. The broad flat region
at the θn = 0.5 height in Fig. 4(f) indicates that from
70% of initial conditions θ0, including most of the in-
terval (0.2,0.8), the 2-I model with gsyn = 20 settled into
the antiphase configuration within 4 burst cycles (|θn −
0.5| ≤ 0.005 and |θ j − θ j+1| ≤ 0.002, j ≥ 4). Every ini-
tial condition led to the antiphase configuration within
8 burst cycles. Very similar convergence behavior (|θn −
0.5| ≤ 0.01 and |θ j − θ j+1| ≤ 0.006, j ≥ 4) occurred for
gsyn = 15 (Fig. 4(e)), but at this strength not every initial
condition led to antiphase even after 10 burst cycles.

For lower coupling strengths, the convergence to the
antiphase configuration from many initial conditions
is so slow that the model could be considered as not
having a functionally stable antiphase configuration at
all, though initial conditions in a small region about
φ0 = 0.5 do converge to within antiphase after a few
burst cycles. This region of reasonably rapid conver-
gence grows with increasing coupling strength.

When the neurons coupled in the 2-I configuration
did settle into the antiphase configuration, their active
spiking segments had up to two fewer spikes and their
duty cycles were at most six percent shorter than for the
reference orbit for the single uncoupled RGN. Weak
coupling left the period for a complete oscillation essen-
tially unchanged from that of the uncoupled reference
orbit; at the strongest levels of coupling, the period
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Fig. 4 Evolution of the
relative phasing of bursts in
2-I model (half-center
configuration) over eight
burst cycles, for a variety of
synaptic coupling strengths.
The follower neuron’s initial
relative phase is recorded on
the θ0-axis; the follower
neuron’s relative phase after
burst cycle n is indicated by
height on the θn-axis

(a) (b)

(d)(c)

(e) (f)

was reduced by at most five percent. In a sense, the
neurons in the half-center configuration settle onto
coupled periodic orbits that lie near their uncoupled
starting orbits, but which minimize the amount of over-
lap between them, thus shrinking their duty cycles and
reducing their spike numbers.

2-E model For coupling strengths below gsyn = 1, the
2-E model neurons did not synchronize their bursts
for at least 15 cycles (Fig. 5(a–c)), while for strengths
equal to or greater than gsyn = 1, bursts synchronized
within 8 cycles (Fig. 5(d–f)). Biologically reasonable

synchronization rates (within 2–3 cycles) were achieved
only for strengths 5 and higher. If we compare the
magnitude of the synaptic currents to the magnitude
of INa, as for the 2-I model, relatively strong coupling
is required to achieve rapid burst synchrony in the 2-E
model, but weaker than in the 2-I model.

We note that the neurons of the 2-E model typi-
cally settle into configurations of burst synchrony with
intraburst spike anti-synchrony, a phenomenon pre-
viously reported in models of bursting in pancreatic
β-cells (Sherman 1994) and in the pre-Bötzinger
model (Best et al. 2005). The spikes of the two neurons
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Fig. 5 Evolution of the
relative phasing of bursts in
2-E model (half-center
configuration) over eight
burst cycles, for a variety of
synaptic coupling strengths.
The follower neuron’s initial
relative phase is recorded on
the θ0-axis; the follower
neuron’s relative phase after
burst cycle n is indicated by
height on the θn-axis

(a) (b)

(d)(c)

(e) (f)

alternate, but their burst envelopes (defined by the
activity of INaP) are almost completely synchronous.
The alternation of spikes within synchronized bursts
probably has little biological significance in terms of
synchronization of flexor and extensor contraction.

Transient behavior and phase sensitivity The 2-I model
displays a higher degree of sensitivity to initial phasing
conditions than the 2-E model. As can be seen at
higher coupling strengths in Fig. 4, the relative phases
of the neurons may change significantly from cycle to
cycle in a fashion that does not converge monotoni-

cally to a phase difference of 0.5: as the number of
cycles n increases, the 45-degree line in Fig. 4(b–f)
does not transform smoothly to a horizontal line; the
pictures are instead quite jagged. This sensitivity to
initial phasing conditions manifests itself in the tran-
sient behavior of the 2-I model as it moves towards its
target configuration; in particular, the position of leader
and follower may reverse one or more times before
achieving antiphase (not shown). At the highest cou-
pling strengths, this sensitivity diminishes for initial
conditions about θ0 = 0.5, hence a flatter interval of
the relative phasing curve emerges about this phase,
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reflecting the neurons’ rapid movement towards an-
tiphase from nearby initial conditions. This flatter in-
terval broadens as the coupling strength increases, but
phase sensitivity remains for initial phases closer to
0 or 1.

Unlike the 2-I model, the 2-E model does not exhibit
such significant sensitivity to initial phasing conditions,
nor does it appear to manifest leader-follower switch-
ing behavior. For coupling strengths above gsyn = 0.1,
all initial conditions eventually lead to synchrony, and
nearby initial conditions typically synchronize by mov-
ing the bursts in the same direction. As can be seen
in Fig. 5(d–f), the rate of synchronization is slower
for initial conditions near antiphase (solid line peaks
near θ0 = 0.5). These initial conditions correspond to
the alignment of one neuron’s active segment with the
other’s quiescent segment, and the slower convergence
reflects the weaker phase response of the bursting neu-
ron while it is inactive. We have investigated the mecha-
nisms underlying this phenomenon and other aspects of
phase response in endogenously bursting neural models
(Sherwood 2008), and we report our findings in another
paper (Sherwood and Guckenheimer 2009).

3.3 Four-cell models

We present our four-cell model simulation results
in three-dimensional plots. The plots’ axes measure
the relative phases of the models’ neurons with re-

spect to the phase of reference neuron 1: the x-axis
measures �θ2 = θ2 − θ1 mod 1, the y-axis measures
�θ3, and the z-axis measures �θ4. Inset beside each
three-dimensional plot are projections of the three-
dimensional data onto two dimensions. Projections
onto the (�θ2, �θ3)-, (�θ2, �θ4)-, and (�θ3, �θ4)-
planes are presented in the top, middle, and bot-
tom two-dimensional inset plots, respectively. To
help the reader interpret the plots, the diagram in
Fig. 6 shows the location of relevant locomotor
phase configurations in three dimensions and in two-
dimensional projections.

Though phase is a circular variable, the three-
dimensional plots are cubiform. One must imagine that
the endpoints 0 and 1 of an axis are identified as a single
point, with the measured phase differences ‘wrapping
around’ at the endpoints. Thus plot markers near 0 and
1, though presented visually as being far apart, are in
fact close together in phase. Figure 7(d) shows an exam-
ple of such an artifact: there appear to be two distinct
clusters of markers, but because �θ3 = 0 is equivalent
to �θ3 = 1, the opposite faces of the �θ2 × �θ3 × �θ4

cube of the plot are identified as one, and there is in fact
a single cluster. Similar considerations apply to the two-
dimensional projections: though the presentation is pla-
nar, these projections are in fact toroidal, so that their
top and bottom edges are identified with one another,
as are their left and right edges. Phase coordinates wrap
around the top edge to restart at the bottom edge, and

Fig. 6 Locations of four-cell
models’ possible stable phase
configurations. The top,
middle, and bottom
two-dimensional insets are
projections of the
three-dimensional figure onto
the (θ2, θ3)-, (θ2, θ4)-, and
(θ3, θ4)-planes, respectively.
Blue circles: complete
synchrony, �θi = 0, ∀i;
red diamonds: rhythmic
left-right alternation,
�θ3 = �θ4 = 0.5, �θ2 = 0;
green triangles: hopping,
�θ2 = �θ4 = 0.5, �θ3 = 0;
black squares: walking,
�θ2 = �θ3 = 0.5, �θ4 = 0;
magenta crosses: 1/4-rotated,
�θ2 = 0.25, �θ3 = 0.5,

�θ4 = 0.75. Solid and dashed
connecting lines are for visual
orientation
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(a) (b)

(c) (d)

Fig. 7 Relative phasing of bursts in the 4-IR model for various strengths of symmetric inhibitory coupling, starting from 100 random
initial phase configurations. Red triangles indicate phasing after three burst cycles; black circles indicate phasing after eight burst cycles

they wrap around the right edge to restart at the left
edge. The two seemingly distinct clusters of Fig. 7(d)
that also appear in the corresponding two-dimensional
projections are, again, a single cluster.

Marker color and shape indicate the temporal pro-
gression of the simulations. Marking each simulation’s
relative phasing at every burst cycle produces cluttered,
difficult to decipher figures, and so we plot relative
phasing only at third and eighth burst cycles, using
red triangles and black circles, respectively. Cluster-
ing of markers with the same shape/color (in particu-
lar, black circles) about a given phase point indicates
that the model converges to the corresponding relative
phase configuration. The size, shape, and distribution of
marker shape/color for a cluster are related to the size
and shape of its corresponding phase configuration’s

basin of attraction and to the rate at which the model
converges to that phase configuration from initial con-
ditions within the basin of attraction.

For example, Figs. 11(f) and 13(c) both show marker
clustering about �θ2 = �θ3 = 0.5, �θ4 = 0; this single
cluster (in terms of phase configuration) appears as
two clusters at the centers of the top and bottom faces
of the cubiform plots. The relative dearth of markers
away from �θ2 = �θ3 = 0.5, �θ4 = 0 indicates that
there is a single attractive phase configuration in both
plots. Convergence to the attractor is more rapid for
Fig. 11(f), which has a tighter, smaller diameter cluster,
than for Fig. 13(c), which has more widely dispersed red
triangle markers (corresponding to earlier burst times
in the simulations). ‘Trails’ of markers, such as those
visible in Figs. 11(e) and 13(e), indicate the typical
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trajectories (sequences of phase configurations) that
the models traverse as they approach their final phase
configurations.

In addition to the three-dimensional plots, for each
model instance (combination of inhibition and/or ex-
citation strengths) we graph the mean and variance
of the Euclidean distance of the 100 simulations from
the complete synchrony, hopping and walking target
configurations at each burst cycle. The shapes of these
graphs indicate the models’ global convergence be-
havior; the slopes reflect the rapidity of convergence,
and the variances may (indirectly) reflect the relative
attractiveness of different target configurations and the
sizes of their basins of attraction. In each of the mean
Euclidean distance plots, the threshold for convergence
to a given target configuration, i.e. a Euclidean dis-
tance of 0.15, is indicated with a horizontal dashed
black line.

3.3.1 4-IR model

Symmetric inhibition From most initial conditions,
symmetric inhibition (equal gsynvalues for all contralat-
eral and ipsilateral inhibitory synapses) weaker than
gsyn = 1 produced practically no change in cell phasing
for the 4-IR model, even after eight burst cycles. This
can be inferred from graphs of mean distance to syn-
chrony, walking, and hopping (Fig. 8), all of which are
essentially static, with unchanging variance. In addition,
the even distribution of phase configurations and the
close proximity of the members of the red and black
sets of markers in Fig. 7(a) indicate that the neurons’
relative phases change very little over the course of the
simulations.

At intermediate to strong levels of symmetric in-
hibition, there is much more movement, and some
clustering emerges after 5 or more cycles. Some red
and many black markers clump together near �θ2 =
0.5, �θ4 = 0.5, �θ3 = 0, the ‘hopping’ configuration.
This clustering is most prominent at gsyn = 20; the
emergence of the hopping configuration is evident after
three cycles in Fig. 7(d). The mean distance to the
hopping configuration decreases monotonically, at a
faster rate for higher levels of inhibition, as seen in
Fig. 8. Only at the highest inhibition levels, however,
does the variance in distance to hopping decrease sig-
nificantly along with the mean. These results indicate
that symmetric inhibition alone moves the network
towards its stable configurations rather slowly, and at
a biologically reasonable rate only for strong coupling
strengths.

Surprisingly, the most attractive stable configuration
available to the symmetric inhibitory ring network is

not walking, but hopping, as seen in Fig. 8 and the
substantial clustering of black and red markers in
Fig. 7(b–d) near �θ2 = 0.5, �θ4 = 0.5, �θ3 = 0 (the
centers of the rear-left and front-right faces of the
cubiform plot), but not elsewhere. The 4-IR model did
not converge to the walking mode in any of our simu-
lations, indicating that it is either unstable or its basin
of attraction is vanishingly small. Complete synchrony
among the oscillators is possible for the symmetric
4-IR model, but its basin of attraction is very tiny
(not shown). The 1/4-rotated configuration, in which
each oscillator maintains a quarter-cycle offset from its
neighbors, is completely absent, even though the net-
work’s symmetries imply that it should be an accessible
phase configuration.

Asymmetric inhibition The preferred phase configura-
tions of the asymmetric 4-IR model, in which gi,i

syn

(ipsilateral reciprocal inhibition) and gi,c
syn (contralat-

eral reciprocal inhibition) values are varied separately,
differ from those for the 4-IR model with symmetric in-
hibition. As in the symmetric 4-IR model, gi,i

syn and gi,c
syn

less than 1 resulted in very little change in cell phasing
after eight burst cycles or more. At higher levels of in-
hibition, e.g. gi,i

syn ≥ 5, gi,c
syn ≥ 5, under conditions where

contralateral inhibition was stronger than ipsilateral
inhibition, the relative phases of the 4-IR model’s neu-
rons aligned along the line �θ3 ≈ 0.5 mod 1, �θ2 −
�θ4 ≈ 0.5 mod 1. Since the phase differences are mea-
sured with respect to neuron 1, these relations imply
that the neurons within each contralateral pair (1 and
3, 2 and 4) were antisynchronized, but the relative
phases within each ipsilateral pair (1 and 2, 3 and 4)
were approximately uniformly distributed between 0
and 1. Thus the model preferred phase configurations
intermediate between rhythmic left-right alternation
and walking, as seen in Fig. 9(a). When overall in-
hibition was relatively high, but ipsilateral inhibition
was stronger than contralateral inhibition, the relative
phases aligned along the line �θ2 ≈ 0.5 mod 1, �θ3 −
�θ4 ≈ 0.5 mod 1 (intermediate between hopping and
walking), as shown in Fig. 9(b).

Very strong ipsilateral inhibition in combination
with even stronger contralateral inhibition, i.e. gi,i

syn ≥
20, gi,c

syn ≥ 30, eventually produced convergence to the
walking configuration from nearly every initial phas-
ing condition. (The symmetric 4-IR model converged
to the hopping configuration with comparable celerity
for gsyn = 10.) As illustrated in Figs. 9(c) and 10, the
neurons first assume relative phases that approximate
rhythmic left-right alternation, then converge to the
walking mode along the line �θ3 ≈ 0.5 mod 1, �θ2 −
�θ4 ≈ 0.5 mod 1. The model converged to walking
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(a) (b)

(c)

Fig. 8 Mean distance to target phasing configurations—(a) walk-
ing, (b) hopping, (c) synchrony—after each burst cycle in sim-
ulations of the 4-IR model for various strengths of symmetric
inhibitory coupling. The horizontal dashed black line indicates

the threshold for convergence to the target configuration. Error
bars indicate variance; line color indicates coupling strength.
(1) Blue: gsyn = 0.1. (2) Red: gsyn = 5. (3) Green: gsyn = 10. (4)
Magenta: gsyn = 20

from most initial conditions within eight burst cycles,
though a small number of simulations (≈ 5%) took
longer to move away from the hopping configuration.
When contralateral inhibition was at least twice the
strength of ipsilateral inhibition, i.e. gi,i

syn ≥ 20, gi,c
syn ≥

40, the model reached the walking configuration within
2–3 burst cycles. With the right balance of very strong
inhibition, the model converges to the appropriate gait
pattern with biologically reasonable speed; excitation is
not necessary to produce the fundamental locomotor
rhythm.

3.3.2 4-CE and 4-IRCE models

Symmetric inhibition At every combination of gi
syn (in-

hibition) and ge
syn (excitation) values, the convergence

behavior of the 4-CE and 4-IRCE model (which adds
intrasegmental inhibition across the midline) was es-
sentially identical when ipsilateral inhibition and con-
tralateral inhibition were equal in the 4-IRCE model.
We show figures only for the 4-CE model, since
the corresponding figures for the symmetric 4-IRCE
model were virtually indistinguishable, making their



J Comput Neurosci

(a) (b)

(c)

Fig. 9 Relative phasing of bursts in the 4-IR model with sep-
arately varying levels of ipsilateral and contralateral inhibition,
starting from 100 random initial phase configurations. Red trian-

gles indicate phasing after three burst cycles; black circles indicate
phasing after eight burst cycles

presentation redundant. The close similitude of the re-
sults for the 4-CE and symmetric 4-IRCE models indi-
cates that the extra (cross-midline) inhibition present in
the symmetric 4-IRCE model has no noticeable effect
on phasing behavior.

For given values of gi
syn and ge

syn, the two models
had convergence behaviors similar to those of the 2-
I and 2-E models at the same levels of inhibition and
excitation. That is, the rate of convergence to synchrony
in excitatorily coupled pairs in the four-cell networks
were similar to that of the 2-E model for a given ge

syn
value; the analogous statement for the convergence
of inhibitorily coupled pairs was also true. For both
models, excitation below ge

syn = 1 and inhibition below
gi

syn = 10 were effectively weak in terms of achieving bi-

ologically reasonable convergence rates, though these
gsyn values are intermediate to strong according to the
standard introduced in Section 2.3. Such weak phase
resetting behavior in response to strong perturbation
resembles that seen in the 2-I, 2-E, and 4-IR models
(cf. Figs. 4(a–c), 5(a–c); and 7(a)).

At the lowest levels of gi
syn and ge

syn, the relative
phases of the models’ neurons after many cycles re-
mained essentially unchanged from their initial phas-
ing; the results resembled Fig. 7(a) for the symmetric
4-IR model. Weak to intermediate (symmetric) inhi-
bition and weak excitation produced movement in the
relative phasing of the models’ neurons, and the mean
distance to the walking configuration declined slowly,
but without a significant concomitant rise in the mean
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(a) (b)

(c)

Fig. 10 Mean distance to target phasing configurations—
(a) walking, (b) hopping, (c) synchrony—after each burst cycle
in simulations of the 4-IR model with separately varying levels
of ipsilateral and contralateral inhibition. The horizontal dashed

black line indicates the threshold for convergence to the target
configuration. Error bars indicate variance; line color indicates
coupling strength. (1) Blue: gi,i

syn = 5, gi,c
syn = 15. (2) Red: gi,i

syn =
20, gi,c

syn = 5. (3) Green: gi,i
syn = 20, gi,c

syn = 30

distance to hopping and synchrony, indicating no con-
vergence to a fixed phase configuration even after many
cycles (Figs. 11(a) and 12).

For intermediate to strong inhibition, if excita-
tion is increased to intermediate levels, e.g. gi

syn =
1, 5; ge

syn = 1 (Fig. 11(b)), the models converge fairly
rapidly to contralateral flexor-extensor synchrony. The
models’ neurons’ phases align along the line �θ4 ≈ 0
mod 1, �θ2 ≈ �θ3 mod 1. That is, neurons 1 and 4
are synchronized, and 2 and 3 are synchronized, but
the relative phases between the {1, 4} pair and the

{2, 3} pair are uniformly distributed between 0 and
1. Similar, but tighter and more rapid, alignment oc-
curs for moderately strong symmetric inhibition and
excitation (gi

syn = 5, ge
syn = 5, Fig. 11(c)). The imme-

diate alignment along the contralateral flexor-extensor
synchrony axis is reflected in the evolution of mean
distance to target configurations, shown in Fig. 12:
distance to synchrony initially drops substantially, then
rises, while distance to walking declines gradually and
distance to hopping rises fairly quickly to its plateau
value.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Relative phasing of bursts in the 4-CE model for var-
ious coupling strengths, starting from 100 random initial phase
configurations. Red triangles indicate phasing after three burst

cycles; black circles indicate phasing after eight burst cycles.
Results for the 4-IRCE model at the same combinations of gi

syn
and ge

syn are nearly identical
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(a) (b)

(c)

Fig. 12 Mean distance to target phasing configurations—(a)
walking, (b) hopping, (c) synchrony—after each burst cycle in
simulations of the 4-CE model for various various coupling
strengths. The horizontal dashed black line indicates the thresh-
old for convergence to the target configuration. Error bars in-

dicate variance; line color indicates coupling strength. (1) Blue:
gi

syn = 5, ge
syn = 0.1. (2) Red: gi

syn = 1, ge
syn = 1. (3) Green:

gi
syn = 5, ge

syn = 5. (4) Magenta: gi
syn = 10, ge

syn = 1. (5) Cyan:
gi

syn = 20, ge
syn = 0.1 (6) Black: gi

syn = 20, ge
syn = 1

The lack of clustering along the �θ2 + �θ3 ≈ 0
mod 1 line indicates that the synchronization due to ex-
citation does not help the ipsilateral neuron pairs anti-
synchronize. That is, the effects of excitation and (sym-
metric) inhibition are more or less independent of one
another at lower coupling strengths; strong excitatory
coupling in combination with moderately strong sym-
metric inhibition, may be counterproductive, however.
For gi

syn = 5, ge
syn = 5, Fig. 11(c), after rapid alignment

on the contralateral flexor-extensor synchrony axis, the
relative phases move quite slowly. As can be seen from

Fig. 12(a), for this set of coupling strengths the models’
mean distance to walking decreased monotonically, but
very slowly; in terms of convergence rate to walking this
inhibition/excitation combination performs worst.

Looser alignment along the contralateral flexor-
extensor synchrony axis is seen in the same regime
of moderately strong inhibition and excitation when
inhibition is stronger than excitation (Fig. 11(d)). The
models’ behavior in this case is similar to that for inter-
mediate inhibition and excitation (cf. Fig. 11(b), and the
red (2) and magenta (4) lines in Fig. 12), but with more
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rapid convergence towards walking. After aligning on
the �θ4 ≈ 0 mod 1, �θ2 ≈ �θ3 mod 1 axis, the phases
begin to achieve the walking configuration after about
8 cycles.

With stronger inhibition but weak excitation (e.g.
gi

syn = 20, ge
syn = 0.1, Fig. 11(e)), the models’ rela-

tive phases do not move as rapidly towards contralat-
eral flexor-extensor synchrony. Instead, the relatively
stronger inhibition first draws the phases towards the
line of ipsilateral flexor-extensor alternation, �θ2 ≈
0.5, �θ3 − �θ4 ≈ 0.5 mod 1, and in a fashion similar
to the asymmetric 4-IR model with stronger ipsilateral
inhibition (cf. Fig. 9(b)), the 4-CE and symmetric 4-
IRCE models begin to converge towards the walking
configuration along this line, doing so more rapidly
for stronger excitation. (The effect of the additional
inhibitory synapses in the symmetric 4-IRCE model is
small, but noticeable for these combinations of coupling
strengths: they produce slightly faster convergence to
the walking configuration.) From a very small number
(≈ 3%) of initial conditions, the model converges to the
hopping configuration after eight burst cycles.

The 4-CE and symmetric 4-IRCE models reach the
walking configuration fairly rapidly from every initial
condition for gi

syn = 20, ge
syn = 1 (Fig. 11(f)). Within 3

cycles, the models’ mean distance to walking falls below
0.15, and within 5 cycles, both models’ phases clus-
ter tightly within a radius of 0.06 about �θ2 = �θ3 =
0.5, �θ4 = 0. (Note that relative phasing is shown in
Fig. 11(f) only after the third and eighth burst cycles.)
When excitation is increased, however, the conver-
gence slows considerably (not shown). The phases first
align along the contralateral flexor-extensor synchrony
axis, then move towards the walking configuration,
which is reached only after 7–8 cycles, rather than 3–5,
a result similar to that shown in Fig. 11(d).

The differences in convergence seen in the 4-CE
and symmetric 4-IRCE models at various combinations
of strong coupling can be understood in terms of the
relative ‘phasing speeds’ of inhibition and excitation
and competition between the two types of coupling.
Inhibition acts more slowly than excitation: even at the
highest levels of inhibition, the antiphase configuration
is reached only after 2–3 cycles, whereas strong ex-
citation can cause neurons to synchronize within 1–2
cycles. Once excitation has synchronized two neurons,
inhibition must move both of them towards antiphase
(relative to a third neuron) simultaneously. The syn-
chronized pair may effectively act like a single, ‘heavier’
neuron that is more intransigent and less responsive to
the ‘pushes’ that inhibition imparts to it than individual,
unsynchronized neurons would be at the same cou-
pling strengths. If, for example, the contralateral flexor-

extensor pairs are synchronized but the ipsilateral
flexor-extensor pairs are not anti-synchronized, then
inhibition on either side may actually work against inhi-
bition on the other, depending on the relative phasing
of the contralateral pairs. Conversely, if the ipsilateral
neurons are already set in the antiphase configuration
by inhibition, this impedes the contralateral synchro-
nization activity of excitation, which may have to dis-
rupt the antiphase configurations on each side in order
to synchronize flexors and extensor on opposite sides.
Just as excitation opposes inhibition’s disruption of
synchrony in the other situation, inhibition opposes the
disruption of antisynchrony by excitation in this case.
Thus too much excitation relative to inhibition, and vice
versa, may slow the models’ approach to the walking
configuration. There is an optimal balance of symmetric
inhibition and excitation around gi

syn = 20, ge
syn = 1.

Asymmetric inhibition For low levels of excitation,
i.e. ge

syn ≤ 0.01, asymmetric inhibition in the 4-IRCE
model produces phasing behavior very similar that
of the asymmetric 4-IR model at the same levels of
ipsilateral and contralateral inhibition (cf. Fig. 9). In-
termediate to strong excitation (ge

syn ≥ 0.1) acts to ac-
celerate the convergence of the model to the walk-
ing mode. Combinations of gi,i

syn and gi,c
syn that produce

alignment of relative phases in the asymmetric 4-IR
model along either �θ3 ≈ 0.5 mod 1, �θ2 − �θ4 ≈ 0.5
mod 1 (rhythmic left-right alternation to walking) or
�θ2 ≈ 0.5 mod 1, �θ3 − �θ4 ≈ 0.5 mod 1 (hopping to
walking) produce similar alignment in the asymmetric
4-IRCE model (Fig. 13(a) and (b)). With the addi-
tional excitation, the asymmetric 4-IRCE then model
converges along these axes to the walking mode within
about 8 burst cycles, doing so slightly more rapidly
when contralateral inhibition is stronger than ipsilateral
inhibition (Fig. 14).

Intermediate excitation (ge
syn ≥ 1) in combination

with the appropriate balance of (asymmetric) ipsilateral
and contralateral inhibition (gi,i

syn ≥ 10, gi,c
syn ≥ 5) pro-

duces rapid convergence (within 2–3 burst cycles) to
walking, as seen in Fig. 13(c). This is half the amount
of inhibition needed to produce comparable conver-
gence to walking in the symmetric 4-IRCE model at
the same level of excitation. Rapid convergence oc-
curs for asymmetric inhibition in this range regard-
less of whether contralateral or ipsilateral inhibition
is stronger, though the model converges fastest with
strong excitation and stronger contralateral than ipsilat-
eral inhibition, as seen in Figs. 13(d) and 14(a). Rather
than accelerating convergence to the walking mode,
increasing excitation beyond ge

syn = 1 in the asymmetric
4-IRCE model may somewhat impair convergence, as
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(a) (b)

(c) (d)

(e)

Fig. 13 Relative phasing of bursts in the 4-IRCE model with
separately varying levels of ipsilateral and contralateral inhibi-
tion, starting from 100 random initial phase configurations. Red

triangles indicate phasing after three burst cycles; black circles
indicate phasing after eight burst cycles
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(a) (b)

(c)

Fig. 14 Mean distance to target phasing configurations—(a)
walking, (b) hopping, (c) synchrony—after each burst cycle
in simulations of the 4-IRCE model for various various cou-
pling strengths. The horizontal dashed black line indicates the
threshold for convergence to the target configuration. Error
bars indicate variance; line color indicates coupling strength.

(1) Blue: gi,i
syn = 5, gi,c

syn = 15, ge
syn = 0.1. (2) Red: gi,i

syn =
20, gi,c

syn = 5, ge
syn = 0.1. (3) Green: gi,i

syn = 20, gi,c
syn = 5, ge

syn = 1.

(4) Magenta: gi,i
syn = 20, gi,c

syn = 40, ge
syn = 1. (5) Cyan: gi,i

syn =
20, gi,c

syn = 30, ge
syn = 5

it also does in the case of symmetric inhibition. The
greater excitation induces the neurons’ relative phases
to align along �θ4 ≈ 0 mod 1, �θ2 ≈ �θ3 mod 1 im-
mediately, as seen in Fig. 13(e), then inhibition moves
the relative phases along this axis towards the walking
configuration within three burst cycles, producing final
convergence behavior very similar to that for stronger
ipsilateral than contralateral inhibition and lower exci-
tation, gi,i

syn = 20, gi,c
syn = 5, ge

syn = 1. These results sup-
port the idea that the synchronizing effect of excitation

is stronger and more rapid than the antisynchronizing
action of inhibition at comparable synaptic strengths.

3.4 Summary

The full CPG model is capable of reproducing the fun-
damental locomotor rhythm, but convergence to walk-
ing is rather slow and the model’s performance depends
sensitively on the balance of connection strengths
among several critical synapses, and on its initial
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phasing configuration. Strong reciprocal inhibition be-
tween ipsilateral flexor and extensor RGNs is necessary
for convergence in biologically reasonable time, as is
strong cross-cord inhibition between certain CIN-CIN
and CIN-RGN pairs. Weak to moderate cross-cord
excitation has a substantial modulatory effect on the
full model’s convergence behavior. For the various key
synapses, higher strengths generally correlate positively
with more rapid convergence to the fundamental loco-
motor rhythm.

Strong inhibition is needed in order for two recipro-
cally coupled RGNs to achieve antisynchrony in eight
or fewer burst cycles; somewhat weaker reciprocal ex-
citation is needed to achieve synchrony in the same
time frame. For both reciprocal inhibition and exci-
tation, higher coupling strengths produce more rapid
convergence to the final configuration, but conver-
gence is non-monotonic: the relative phasing of the
coupled neurons may shift in a seemingly erratic fash-
ion for some time before the neurons achieve stable
(anti)synchrony.

Four-cell networks require strong ipsilateral and
contralateral inhibition in order for coherent locomo-
tor patterns to emerge. In general, higher synaptic
strengths lead to faster convergence. In the absence of
excitation, symmetric ipsilateral and cross-cord inhibi-
tion favors convergence to the hopping configuration;
substantially stronger contralateral than ipsilateral inhi-
bition produces walking. Reciprocal cross-cord flexor-
extensor excitation significantly accelerates conver-
gence to walking in four-cell networks with symmetric
ipsilateral and contralateral inhibitory connections, as
well as in those with asymmetric inhibitory config-
urations. Convergence to the fundamental locomotor
rhythm occurs most rapidly in networks combining
strong reciprocal ipsilateral flexor-extensor inhibition,
stronger contralateral flexor-flexor/extensor-extensor
inhibition, and moderate reciprocal cross-cord flexor-
extensor excitation. Among the models we tested, the
asymmetrical 4-IRCE model performs best as mea-
sured by convergence speed and stability of the walk-
ing mode.

4 Discussion

We have developed a model of the RSHL CPG as a
network of coupled oscillators, incorporating empirical
data to construct the network from conductance-based
model neurons that are synaptically coupled according
to functional connection patterns inspired by anatom-
ical and electrophysiological studies. We investigated
the model’s ability to generate the basic walking gait,

and its convergence and phase resetting behavior. Our
model stably reproduces the fundamental locomotor
walking rhythm, viz. ipsilateral alternation between
flexor and extensor bursts simultaneous with contralat-
eral synchronization of flexor and extensor bursts, but it
does not meet our expectations for robustness or rapid
recovery to this rhythm after perturbation. In dynami-
cal terms, the domain of attraction for the fundamental
locomotor rhythm is small and convergence of nearby
trajectories to this rhythm requires the equivalent of
many steps. These results provide insight into the or-
ganization of the RSHL CPG.

The specific location, structure and organization of
spinal CPGs remain unknown. Model simulations are
one way to test ideas about this organization and to de-
velop hypotheses for further scrutiny. The models stud-
ied in this paper are based on networks in which four
independent oscillators each drive extensor and flexor
muscle groups on right and left hindlimbs. These oscil-
lators are coupled to one another synaptically through
interneurons in our twelve cell model and directly
in our four-cell models. These architectures resemble
abstract networks of coupled oscillators in which the
coupling coordinates the phases among the oscillators
but plays little role in determining the amplitude or
stability of the limit cycles produced by each oscillator.
Mathematical analysis of these models is customarily
reduced to interactions of the phases. Our models bring
more biological structure to these classes of models.
For simplicity, we chose each oscillator to be a burst-
ing neuron that fires action potentials during its ac-
tive phase and coupled these neurons with “standard”
model synapses. We found that the effective phase
coupling in these models is weak, suggesting that either
some of our hypotheses about fictive locomotion are
wrong or that the particular model architectures that
we studied are poor representations of the organization
of the RSHL CPG.

It is frequently said that models are more useful
when they are wrong than when they are right. Below
we review some of our modeling ansätze, namely the
use of endogenously bursting model neurons as com-
ponent oscillators and the coupling of these oscillators
according to highly symmetric network architectures, in
light of our models’ performance. Our findings prompt
questions about why the models behave in the manner
we observed and suggest experiments which could test
organizational properties of the RSHL CPG that dis-
tinguish models of the type studied in this paper from
alternatives.

Model oscillators In the unit burst generator rubric
under which our models fall, the CPG for hindlimb
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movement is distributed along the spinal cord in a
modular fashion, with UBGs capable of independent
oscillation controlling individual joints or synergistic
muscle groups. The original formulation of the UBG
hypothesis is agnostic with regard to the rhythmogenic
mechanism underlying each UBG’s bursting behavior,
and positing that “it is likely that CPGs operate with
several, possibly redundant mechanisms assuring an
appropriate pattern generation under a variety of con-
ditions” (Grillner 1981). We model each flexor and
extensor UBG as a single endogenously bursting neu-
ron (RGN) with one slow variable, so that the active
segment of each RGN’s endogenous burst represents
the total activity of its respective UBG module (which
in turn represents a group of neurons whose combined
oscillatory activity could arise through any number of
mechanisms). The interaction of flexor/extensor UBG
modules to produce the CPG’s output is thus reduced
to the interaction of single bursters.

An alternative configuration is the classic half-center
oscillator, wherein two tonically spiking neurons are
coupled via reciprocal inhibition, with one neuron rep-
resenting a flexor oscillator and the other an exten-
sor oscillator. The two cells alternate between flexor
(respectively, extensor) activity and extensor (respec-
tively, flexor) silence as the inactive cell either escapes
or is released from suppression by the currently active
cell. Standard phase-plane analyses of frequency and
phasing control in half-center networks rely on a reduc-
tion to a coupled relaxation oscillator regime in which
the relative positions of the oscillators’ fast and slow
nullclines determine the cells’ activity patterns (Skinner
et al. 1994; Rowat and Selverston 1997). Daun et al.
use this technique in a recent paper to compare the
range of oscillation periods in half-center oscillators
built of component neurons having a variety of intrinsic
oscillatory (spiking) mechanisms, including an INaP-
based mechanism related to our RGN model (Daun
et al. 2009). These studies have elucidated the roles of
escape and release in half-center networks’ responses
to excitatory inputs, such as tonic drive, and in con-
trol of network oscillation frequency. In particular, the
intrinsic mechanisms underlying their component neu-
rons’ oscillations may play a significant role in deter-
mining the networks’ range of oscillation frequencies
and response to asymmetric drives. These functional
characteristics may constrain the intrinsic properties
of component neurons in half-center oscillator CPG
models.

Though the classic half-center oscillator and the 2-
I network, for example, are diagrammatically similar,
results from analyses of half-center oscillator models
cannot be directly applied to the coupled UBG models

we study in this paper. Geometrically and dynami-
cally speaking, spiking and bursting neuronal models—
coupled or uncoupled—are qualitatively dissimilar, and
this dissimilarity is a consequence of the separation
of time scales effected by a slowly evolving dynamic
variable, rather than the presence of any specific cur-
rent (Rinzel and Lee 1987; Rinzel 1987; Izhikevich
2000). The dynamics of bursting and relaxation os-
cillations are not equivalent, the behavior of coupled
bursters may be quite complex, and half-center oscilla-
tor phase-plane analyses do not naively carry over to
the case of coupled bursters (Best et al. 2005; De Vries
and Sherman 2005; Sherwood 2008; Sherwood and
Guckenheimer 2009). (The four and twelve-cell models
we consider also combine inhibitory and excitatory
coupling, further confounding the sort of analysis per-
formed for half-center oscillatory networks.)

The salient factor for our RSHL CPG models con-
sists of the phase response properties of the burst-
ing neurons comprising the models’ oscillators. We
have studied these properties and report our findings
in detail elsewhere (Sherwood 2008; Sherwood and
Guckenheimer 2009). These mathematical studies are
based upon the concept of isochrons, sets of points
approaching a limit cycle with the same asymptotic
phase. Phase response curves describe the change in
asymptotic phase produced by an input that moves the
state of the system off the limit cycle and are deter-
mined by the geometry of the system’s isochrons. Here
the inputs are the post-synaptic response to an action
potential in a pre-synaptic cell.

The phase response of our model neurons is highly
sensitive to the amplitude and phase of the input. As a
general rule of thumb, we find that the largest phase
responses come from those that alter the number of
spikes during the active phase of a bursting oscillation.
Large synaptic inputs are required to produce changes
in the active burst length. Excitatory inputs have a
larger effect than inhibitory inputs, particularly near
the initiation of the active phase of a burst. These
phase response characteristics are found in a wide
range of bursting neural models, and are related to the
high degree of curvature for isochrons of bursting—but
not tonically spiking—neural models (Sherwood 2008;
Sherwood and Guckenheimer 2009). The influence of
phase response sensitivity permeates the results that we
found in all of the two, four, and twelve-cell networks
that we studied. Our findings prompt further investi-
gation of the phase response curves of bursting neu-
rons. Do real oscillatory neurons have the extremely
sensitive phase responses of the model neurons studied
here? What factors in model neurons contribute to
sensitive phase responses? Does physical separation
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of synapses from the conductances underlying spiking
ameliorate the sensitivity of phase responses? Answers
to these questions will help resolve whether UBGs
comprising endogenously bursting neurons alone can
be adequate building blocks for realistic locomotor
CPG models; the results presented in this paper hint
that this may not be so.

Network architectures In accordance with the theory
of coupled cell networks, all of the CPG architectures
examined were highly symmetric; those networks with
unequal ipsilateral and contralateral flexor-extensor
coupling strengths retained their bilateral symmetry.
The extent to which the biological CPG possesses such
symmetries is unknown, and evidence from normal
locomotor function indicates more limited cross-cord
coupling symmetry: as seen in both intact and de-
cerebrate animals receiving midbrain stimulation, the
stance phases of the left and right legs overlap dur-
ing walking, and ipsilateral flexors and extensors may
maintain different periods, enabling smooth variation
of walking speed without changing gait (Pearson and
Rossignol 1991; Yakovenko et al. 2005; Endo and
Kiehn 2008). The asymmetric activation of flexors and
extensors suggests that for animals capable of normal
gaits, the functional strength of inhibitory and/or ex-
citatory coupling between left and right flexors may
be rather different than that between left and right
extensors. Thus, though it is their symmetry proper-
ties that connect our models to mathematical theory,
our models’ symmetries may be viewed as artificially
limiting the models’ ability to reproduce the full range
of realistic locomotor patterns found in intact animals.
The experiments which primarily inform our modeling
efforts—fictive locomotor experiments in which the
whole spinal cord is removed, and thus all sensory
input is lost—concern a much more limited range of
locomotor-like behavior, however, and recordings from
ventral root motoneuron bundles at the L2 and L5 seg-
ments during these experiments display more substan-
tial symmetry between periods of flexor and extensor
activation than what is seen in experiments in which
the CPG is not isolated from sensory feedback (Kiehn
and Kjaerulff 1996, 1998; Kiehn et al. 2000; Kiehn and
Butt 2003). Bearing in mind that the biological network
may not share all the symmetries of the models, we
consider implications of our modeling results for the
organization of synaptic coupling in the RSHL CPG.

It is clear from laboratory experiments that inhibi-
tion plays an important role in patterning the activity of
the rodent lumbar spinal cord. Inhibition alone could
suffice to generate the walking rhythm in our mod-
els. However, the four-cell network without excitation,

4-IR, rapidly converged to the fundamental locomo-
tor rhythm only when overall inhibition levels were
extremely high and contralateral inhibition was 50%
greater than ipsilateral inhibition. When ipsilateral in-
hibition was equal to or greater than contralateral inhi-
bition (and overall inhibition was very strong), the 4-IR
preferentially converged to the hopping configuration.
(We note that the strong preference for hopping cannot
be deduced by solely considering the symmetries of
the network: the square symmetry of the symmetric
4-IR model makes analysis of the set of admissible
oscillatory configurations particularly involved (Swift
1988), and were the dynamics of the RGN oscilla-
tors reducible to those of simple phase oscillators, a
stable hopping configuration would not be predicted
(Golubitsky et al. 2006).) Other four-cell models re-
quired high ratios of inhibition to excitation to converge
to the fundamental locomotor rhythm in biologically
reasonable time. In particular, strong reciprocal inhi-
bition between RGNs was necessary to obtain ipsilat-
eral flexor-extensor alternation. Moderate cross-cord
excitation also significantly accelerated convergence of
the 4-CE and 4-IRCE models to the fundamental loco-
motor rhythm, as compared to the behavior of the 4-
IR model at identical levels of inhibition. These results
point to a requirement for strong inhibition vis-à-vis
excitation to set the proper phasing of rhythmically
oscillatory neurons in the CPG.

Symmetric coupling, specifically equally strong con-
tralateral and ipsilateral inhibition, appeared to de-
grade the four-cell models’ convergence to the fun-
damental locomotor rhythm. In the symmetric 4-IR
model, the default phase configuration was hopping,
rather than walking, and for a given level of exci-
tation, the asymmetric 4-IRCE model converged to
the walking mode faster than the symmetric 4-IRCE
model. Comparison of the output from the 4-CE and
symmetric 4-IRCE models indicated that cross-cord
intrasegmental reciprocal inhibition played no notice-
able role in establishing flexor-flexor/extensor-extensor
alternation. Instead, comparatively low levels of excita-
tion rapidly synchronized contralateral flexor-extensor
pairs. The biological network does not react in this way:
Whole-cord experiments in which fictive locomotor ac-
tivity is first induced by bath application of neuromodu-
lators (5-HT, NMDA, DA), and then inhibitory synap-
tic inputs are pharmacologically blocked typically result
in synchronous intrasegmental left-right activity. The
better performance of the asymmetric models and the
inconsistency of their symmetric counterparts’ behavior
with laboratory experiments lead us to suspect that ab-
stract CPG models which rely on network symmetries
for analysis may have limited success in capturing the
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behavior of specific biological CPGs (cf. Buono and
Golubitsky 2001; Buono 2001).

Taken together, the findings above suggest that in-
trasegmental cross-cord inhibition may be functionally
much stronger than ipsilateral intersegmental inhibi-
tion. In this scenario, the primary function of ipsilateral
intersegmental inhibition is to establish the initial alter-
nation of flexors and extensors on each side. Once they
burst rhythmically in antiphase, ipsilateral interneuron
pools driving flexors and extensors could maintain their
phasing without significant drift in the absence of ad-
ditional inhibition or confounding excitatory inputs.
The participation of independent subpopulations of en-
dogenous bursters in each segment might contribute to
ipsilateral flexor-extensor phase stability. Our models
predict that ipsilateral intersegmental inhibition would
still need to be quite strong to effect the initial flexor-
extensor alternation; the strength of cross-cord con-
nections would determine whether hopping or walking
is the system’s preferred locomotive mode. If cross-
cord inhibition is the predominant means for effecting
left-right alternation, then the 4-IR model suggests
that it must be significantly stronger than ipsilateral
inhibition in order for walking, rather than hopping,
to be the default configuration. Or cross-cord exci-
tatory connections that promote synchrony between
contralateral flexor- and extensor-phased interneuron
groups could play the primary role in disposing the
system to walk, as in the 4-CE and 4-IRCE models. In
this case, cross-cord inhibition could be relatively weak,
but we would not predict blocking inhibition to lead
to cross-cord synchrony unless there was also (possibly
weak) intrasegmental cross-cord excitation, which has
been observed anatomically and from electrophysiolog-
ical experiments (Quinlan and Kiehn 2007). Transgenic
mouse lines in which particular groups of excitatory
or inhibitory interneurons are rewired or are miss-
ing (Kiehn and Kullander 2004; Lanuza et al. 2004;
Goulding and Pfaff 2005; Kiehn 2006) are promising
tools for investigating these various possibilities. As
an example, increasing crossed excitation in EphA4
mutant mice enhances intrasegmental left-right syn-
chrony, resulting in a hopping gait, and pharmacolog-
ically increasing crossed inhibition in the mutant mice
can restore the normal left-right alternation (Dottori
et al. 1998; Kullander et al. 2003). Our simulations
are consistent with these results if the miswiring due
to loss of EphA4 results in increased intrasegmental
(flexor-flexor and extensor-extensor) excitatory cou-
pling (Yokoyama et al. 2001; Butt et al. 2005).

How does the biological CPG switch quickly from
one gait to another? Neuromodulation may rapidly
alter the balance between two or more synaptic subsets

which each tend to push the system towards a different
locomotor configuration. There are manifold possibil-
ities for shifting from one particular gait to another.
For instance, if the default CPG walking program were
maintained by a combination of asymmetric inhibition
and cross-cord excitation similar to that of the 4-IRCE
model, then a switch from walking to hopping could
be effected by selectively weakening cross-cord flexor-
extensor excitation and strengthening ipsilateral flexor-
extensor inhibition to bring the CPG to a configuration
resembling the symmetric 4-IR model, which prefer-
entially hops. If walking were normally produced by
a purely inhibitory network like the asymmetric 4-IR
model, then similar neuromodulatory rebalancing to-
wards inhibitory symmetry should have the same effect.
Alternatively, sufficiently strong activation of cross-
cord (intrasegmental flexor-flexor/extensor-extensor)
excitatory connections may reset the CPG’s gait to hop-
ping. The models we studied responded more rapidly
to changes in excitation than to changes in inhibition;
we suggest that gait selection in the real CPG may
be accomplished primarily through neuromodulation
of various subsets of excitatory synapses, rather than
by changing the strength of inhibition. Evaluating the
biological plausibility of this hypothesis requires a more
comprehensive and detailed profile of CPG anatomy
and physiology than is currently available.

Alternative modeling approaches The CPG models
studied in this paper are more biophysically realistic
elaborations than abstract, analytically tractable cou-
pled oscillator models that were expected to produce
the fundamental locomotor rhythm largely due to sym-
metry properties. Our ‘minimalist’ approach increases
model complexity incrementally to aid in elucidating
which model features are necessary in order to repro-
duce a limited set of behaviors experimentally observed
in the biological CPG. Further along the continuum
of complexity are large scale models that incorporate
large amounts of experimental data and which attempt
to reproduce a broad range of locomotor patterns ob-
served under a wide range of conditions.

In this vein, Rybak et al. have recently developed
a model of the mammalian spinal locomotor CPG
(Rybak et al. 2006a, b) based on experiments involving
stimulation of afferent sensory pathways and spon-
taneous ‘deletions’ in which some motoneuron pools
fail to fire for one or more cycles, then resume their
normal activity (Lafreniere-Roula and McCrea 2005;
McCrea and Rybak 2007). This model stably repro-
duces the pattern of motoneuron burst phasing seen in
fictive locomotor preparations from decerebrate cats,
including responses to afferent sensory stimulation and
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spontaneous deletions, and it reproduces the biologi-
cal range of locomotor cycle frequencies and flexor-
extensor phase durations as the strength of higher level
excitatory drive is varied.

In contrast to our CPG models, the model of Rybak
et al. possesses rapid phase resetting properties and
does not exhibit sensitive phase responses. Their model
is substantially more complex than ours, and the two
models have several significant differences: (1) Their
underlying neuron models are more complicated, pos-
sessing more intrinsic currents and multiple compart-
ments (though INaPwas also the key slow current in
their model rhythmogenic neurons). (2) Rhythmogene-
sis, pattern formation, and motor output are performed
in separate network layers, such that the rhythmo-
genic layer receives tonic drive with no feedback from
the pattern-generating layer, and oscillatory activity of
rhythmogenic layer half-centers is modified by the pat-
tern generation layer prior to the motoneuronal level.
(3) Motoneuronal output feeds back to the motoneu-
rons and to higher levels via inhibitory interneurons.
(4) Motoneuron and interneuron pools are modeled by
populations having distributions of intrinsic properties,
rather than single neurons. (5) Synapses are modeled
with alpha functions instead of an autonomous synapse
model with presynaptic voltage-dependent neurotrans-
mitter release.

The contrast between the structure and output of
their full-featured, complex model and those of our
minimal model offers an opportunity to explore which
architectural features and intrinsic mechanisms are re-
sponsible for particular phasing and gait control prop-
erties in the mammalian spinal locomotor CPG. It is
possible to vary the period and duty cycle of the RGN
oscillators in our models by changing tonic drive or
by modulating INaP or the leak current, thus chang-
ing in the speed of the locomotor cycle. Changing
synaptic weights alone does not substantially change
locomotor cycle frequency. We do not expect changing
the locomotor cycle speed via modulation or exter-
nal drive to ameliorate the models’ slow convergence
to walking nor to alter the models’ phase resetting
properties substantially; our investigations along these
lines support this view. Recent experiments indicate
that a specific class of ventral interneurons, V2a, is
responsible for ensuring proper left-right alternation
during high speed locomotion (Crone et al. 2008, 2009),
acting to increase functional inhibition between left and
right hemicords at higher speeds. One hypothesis is that
the functional strength of the commissural excitatory
pathway increases with locomotor speed, and the V2a
interneurons act to maintain the proper balance be-
tween cross-cord inhibition and excitation. Our models

required strong contralateral inhibition to produce a
walking gait at a single fixed speed. An avenue for ex-
ploration, which could be pursued comparatively with
our models and the model of Rybak et al., would be
to investigate convergence and gait-switching behavior
as both oscillator frequency and synaptic strength are
dynamically modified.

It seems likely that both the separation of rhyth-
mogenesis from pattern formation and the mixing of
traditional half-center and unit burst generator archi-
tectures contribute to the robust phasing attributes
of the Rybak et al. model, including rapid recovery
from deletions. Analyses of more abstract models of
gait production indicate that UBG-based architectures
should suffice to stably reproduce and switch among a
variety of basic locomotor rhythms, without requiring
multiple network layers, but our single-layer models’
slow performance at these tasks prompts us to ask
whether (or how) the multilayer structure of the Rybak
et al. model promotes rapid convergence to walking
gaits and rapid resetting in response to perturbations.
Other aspects of the Rybak et al. model may contribute
to these features.

The experimental evidence for deletions, in partic-
ular the observation that the spinal cord returns to its
original phase after a few perturbed cycles, supports
the hypothesis that the biological CPG has a multi-level
structure such as the one instantiated in the Rybak et al.
model, where a higher level rhythmogenic ‘clock’ drives
a pattern formation layer with periodic excitatory input.
In contrast, there is no obvious means for robustly
generating spontaneous locomotor rhythm deletions
in either the four-cell or twelve-cell networks studied
here. Though deletions are not among the output pat-
terns our single-layer models were intended to repro-
duce, such behavior could conceivably be obtained us-
ing the same synaptic architecture in conjunction with
oscillators having more complex intrinsic dynamics.
Neither current mathematical theory nor experimental
data provide precise guidance for altering the neurons’
intrinsic properties to achieve this aim, however. It is
possible that strong, periodic excitatory inputs could act
to organize the phase relationships among the RGNs
in our models. One modeling suggestion would be to
treat our current models as a pattern formation layer
and provide appropriately timed periodic inputs to the
RGNs. Improved convergence behavior from such a
configuration would further support the idea of a mul-
tilayer CPG.

Our models suggest that a CPG architecture com-
posed purely of UBGs requires functionally strong
synaptic inputs to effect rapid phase resetting. The
difference in synapse models precludes direct compar-
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ison of synaptic strengths between CPG models; it is
unclear whether the synaptic coupling in the Rybak et
al. model is effectively weak or strong according to our
classification scheme. We have investigated the effect
of synapse model type on phase response and have
found that the fine details of phase response may vary
significantly with synapse model (Sherwood 2008), but
this subject deserves further study. Post-synaptic cur-
rents have been measured in some spinal motoneurons
and interneurons under various conditions (Raastad
et al. 1997; Zhong et al. 2007), but there has been
no systematic survey of the strength of coupling be-
tween identified subpopulations of spinal neurons. A
complete map of the spinal synaptic architecture is
far too much to ask for, but additional experimental
data regarding the strength of cross-cord commissural
inhibition and excitation could help substantially to
distinguish between model alternatives and to improve
model revisions.

The weak phase stability of our models has not
been directly tested in fictive locomotion. It is known
that sensory feedback has the capacity to immediately
reset the locomotor rhythm for walking (Hultborn
et al. 1998), and that feedback connections in the pro-
priospinal network modify the basic CPG rhythm dur-
ing normal locomotion (Sqalli-Houssaini et al. 1993),
but perturbation experiments have not been performed
with the isolated spinal cord preparations that we
model. Nonetheless, we expect that we would obtain
similar results if our models were modified to include
feedback from MNs to RGNs. Very large inputs are
required to initiate or terminate bursts abruptly in our
model RGNs. The slow variable underlying the oscil-
lations in these cells is the gating variable for persis-
tent sodium current, and this is not affected directly
by synaptic inputs. If the spinal CPG does consist of
independent endogenous oscillators, then our obser-
vations suggest that bursting is supported by a richer
set of intrinsic conductances that allow these cells to
be switched from active to inactive states rapidly by a
synaptic input. An alternative hypothesis, is that the
spinal CPG does not consist of independent oscillators.
One possibility is that flexor-extensor alternation is
produced by reciprocal inhibition of (subnetworks of)
neurons that fire tonically in isolation (as in the Rybak
et al. model), or that burst by mutual excitation and
fatigue.

Yet another alternative hypothesis is that the phase
resetting properties of the RSHL CPG depend upon
network properties, specifically that they depend upon
networks of coupled heterogeneous oscillatory neu-
rons, or neurons with varying post-inhibitory rebound.
Further work is needed to separate the influence of

population effects and individual cellular character-
istics in setting networks’ phase resetting properties.
Distributions of intrinsic properties among neurons
coupled with mutual excitation may result in entities
that have less erratic phase responses than the sin-
gle neuron oscillators in our networks. Computational
models of the lamprey swimming CPG and the pre-
Bötzinger complex have found that populations with
distributions of intrinsic properties have more robust
firing properties than single neuron models (Hellgren
et al. 1992; Butera et al. 1999b), but we are unaware
of any study explicitly testing the phase resetting prop-
erties of biophysically realistic models of single neu-
rons and populations. Assuming that individual cells
in the spinal CPG could be identified experimentally,
measurements of many cells’ intrinsic properties would
allow the distribution of parameter values to be es-
timated. The response of the network to stimulation
of identified (classes of) neurons at various phases of
the locomotor rhythm could also be measured, giving a
sense of the CPG network’s sensitivity to the activity
of single (classes of) cells (Zelenin et al. 2001). One
means of achieving this might be to use transgenic
mouse lines in conjunction with technologies for opti-
cal control of neuronal excitability (channelrodopsin-
2, photoswitchable activity label, etc.) to selectively
activate or suppress populations of identified neurons
at specific phases of the rhythm (Zhang et al. 2006;
Szobota et al. 2007; Han and Boyden 2007; Fortin et al.
2008). The combined results of these experiments could
aid in assessing the role of population effects on the
phase resetting properties of the network.

Acknowledgements We thank Ole Kiehn for valuable discus-
sions during the course of the research and useful comments
on earlier versions of this paper. This work was supported
by NIH CRCNS grant 1R01NS050943, DOE grant DE-FG02-
93ER25164, and NSF FIBR grant 0425878 subcontract SA4554-
10295PG.

Appendix: CPG model equations

Membrane voltage for model RGN cells is determined
by spiking Na+ and K+ currents, a persistent sodium
current, and a leak current:

V̇ = −(INa + IK + INaP + IL − Iapp)/C (4)

while the equation governing MN and CIN cell mem-
brane voltage omits the persistent sodium current:

V̇ = −(INa + IK + IL − Iapp)/C (5)
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Membrane currents have the forms

INa = gNam3
∞(V)(1 − n)(V − VNa) (6)

IK = gKn4(V − VK) (7)

INaP = gNaPmNaP∞(V)h(V − VNa) (8)

IL = gL(V − VL) (9)

and dynamic activation variables are governed by equa-
tions of the form

ẏ = (y∞(V) − y)/τy(V) (10)

for y ∈ {h, n}.
Membrane voltage-dependent steady state equa-

tions for the (in)activation of the various currents have
the form

x∞(V) = (1 + exp((V − θx)/kx))
−1 (11)

and the equations for voltage-dependent time constants
have the form

τy(V) = τ y/ cosh[(V − θy)/(2ky)] (12)

where x ∈ {m, mNaP, h, n} and y ∈ {h, n}.
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