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Computing Slow Manifolds of Saddle Type∗

John Guckenheimer† and Christian Kuehn‡

Abstract. Slow manifolds are important geometric structures in the state spaces of dynamical systems with
multiple time scales. This paper introduces an algorithm for computing trajectories on slow man-
ifolds that are normally hyperbolic with both stable and unstable fast manifolds. We present two
examples of bifurcation problems where these manifolds play a key role and a third example in
which saddle-type slow manifolds are part of a traveling wave profile of a partial differential equa-
tion. Initial value solvers are incapable of computing trajectories on saddle-type slow manifolds,
so the slow manifold of saddle type (SMST) algorithm presented here is formulated as a boundary
value method. We take an empirical approach here to assessing the accuracy and effectiveness of
the algorithm.

Key words. invariant slow manifold, canard, collocation method, singular perturbaton

AMS subject classifications. 37M20, 34E17, 34C26

DOI. 10.1137/080741999

1. Introduction. Slow-fast vector fields have the form

εẋ = f(x, y, ε),
ẏ = g(x, y, ε)

(1.1)

with x ∈ Rm the vector of fast variables, y ∈ Rn the vector of slow variables, and ε a small
parameter that represents the ratio of time scales. The pair (x, y) will be denoted by z, and
the vector field will be written ż = F (z). Invariant slow manifolds on which the motion of
the system has speed that is O(1) are a common feature of slow-fast systems. Nevertheless,
simulation of these systems with explicit numerical integration algorithms is limited to time
steps that are O(ε) due to numerical instabilities. Indeed, trajectories often spend most
of their time following attracting slow manifolds. Implicit “stiff” integration methods [23]
compute trajectories along the attracting slow manifolds, taking time steps that are O(1)
while avoiding the numerical instabilities of explicit methods. However, no initial value solver
will compute forward trajectories that evolve on nonattracting slow manifolds because the
geometric instability of these trajectories is such that nearby initial conditions diverge from
one another at exponential rates commensurate with the fast time scale. Even an exact initial
value solver in the presence of round-off errors of magnitude δ will amplify this round-off error
to unit magnitude in a time that is O(−ε log(δ)). Trajectories on slow manifolds that are
repelling in all normal directions can be computed by reversing time, but different strategies
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are needed to compute trajectories that lie on slow manifolds of saddle type. This paper
presents an algorithm that directly computes accurate trajectories of slow manifolds of saddle
type. The most similar work on computing these manifolds has been AUTO computations that
continue families of trajectories to obtain portions of a saddle-type slow manifold. Examples
include a slow manifold that lies in the unstable manifold of a three-dimensional model of a
cardiac pacemaker [31] and segments of homoclinic orbits in the model of FitzHugh–Nagumo
traveling-waves [7] studied further in section 3.3 of this paper.

The existence of normally hyperbolic slow manifolds is established by Fenichel theory
[12, 27]. The singular limit ε = 0 of system (1.1) is a differential algebraic equation with
trajectories confined to the critical manifold S = S0 defined by f = 0. At points of S where
Dxf is a regular m × m matrix, the implicit function theorem implies that S is locally the
graph of a function x = h(y). This equation yields the vector field ẏ = g(h(y), y, 0) for the slow
flow on S. The geometry is more complicated at fold points of S where Dxf is singular. It is
often possible to extend the slow flow to the fold points after a rescaling of the vector field [22].
Fenichel proved the existence of invariant slow manifolds Sε where all eigenvalues of Dxf have
nonzero real parts. For ε > 0 small, these normally hyperbolic slow manifolds are within an
O(ε) distance from the critical manifold S0 and the flow on Sε converges to the slow flow on
S0 as ε → 0. Fenichel theory is usually developed in the context of overflowing slow manifolds
with boundaries. Trajectories may leave these manifolds through their boundaries. In this
setting, slow manifolds are not unique, but the distance between a pair of slow manifolds
is “exponentially small,” i.e., of order O(exp(−c/ε)) for a suitable positive c, independent
of ε [27].

The next section of this paper presents the slow manifold of saddle type (SMST) algorithm.
This section gives an estimate of the order of accuracy of the algorithm, augmented by analysis
of a linear system for which there are explicit solutions of both the solutions of the differential
equations and the boundary value solver.

The third section of the paper presents numerical investigations of three examples:
1. a three-dimensional version of the Morris–Lecar model for bursting neurons that was

used by David Terman in his analysis of the transition between bursts with different
numbers of spikes [41, 32],

2. a three-dimensional system whose homoclinic orbits yield traveling-wave profiles for
the FitzHugh–Nagumo model [7, 19], and

3. a four-dimensional model of two coupled neurons studied by Guckenheimer, Hoffman,
and Weckesser [18].

Empirical tests of the precision of the algorithm are given for the Morris–Lecar model.

2. The SMST algorithm. This section describes a collocation method called the SMST
algorithm for computing slow manifolds of saddle type in slow-fast systems. Collocation meth-
ods [1, 2, 3, 8, 4, 10, 11] are well-established methods for solving boundary value problems.
The algorithm described in this paper is not a new collocation method [21, 15]: the subtlety
lies in the formulation of a boundary value problem that yields discrete systems of equations
with well-conditioned Jacobians. The crucial part of the geometry is to specify boundary con-
ditions for trajectory segments on a slow manifold that yield well-conditioned discretizations.
Two issues that must be dealt with in formulating the algorithm are that (1) the boundary
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conditions must determine a unique slow manifold in circumstances where there is an entire
“tube” of such manifolds, and (2) any pair of trajectories that lie close to the slow manifold
are “exponentially close” along most of their length.

A trajectory segment γ : [a, b] → Rm+n of system (1.1) is determined by its initial point
γ(a) or by another set of m + n boundary conditions. Our goal is to compute trajectories
that follow a slow manifold, but we do not know any points on that manifold. What we
do know is that trajectories approach a slow manifold at a fast exponential rate and then
diverge from the manifold at a fast exponential rate. We find these trajectories as solutions
to a two point boundary value problem with boundary conditions at both γ(a) and γ(b) that
constrain the trajectory to follow the slow manifold except for short time segments near its
ends. The singular limit of the trajectories we seek are candidates γ0 that consist of a fast
initial segment approaching the critical manifold S along a strong stable manifold, followed
by a slow segment along S, followed by a fast segment that leaves S along a strong unstable
manifold. For small ε > 0, we seek m + n boundary conditions that determine a unique
trajectory near the candidate. Initial conditions that do not lie in the strong stable manifold
of a point p ∈ S will diverge from the slow manifold S at a fast exponential rate. Therefore,
trajectories that follow the slow manifold have initial conditions that are exponentially close
to the (unknown) stable manifold of S. If the boundary conditions at a allow the initial point
of γ to vary along a submanifold Bl that is transverse to the stable manifold of S, then the
solver can determine a point that lies close enough to the stable manifold that it tracks S for
the desired distance. Similarly, when trajectories remain close to S for times that are O(1)
on the slow time scale, they remain exponentially close to the unstable manifold of S as they
leave S. Thus, the boundary conditions at b need to allow the solver to find points that lie
close to the unstable manifold of S. This condition will be satisfied if the boundary conditions
at b define a manifold Br that is transverse to the unstable manifold of S. See Figure 1.

To make the requirements on Br and Bl more concrete, let u be the dimension of the strong
unstable manifolds of S, and let Eu(p) and Es(p) be the strong unstable and stable subspaces
in Rm at a point p in the critical manifold S0 of system (1.1). Normal hyperbolicity asserts
s + u = m. Fenichel theory states that the stable manifold of Sε will be close to Es(p)×TpS0

at a nearby point q of Sε with the same slow coordinates as p and the unstable manifold of Sε

at q will be close to Eu(p)×TpS0. To formulate a well-posed boundary value problem, we want
Bl to have dimension at least u and be transverse to the stable manifold of S0, while Br needs
to have dimension at least s and be transverse to the unstable manifold of S0. The dimensions
of Bl and Br are complementary to the number of boundary conditions: we can have no more
than n + s boundary conditions at a and no more than n + u boundary conditions at b. A
trajectory segment on the time interval [a, b] is determined by m + n boundary conditions,
so we can specify s ≤ k ≤ s + n boundary conditions at a and u ≤ m + n − k ≤ n + u
boundary conditions at b. The n boundary conditions associated with the slow variables can
be split between a and b in an arbitrary manner. As an alternative, the time length of the
trajectory can be allowed to vary, and one more boundary condition can be imposed at one
of the endpoints while maintaining transversality to the stable and unstable manifolds of S0.

In our tests of the SMST algorithm, we chose boundary conditions aligned with the stable
and unstable manifolds of the critical manifold S0. We used boundary conditions at a that
define a manifold passing through a point p ∈ S0 and containing Eu(p), while at b the boundary
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Figure 1. Boundary conditions for the SMST algorithm are illustrated with a three-dimensional example
with one slow and two fast variables. The slow manifold of saddle type is drawn in black and labeled S. A
trajectory that approaches the slow manifold along a strong stable direction and departs along a strong unstable
manifold is drawn in blue. The initial point of this trajectory lies in a two-dimensional manifold Bl transverse
to the stable manifold of S, and the final point lies in a one-dimensional manifold Br transverse to the unstable
manifold of S.

conditions define a manifold passing through a point q ∈ S0 and containing Es(p). Normal
hyperbolicity implies that the transversality conditions are satisfied for small ε. We know
that p and q will be located at a distance O(ε) from the slow manifold, so the initial and final
segments of our computed trajectory that diverge from Sε will have length O(ε). In addition
to the boundary conditions, the algorithm takes a (discretized) trajectory γ0 : [a, b] → S0

of the slow flow with γ0(a) = p, γ0(a) = q as input. With this input, we form a system of
collocation equations whose solution yields a better approximation to the desired trajectory
that follows Sε.

Denote the mesh points in the discretization of [a, b] by a = t0 < t1 < · · · < tN = b. There
are a total of (N + 1)(m + n) variables, so we need that many equations to determine an
approximate trajectory that satisfies the boundary conditions from the input data. (If b−a is
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allowed to vary, then the number of boundary conditions is increased by one.) From points zj =
z(tj) ∈ Rm+n, a C1 cubic spline σ is constructed with the zj as knot points and tangent vectors
F (zj) at these points. On the mesh interval [tj−1, tj ], σ is a cubic curve whose coefficients
are linear combinations of zj−1, zj , F (zj−1), F (zj) that are readily determined. Each of the N
mesh intervals [tj−1, tj ] contributes (m + n) equations to the system of collocation equations
by requiring that F (σ((tj−1 + tj)/2)) = σ̇((tj−1 + tj)/2). The values of σ and σ̇ in these
equations can be expressed as

σ

(
tj−1 + tj

2

)
=

zj−1 + zj

2
− (tj − tj−1)(F (zj) − F (zj−1))

8
,

σ̇

(
tj−1 + tj

2

)
=

3(zj − zj−1)
2(tj − tj−1)

− F (zj) + F (zj−1)
4

.

(2.1)

The boundary conditions constitute the remaining m+n equations of the system. The system
of (N + 1)(m + n) equations is solved with Newton’s method starting with the data in γ0.
The Jacobian of this system is computed explicitly, using the derivatives of (2.1) with respect
to zj−1, zj . The solution of the system gives a spline that satisfies the boundary conditions
and satisfies the differential equation ż = F (z) at the endpoints and midpoint of each mesh
interval.

Two types of error estimates are of interest for this algorithm. On each mesh interval, there
is a local error estimate for how much the spline σ differs from a trajectory of the vector field.
The spline satisfies σ̇(t) = F (σ(t)) at the collocation points tj−1, tj and (tj+tj−1)/2. If γ is the
trajectory of the vector field through one these points, this implies that σ−γ = O(|tj−tj−1|4).
Since this classical estimate is based upon the assumption that the norm of the vector field is
O(1), it is only likely to hold for intervals that are short on the fast time scale and trajectory
segments that lie close to the slow manifold. Globally, the trajectories of the flow display
a strong separation due to the normal hyperbolicity. In Fenichel coordinates [27], stable
coordinates converge rapidly to the slow manifold while unstable coordinates diverge rapidly
from the slow manifold. In the case of a one-dimensional slow manifold, shadowing [5] implies
that any pseudotrajectory pieced together from local approximations to the flow will lie close to
a unique trajectory of the flow. Moreover, in this case, different choices of boundary conditions
that lie in the same strong stable manifold at a and the same strong unstable manifold at b
yield trajectories that are exponentially close to each other and to the slow manifold outside
of small subintervals near the ends of the time interval [a, b]. Consequently, the value of
F will be O(1) on the slow time scale, and the middle of the spline is expected to give an
excellent approximation to a trajectory on the slow manifold. Rather than pursuing more
careful theoretical analysis of the algorithm here, we calculate the errors for a linear example
in which the slow manifold and its numerical approximation can be computed explicitly.

2.1. Slow manifolds of a linear system. Consider the linear vector field

εẋ1 = y − x1,

εẋ2 = x2,

ẏ = 1.
(2.2)
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Its general solution is

(x1, x2, y)(t) = (y(0) − ε + t + (x1(0) − y(0) + ε) exp(−t/ε), x2(0) exp(t/ε), y(0) + t).

This explicit solution provides a benchmark for evaluating the accuracy of the algorithm
described above. The slow manifold of the system is the line {y = x1 + ε, x2 = 0} containing
the trajectories (x1, x2, y)(t) = (y(0) − ε + t, 0, y(0) + t).

The discretized equations of the algorithm can also be solved explicitly for system (2.2).
The first step in doing so is to observe that the equations for x1 and y are separable from those
for x2, and this remains the case for the discretized equations of the boundary value solver.
Substituting the equations for the y-variable into the boundary value equations produces the
equation yj+1 − yj = tj+1 − tj on each mesh interval. If a boundary condition is imposed on
one end of the time interval [a, b], these equations yield a solution that is a discretization of
an exact solution of the differential equation. Convergence occurs in a single step.

Assume now that yj+1 − yj = tj+1 − tj, and set wj = yj − (x1)j − ε to be the difference
between the x1 coordinate of a point and a point of the slow manifold. The boundary value
equations become

(2.3)
δ2 − 6δε + 12ε2

8δε2
wj − δ2 + 6δε + 12ε2

8δε2
wj+1 = 0

for a uniform mesh with δ = yj+1 − yj = tj+1 − tj. The boundary conditions at t0 = a must
be transverse to the x1 coordinate axis which is Es. Therefore, we choose to fix the value
of x1 as the boundary condition at t0 = a. Note that these equations are satisfied when the
wj vanish, so if the value of x1 is y − ε at t0 = a, the wj yield a discretization of the exact
solution along the slow manifold. Solving (2.3) for wj+1 in terms of wj yields

wj+1 =
δ2 − 6δε + 12ε2

δ2 + 6δε + 12ε2
wj.

Like the solutions of the differential equation, the values wj decrease exponentially as a func-
tion of time. The ratio ρj = wj+1/wj is a function of (δ/ε) whose Taylor expansion agrees
with that of exp(−δ/ε) through terms of degree 4, and its value always lies in the interval
(0, 1). Thus the solutions of the boundary value equation converge geometrically toward the
slow manifold along its stable manifold with increasing time. If the mesh intervals have length
δ ≤ ε, then the relative error of the decrease satisfies

0 <
ρj( δ

ε) − exp( δ
ε)

exp( δ
ε)

< 0.0015.

For large values of δ/ε, the solution is no longer accurate near t = a if the boundary conditions
do not satisfy y0 = (x1)0+ε. A similar but simpler argument establishes that the solution of the
discretized problem converges to the slow manifold at an exponential rate with decreasing time
from t = b. Thus, the boundary value solver is stable and yields solutions that qualitatively
resemble the exact solution for all meshes when applied to this linear problem. In particular,
the solution of the discretized problem is exponentially close to the slow manifold away from
the ends of the time interval [a, b]. As the mesh size decreases to zero, the algorithm has
fourth-order convergence to the exact solution.
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3. Numerical examples.

3.1. Bursting neurons. Action potentials communicate information within the nervous
system [30]. Neurons are said to burst [14] when they fire several consecutive action potentials
between “silent” periods free of bursts. There is no universally accepted definition of burst-
ing, but computational models are widely used to predict when a neuron will burst in terms
of membrane channel properties. Rinzel [36] introduced a singular perturbation perspective
to the investigation of bursting in model neurons, viewing the phenomenon as a relaxation
oscillation in which a system makes fast time scale transitions between slowly varying equi-
librium and periodic attractors. Several classifications of bursting distinguish qualitatively
different dynamics. For example, Izhikevich [26] classified bursts in terms of the bifurcations
that mark the transitions that initiate and terminate bursts. Lee and Terman [32] studied
changes in the number of spikes per burst that occur as system parameters are varied. They
gave numerical examples in a version of the Morris–Lecar model [34] first analyzed by Rinzel
and Ermentrout [37]:

v′ = I − 0.5(v + 0.5) − 2w(v + 0.7) − 0.5
(

1 + tanh
(

v + 0.01
0.15

)
(v − 1)

)
,

w′ = 1.15
(

0.5
(

1 + tanh
(

v − 0.1
0.145

))
− w

)
cosh

(
v − 0.1
0.29

)
,

I ′ = ε(k − v),

(3.1)

where we have used ′ to denote differentiation with respect to the fast time variable.
This system has periodic bursting solutions with different numbers of spikes per burst as

the parameters ε and k vary. Figure 2 illustrates that there are narrow parameter ranges with
two stable periodic orbits having different spike numbers. Terman described the dynamics
of the transition from periodic solutions with n spikes to those with n + 1, relying upon
numerical simulations of trajectories in his analysis. Flow along a slow manifold of saddle
type is a central aspect of this transition, but the trajectory simulations are incapable of
following trajectories that remain close to this slow manifold for more than a short distance.
The boundary value solver introduced in this paper is used to compute trajectories that
contain segments which follow the slow manifold of saddle type. We are able to visualize the
geometric structures involved with the transition from n to n + 1 spikes and carry previous
analysis of the transition from n to n + 1 spikes further.

The fast subsystem of (3.1) is the Morris–Lecar model for action potentials of barnacle
muscle [34]. The Morris–Lecar model itself has a rich dynamical structure [37]. There is
an interval of values for I, approximately [−0.021, 0.08326], in which the system has three
equilibrium points. Saddle-node bifurcations occur at the endpoints of this interval. The
equilibrium points of the Morris–Lecar model constitute the critical manifold of (3.1), and its
saddle-node bifurcations (with varying I) are the folds of the critical manifold. There is also
a family of periodic orbits that collapses at a subcritical Hopf bifurcation near I = 0.07566
and terminates at a homoclinic bifurcation near I = 0.07293. The family of periodic orbits
is folded, i.e., there is a saddle-node of limit cycle bifurcation [17] within the family that
occurs near I = 0.08457. The periodic orbits of the family between the fold and homoclinic
bifurcations are stable. See Figure 3. Note that the family of periodic orbits extends past



COMPUTING SLOW MANIFOLDS OF SADDLE TYPE 861

0 50 100 150 200 250 300 350 400 450 500
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

v

(a)

0.055 0.06 0.065 0.07 0.075 0.08 0.085

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

I

v

(b)

Figure 2. (a) Time series of v showing two different periodic orbits of system (3.1). Parameter values
are (k, ε) = (−0.24, 0.00412234944). The blue orbit has two spikes per burst; the green orbit has three spikes
per burst. (b) Phase portraits of the same periodic orbits projected onto the (I, v) plane. A part of the critical
manifold S is shown in red.

the fold near I = 0.08326. Note also that the homoclinic curve is much closer to the fold of
equilibria near I = 0.08326 than it is to the one near I = −0.021.

The bursting orbits of the vector field (3.1) follow a branch of the critical manifold of
equilibrium points to its fold near I = 0.08326, jump to the family of stable periodic orbits,
follow this family to its homoclinic bifurcation, and then jump back to the branch of stable
equilibria. These bursting orbits occur when the value of the parameter k is chosen so that
I increases slowly during the quiescent part of the cycle and decreases slowly during the
active spiking portion of the cycle. See Figure 2(b). The homoclinic orbit of the singular
limit ε = 0 is a transversal intersection of the stable and unstable manifolds of the branch of
saddle equilibria of (3.1). The branch of equilibria becomes a slow manifold S of saddle type
when ε > 0 and the homoclinic orbit persists as an intersection of the stable and unstable
manifolds W s(S),W u(S) of S. The transition between n and n + 1 spikes per burst occurs
when the periodic bursting cycle encounters the intersection of W s(S) and W u(S). The final
spike of a periodic orbit with n + 1 spikes follows the intersection of W s(S) and of W u(S)
back to S before jumping to the attracting slow manifold. Figure 4 shows S, W s(S), and
W u(S) for k = −0.22 and ε = 0.0002. The slow manifold S was computed with the SMST
algorithm. The manifold W u(S) was computed by forward integration of trajectories with
initial conditions close to S along the direction of its strong unstable manifolds. Similarly, the
manifold W s(S) was computed by backward integration of trajectories with initial conditions
close to S along the direction of its strong stable manifolds. Figure 5 tests the accuracy of
this method for computing S, W u(S), and W s(S). The figure also shows two trajectories that
bracket the intersection of W s(S) and W u(S).

Because the system (3.1) is smooth and does not have an equilibrium point near the
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Figure 3. Bifurcation diagram for the Morris–Lecar equations (3.1) with ε = 0 and I as a varying parame-
ter. The curve of equilibrium points is drawn in black. There are fold points near I = −0.021 and I = 0.08326
and a subcritical Hopf bifurcation near I = 0.07566. Unstable periodic orbits, drawn in red, emerge from the
Hopf point with increasing I. There is a fold of this family of periodic orbits near I = 0.08457, and the family
of stable periodic orbits, drawn in green, terminates at a homoclinic bifurcation near I = 0.07293. The stable
(blue) and unstable (brown) manifolds of the family of saddle equilibria form surfaces that intersect at the
homoclinic orbit. Only parts of these manifolds close to the range of the periodic orbits are drawn. For values
of I less than the homoclinic bifurcation value, one branch of the unstable manifold makes a circuit around the
unstable equilibrium point and then tends to the stable equilibrium point. This behavior of the unstable manifold
extends all the way to the fold point of the saddle branch near I = −0.021. For values of I larger than the
homoclinic bifurcation value, this branch of the unstable manifold tends to the family of stable periodic orbits.

intersection of W s(S) and W u(S), the transition from n to n+1 spikes consists of trajectories
that undergo a continuous evolution. These trajectories contain saddle canards, which are
segments that follow S for varying lengths of time before leaving S along its unstable manifold.
Trajectories lying close enough to W s(S) turn and flow along S when they approach it.
The distance that they travel along S before leaving along its unstable manifold W u(S)
depends logarithmically on the initial distance of the trajectory to W s(S). If close enough,
the trajectory will follow S all the way to its end near a fold of the critical manifold before
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Figure 4. Stable (blue) and unstable (orange) manifolds of the slow manifold (black) of saddle type in
system (3.1) showing an intersection close to the homoclinic orbit of the singular limit of this system. The green
and magenta curves are two trajectories with initial conditions that lie on opposite sides of the intersection.
Parameters are (k, ε) = (−0.24, 0.005). The segment of the slow manifold extends from I = −0.015 to I = 0.082.

making a fast excursion to the stable slow manifold. Accurate computation of S is essential
to understanding the details of the transition from bursts with n spikes to bursts with n + 1
spikes.

The critical manifold of the vector field (3.1) is given by explicit formulas when parame-
trized by v. A uniform mesh of 161 values for v ∈ [−0.2238,−0.0548] along the saddle branch
of the critical manifold was used to generate starting values for the boundary value computa-
tion of the slow manifold S. To compute S, the vector field (3.1) was rescaled so that I ′ = 1.
With this rescaling, the value of I remains constant during the Newton iteration which finds
the solutions. We therefore reduced the boundary value equations to a set of equations for the
(v,w) variables, choosing boundary values that allow (v,w) to vary along the line parallel to
the strong unstable direction at the initial point of the interval and along the line parallel to
the strong stable direction at the final point of the interval. Different mesh sizes and different
segments of the critical manifold were used as initial data in additional tests. Typical meshes
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Figure 5. Trajectories with initial conditions close to the slow manifold test the accuracy of the slow
manifold computations. The slow manifold is drawn as a heavy black curve, and the critical manifold is drawn
as a dotted black curve. Initial conditions for thirty-two trajectories are chosen at distances 10−4, 10−5, 10−6,
10−7, 10−8, 10−9, 10−10, 10−11 along the strong stable and unstable manifolds at the point (−0.109854033586602,
0.052299738361417, 0.025187193494031) on the slow manifold, which is drawn as a filled black circle. The
trajectories are computed for a time interval ±0.01 and color-coded so that the trajectories along the two
branches of the strong unstable manifold are drawn in blue and green while the trajectories along the strong
stable manifold are drawn in red and magenta. Parameters are (k, ε) = (−0.22, 0.002) and the objects are
projected into the (w, v) plane.

that do not come close to the fold points result in convergence of Newton’s method within
three or four steps. For example, the segment of the slow manifold displayed in Figure 4 used
three Newton iterations to produce a residual for which the magnitude of each component is
smaller than 1.6 · 10−12. Figure 5 illustrates the accuracy of the computations of S and the
behavior of numerical simulations of trajectories that start near S. A point p on S is chosen,
and the Jacobian of the fast subsystem at this point is computed to obtain approximations for
the directions of its strong stable and unstable manifolds. If p does lie on the slow manifold,
then trajectories with initial conditions on opposite sides of S on its strong unstable mani-
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fold will flow along S but then jump in opposite directions. Similarly, backward trajectories
with initial conditions on opposite sides of S on its strong stable manifold will flow along
S but then jump in opposite directions. If p is displaced from S, its distance to S can be
estimated by finding the closest pairs of bracketing trajectories that jump from S in opposite
directions. Figure 5 displays the results of such a test. Eight pairs of trajectories displaced
along the strong unstable manifold at distances 10−k, 4 ≤ k ≤ 11, are plotted in blue and
green, and eight pairs of backward trajectories displaced along the strong stable manifold at
distances 10−k, 4 ≤ k ≤ 11, are plotted in red and magenta. Pairs of trajectories displaced
by distance 10−12 (not drawn in Figure 5) fail the test, jumping in the same direction. This
suggests that the distance from p to the slow manifold is approximately 10−11. Note also
that increments in the distance that each successive pair of bracketing trajectories flows along
S are similar, which is consistent with the exponential separation of trajectories within the
strong stable and unstable manifolds. Extrapolating these increments yields the estimate that
a numerically simulated trajectory starting on the slow manifold near p will only be able to
remain close to S for time approximately 0.01. This estimate is based on round-off error of
the order of 10−16 and the observation that the times at which trajectories displaced from
p by distances 10−9 and 10−11 appear to jump from S are approximately 0.003 and 0.005.
These crude estimates explain why initial value solvers are unable to follow the continuous
evolution of trajectories in the transition from n to n + 1 spikes per burst. The value of
v at p is approximately −0.11, and the jump from S of numerically simulated trajectories
seems to occur before v increases to −0.1, but the fold of the critical manifold occurs when
v is approximately −0.034. The exponential instability of S in both forward and backward
directions precludes initial value solvers from computing trajectories that flow along S from
the intersection of W s(S) and W u(S) to the fold of S. The surfaces displayed in Figure 4 were
computed with initial conditions near 21 points of S having an offset 10−6 from S in the direc-
tions of its strong stable and unstable manifolds. Numerical integrations were performed with
the algorithm DOP853 of Hairer and Wanner [24] with absolute and relative error tolerances
set to 10−12 and 10−10, respectively.

Computation of periodic orbits with long canard segments near the slow manifold of saddle
type appears to be challenging, even with continuation methods. Computation of the slow
manifold S with the boundary value solver introduced here can be coupled with the analysis
of Terman [41] and Lee and Terman [32] to solve this problem. Computations of the slow
manifold S are augmented with numerical forward and backward simulations of trajectories
that terminate at a cross-section along the family of periodic orbits. This extends the approach
introduced by Guckenheimer and LaMar [20] to efficiently compute periodic orbits containing
canards.

Figure 6 visualizes the invariant manifold W u(S) as a collection of trajectories for param-
eter values (k, ε) = (−0.22, 0.006366) in system (3.1). The heavy black curve is a segment of
the slow manifold S of saddle type, and the dotted black curve is the critical manifold. At
twenty initial points along S, trajectories have been computed with initial conditions displaced
from S along its strong unstable manifolds by a distance 0.00005. The trajectories starting on
one side of S are drawn in blue and the trajectories starting on the other side of S are drawn
in green. The blue trajectories make a loop around the unstable branch of the slow manifold
and then flow past S to the stable branch of the slow manifold. The green branches flow to
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Figure 6. The unstable manifold of the slow manifold S of saddle type in system (3.1) is swept out by
trajectories starting close to the slow manifold. The blue and green trajectories are followed until they intersect
the cross-section I = 0.075 with I increasing. Red trajectories on the stable manifold of S are followed backward
until they intersect this cross-section. The trajectories that are drawn reach the cross-section close to the points
on the unstable manifold of S. Parameters are (k, ε) = (−0.22, 0.006366).

the stable branch of the slow manifold with v decreasing. Both sets of branches then turn and
flow along the stable branch of the slow manifold. When they reach the fold of the slow man-
ifold, they jump to the family of rapid oscillations. As trajectories follow these oscillations,
I decreases. The displayed trajectories are terminated when they reach the plane I = 0.075
with I decreasing. The red curves displayed in Figure 6 are four backward trajectories that
begin at distance 5 × 10−8 from S along its stable manifold and end on the cross-section
I = 0.075. These trajectories were chosen on a short section of S so that they reach the
cross-section I = 0.075 near the ends of the blue and green trajectories. Figure 7(a) shows
the ends of the blue, green, and red trajectories with the cross-section I = 0.075. Figures 7(b)
and 7(c) show similar plots for the system with parameter values (k, ε) = (−0.22, 0.006362)
and (k, ε) = (−0.22, 0.00637). As ε varies, these plots demonstrate that the trajectories in the
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Figure 7. (a) Endpoints of the trajectories displayed in Figure 6 with the plane I = 0.075. Blue crosses
and green circles are used to mark points on W u(S); red squares denote points on W s(S). The red dotted
curve is a piecewise linear connection between the points on W s(S), showing that W u(S) and W s(S) almost
intersect for these parameter values (k, ε) = (−0.22, 0.006366). (b) A similar plot to (a) for parameter values
(k, ε) = (−0.22, 0.006362). The points of W u(S) lie below those of W s(S). (c) A similar plot to (a) for
parameter values (k, ε) = (−0.22, 0.006367). The points of W u(S) lie above those of W s(S).

unstable manifold of S sweep across the stable manifold of S.

Figure 6 supports the following procedure for finding periodic orbits containing canards.
Fix a short segment Σ transverse to W u(S). With varying ε, trajectories with initial conditions
on Σ sweep out a three-dimensional manifold M in (v,w, I, ε) space. The exchange lemma [28]
implies that if M intersects W s(S) transversally in (v,w, I, ε) space, then part of M will stretch
along the length of S and depart from it along W u(S). In particular, M will intersect Σ, giving
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Figure 8. (a) Return map of the segment along the line w = 1.2107v+0.35959, v ∈ [0.007, 0.01], I = 0.075.
Three hundred initial points were chosen along this segment and computed until they returned to I = 0.075.
The axes are initial and final values of v. Parameter values are (k, ε) = (−0.22, 0.006366). (b) Five trajectories
among the three hundred computed for the return map in (a). Four of these trajectories bracket the jumps of
the return map; the fifth has initial condition at the local maximum of the return map. Two pairs of trajectories
are sufficiently close that they are hard to distinguish in the figure.

a unique value of ε for which there is a periodic orbit intersecting Σ. Figure 7 gives numerical
evidence that M does intersect W u(S), and it indicates that the value of ε will be almost
constant along the family of periodic orbits containing canards. Computing trajectories with
initial conditions on Σ with an initial value solver will not produce these periodic orbits.
Instead, the periodic orbit is calculated in three segments that are illustrated as black, red,
and blue/green curves in Figure 6. The canard segment of the periodic orbit is exponentially
close to S except at its arrival and departure points. When the periodic orbit departs from
S, it follows a blue or green trajectory starting at a point exponentially close to W u(S) that
is numerically indistinguishable from points on W u(S). Similarly, the orbit segment that
arrives at S does so at a point that is exponentially close to W s(S) and that is numerically
approximated by backward integration beginning at a point on W s(S). As ε (or another
parameter) is varied, the forward trajectory along W u(S) and backward trajectories along
W s(S) sweep out a curve and a surface of intersection with a cross-section in (v,w, I, ε) space
(here I = 0.075). A root solver can be used to locate a parameter value for which a trajectory
of W u(S) and one on W s(S) arrive at the same point of the cross-section. The periodic orbit
will then be approximated by the union of the two trajectories and a curve that flows along
S from the chosen arrival point to the chosen departure point. Normal hyperbolicity implies
that there is a unique trajectory that connects these two points. As shown in Figure 7, the
intersections occur for ε ≈ 0.006366 for all arrival and departure points.

Figure 8(a) shows a return map, giving initial and final values for the variable v, with
300 initial points chosen on a linear approximation to the intersection of W s(S) with I = 0.075



COMPUTING SLOW MANIFOLDS OF SADDLE TYPE 869

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8
x 10

−3

v
in

v o
u

t

Figure 9. Initial and final values of v for trajectories in W u(S) ending in the plane I = 0.075. Parameters
are (k, ε) = (−0.22, 0.006366).

shown in Figure 7(a). This return map has two apparent jumps. The trajectories beginning
between the two jumps make three spikes before returning to I = 0.075, while the other
trajectories make two spikes before returning. None of the trajectories flows along S with I
decreasing to a value smaller than 0.065. Figure 8(b) plots five of the trajectories from the
return map, four that bracket the jumps and one from the local maximum of the return map
in Figure 8(a).

Analysis of the bifurcations and attracting limit sets of the vector field (3.1) requires addi-
tional information. Numerically, it is necessary to “fill in” the jumps in the return map shown
in Figure 8, describing more carefully how the trajectories with canards return and determin-
ing the stability of trajectories containing canard segments. Figure 9 plots the final values of v
in trajectories on W u(S) ending at the cross-section I = 0.075 versus their initial values of v.
It is apparent that a large portion of W u(S) contracts enough when it flows along the stable
branch of the slow manifold that its intersection with the cross-section I = 0.075 is very small.
The image appears to lie inside a disk centered at (v,w) = (0.0072701057, 0.3683819196) of
radius 10−10. The minimum return value of v in the points plotted in Figure 8 is approxi-
mately 0.007296. Thus it appears that the local minima of the return map are only a distance
about 3 × 10−5 below the lowest points plotted in this figure.

The variational equations of system (3.1) can be used to estimate how much expansion
takes place along canard segments of trajectories and how much contraction takes place along
the stable branch of the slow manifold. On points of the critical manifold with the same
value of I, the strong unstable eigenvalue on the middle branch has larger magnitude than
the weaker stable eigenvalue on the stable branch. If a canard segment is long enough, then
the accumulated expansion will dominate the subsequent contraction that takes place on the
stable branch of the slow manifold. This suggests that the return map of the system will have
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an expanding direction for canards that are sufficiently long, consistent with Figure 8. As
the maximal canards of the return map move across the diagonal with changing parameters,
the return map is likely to have chaotic invariant sets similar to those found in the Hénon
map [25]. The numerical computations reported here are insufficient to adequately determine
the details of these invariant sets because the slow manifold is not computed close enough to
the fold that the maximal canards are determined with good accuracy.

Terman [41] suggests that the system (3.1) has trajectories with three different spike num-
bers in its bursts. The calculations here cast doubt on whether this is possible for trajectories
that lie in the forward limit set of the system. For the parameters (k, ε) = (−0.22, 0.006366),
the decrease in the value of I between spikes along the surface of oscillations appears to be
approximately 0.0065 in the region between the arrival of trajectories jumping from the fold of
the stable branch of the slow manifold to the intersection of W u(S) and W s(S). On the other
hand, the trajectories that flow along the stable branch of the slow manifold appear to pass by
the fold in a set that has a diameter at least an order of magnitude smaller than the observed
separation between spikes. Our analysis of canards makes it clear that the trajectories with
long canard segments all flow through a tiny region as they pass the fold. Lee and Terman [32]
give asymptotic estimates of the size of these regions in terms of ε that also suggest that it
is unlikely that the limit set of this system reaches the surface of oscillations in a set that is
large enough to contain trajectories with three different spike numbers.

3.2. Traveling waves of the FitzHugh–Nagumo model. The FitzHugh–Nagumo equa-
tion is a model for the electric potential u = u(x, τ) of a nerve axon interacting with an
auxiliary variable v = v(x, τ) (see [13], [35]):

(3.2)

{
∂u
∂τ = δ ∂2u

∂x2 + fa(u) − w + p,
∂w
∂τ = ε(u − γw),

where fa(u) = u(u − a)(1 − u) and p, γ, δ, and a are parameters. Assuming a traveling wave
solution with t = x + sτ to (3.2), we get:

u′ = v,

v′ =
1
δ
(sv − fa(u) + w − p),(3.3)

w′ =
ε

s
(u − γw).

A homoclinic orbit of (3.3) corresponds to a traveling pulse solution in (3.2). An analysis
of (3.3) using numerical continuation has been carried out by Champneys et al. [7]. They
fixed the parameters a = 1

10 , δ = 5, γ = 1 and investigated bifurcations in (p, s)-parameter
space. We shall fix the same values and hence write f1/10(u) =: f(u). To bring (3.3) into the
standard form (1.1), set x1 := u, x2 := v, and y := w and change to the slow time scale:

εẋ1 = x2,

εẋ2 =
1
5

(
sx2 − x1(x1 − 1)

(
1
10

− x1

)
+ y − p

)
=

1
5
(sx2 − f(x1) + y − p),(3.4)

ẏ =
1
s
(x1 − y).
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We refer to (3.4) as “the” FitzHugh–Nagumo equation. Our goal is to use the fast slow
structure of (3.4) and the SMST algorithm to compute its homoclinic orbits. The critical
manifold S of the FitzHugh–Nagumo equation is the cubic curve:

(3.5) S = {(x1, x2, y) ∈ R
3 : x2 = 0, y = f(x1) + p =: c(x1)}.

The two local nondegenerate extrema of c(x1) yield the fold points of S. Denote the local
minimum by x1,− and the local maximum by x1,+. The critical manifold S has three normally
hyperbolic components:

Sl = {x1 < x1,−} ∩ S, Sm = {x1,− < x1 < x1,+} ∩ S, Sr = {x1,+ < x1} ∩ S.

Fenichel’s theorem provides associated slow manifolds Sl,ε, Sm,ε, and Sr,ε outside neighbor-
hoods of the fold points. The manifolds Sl,ε and Sr,ε are of saddle type for ε sufficiently small.
The middle branch Sm,ε is completely unstable in the fast directions. Denote the unique equi-
librium point of (3.4) by q = (x∗

1, 0, x
∗
1). The location of q depends on the parameter p, and q

moves along the cubic S. For the analysis of homoclinic orbits we shall assume that q ∈ Sl,0.
In this case, the unstable manifold W u(q) is one-dimensional and the stable manifold W s(q)
is two-dimensional. This also covers the case q ∈ Sr by a symmetry in the FitzHugh–Nagumo
equation and avoids the region where q is completely unstable [7, 19]. Homoclinic orbits exist
if W u(q) ⊂ W s(q).

We focus first on the case of relatively large wave speeds s (“fast waves”). Existence of
these homoclinic orbits has been proved for small enough ε, viewing them as perturbations
of a singular trajectory consisting of four segments: a fast subsystem heteroclinic connection
from q to Cr at y = x∗

1, a slow segment on Cr, a fast subsystem heteroclinic from Cr to Cl at
y = x∗

1 + c for some constant c = c(p, s) > 0, and a slow segment on Cl connecting back to
q [29]. We aim to compute homoclinic orbits by a similar procedure for a given small ε > 0
in several steps:

1. Find parameter values (p0, s0) such that a homoclinic orbit exists very close to or
exactly at (p0, s0). This can be achieved by a splitting algorithm without computing
the homoclinic orbit, even for very small values of ε [19]. Carry out all of the following
computations for (p, s) = (p0, s0).

2. Compute the slow manifolds Sε,l and Sε,r using the SMST algorithm.
3. Compute the unstable manifold of the equilibrium W u(q) by forward integration.
4. Define a section Σ = {x1 = c} where the constant c is chosen between x1,− and

x1,+, e.g., c = (x1,− + x1,+)/2. Compute the transversal intersection of W s(Sl,ε) and
W u(Sr,ε) on Σ, and call the intersection point xsu = (c, x2,su, ysu) (see Figure 10).
Integrate forward and backward starting at xsu to obtain trajectories γfw and γbw.

5. The homoclinic orbit is approximated by a concatenation of the trajectory segments
on W u(q), Sr,ε, W u(Sr,ε) ∩ W s(Sl,ε), and Sl,ε computed in steps 1–4. The endpoints
of these trajectory segments are exponentially close to one another and therefore in-
distinguishable numerically.

All of our figures for the fast wave case have been computed for ε = 10−3, p0 = 0, and s0 ≈
1.2463. Jones, Kopell, and Langer [29] proved the existence of homoclinic orbits in this region
for small ε. In Figure 11(a) we show the result from the SMST algorithm and the unstable
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Figure 10. Illustration of transversal intersection of stable and unstable manifolds of the slow manifolds
W s(Sl,ε) (green) and W u(Sr,ε) (magenta). The manifolds are truncated at the yellow section Σ and the tra-
jectory γfw ∪ γbw started on Σ at the transversal intersection point xsu is shown in red.

manifold of the equilibrium W u(q), i.e., the output of steps 2 and 3. Due to the exponential
separation along Sr,ε, the trajectory W u(q) obtained from numerical integration cannot track
the slow manifold for an O(1) distance and escapes after following the slow manifold for a very
short time. This happens despite the fact that we have computed parameter values (p0, s0)
with maximal accuracy in double precision arithmetic at which we expect W u(q) to follow
Sr,ε almost up to the fold point x1,+. This observation is relevant to Figure 11(b), where the
result of step 5 is shown. All the fast segments (red) had to be truncated almost immediately
after they entered a neighborhood of a slow manifold. The final output of the algorithm after
interpolation near the truncation points is shown in Figure 12.

Now we consider the case of “slow waves” and work with smaller wave speeds s. Homoclinic
orbits representing slow waves should be thought of as perturbations of singular limit orbits
for the FitzHugh–Nagumo equation (3.4) with s = 0. In this case the fast subsystem

x′
1 = x2,

x′
2 =

1
5
(−f(x1) + y − p)(3.6)

is Hamiltonian. Singular homoclinic orbits exist in a single fast subsystem with the y-
coordinate of the equilibrium y = x∗

1. A direct application of Fenichel theory implies that
a perturbed singular “slow” homoclinic orbit persists for ε > 0 [40]. Again it is possible to
compute parameter values (p1, s1) at which homoclinic orbits for ε > 0 exist [19]. To compute
the orbits themselves a similar approach as described above can be used. We have to track
when W u(q) enters a small neighborhood of W s(Sl,ε) respectively of Sl,ε. Figure 13 shows two
computed homoclinic orbits for p1 = 0 and s1 ≈ 0.29491.
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Figure 11. Illustration of the algorithm for computing homoclinic orbits in the FitzHugh–Nagumo equation.
(a) Slow manifolds Sl,ε and Sr,ε are shown in black and the unstable manifold of the equilibrium W u(q) is
displayed in red. (b) Pieces of the homoclinic orbit; slow segments in black, fast segments in red, and S in blue.
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Figure 12. Homoclinic orbit (green) of the FitzHugh–Nagumo equation representing a fast wave. The
equilibrium point q is shown in red.

The orbits spiral around the middle branch and do not enter the vicinity of Sr,ε. This is
expected as the middle branch Sm of the critical manifold consists of unstable spiral equilibria
for the fast subsystems. The Hamiltonian analysis for the case s = 0 shows that the singular
slow homoclinic orbits do not come close to Sr for values of p approximately between −0.24
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Figure 13. Homoclinic orbits (green) representing slow waves in the FitzHugh–Nagumo equation. The slow
manifold S is shown in blue and the equilibrium q in red. (a) “Single pulse” homoclinic orbit. (b) “Double
pulse” homoclinic orbit. This trajectory returns to Sl,ε before approaching Sr,ε, then leaves Sl,ε along its repelling
manifold, approaches Sr,ε briefly, and then returns to Sl,ε a second time, finally flowing along Sl,ε back to q.

and 0.05 (see [19]). In Figure 13(a) a homoclinic orbit enters the vicinity of the slow manifold
Sl,ε and returns directly to q. Figure 13(b) shows a homoclinic orbit that makes one additional
large excursion around Sm,ε after it was close to Sr,ε and then returns to q; hence we refer
to the orbit in 13(b) as a double-pulse homoclinic orbit. The same double-pulse phenomenon
exists for fast waves as well. In this case the double-pulse orbit has no additional interaction
with the middle branch Sm, and therefore it is difficult to distinguish between different pulse
types for fast waves numerically and graphically as the second loop follows the first one very
closely.

3.3. A model of reciprocal inhibition. This example demonstrates the use of our algo-
rithm to compute trajectories in saddle-type slow manifolds of systems with two slow variables.
The model is a caricature of a pair of neurons that are coupled with reciprocal inhibition [38].
The vector field is

v′1 = −
(
v1 − a tanh

(σ1v1

a

)
+ q1 + ωf(v2)(v1 − r)

)
,

v′2 = −
(
v2 − a tanh

(σ2v2

a

)
+ q2 + ωf(v1)(v2 − r)

)
,

q′1 = ε(−q1 + sv1),
q′2 = ε(−q2 + sv2)

(3.7)

with
f(x) =

1.0
1.0 + exp(−4γ(x − θ))

.

In this model, v1 and v2 are interpreted as the membrane potential of two neurons that are
coupled synaptically through the terms involving f . The variables q1 and q2 represent the
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gating of membrane channels in the neurons. The model is a caricature in that it does not in-
corporate the fast membrane currents which give rise to action potentials. Still more reduced
models [39, 43] have been used to study reciprocal inhibition of a pair of neurons. Recipro-
cal inhibition between a pair of identical neurons has long been viewed as a mechanism for
generating repetitive alternating activity in motor systems [6]. Guckenheimer, Hoffman, and
Weckesser [18] investigated the properties of this model when the two neurons have differ-
ent parameters and the system is asymmetric. They observed that canards of several kinds
were encountered while continuing periodic orbits with AUTO calculations. The bifurcation
mechanisms encountered in these continuation studies still have not been identified despite
intensive efforts by Lust [33] to compute the multipliers of periodic orbits accurately. Our
algorithm for computing invariant slow manifolds of saddle type provides a promising new tool
for investigating the bifurcations that take place in this system with two slow and two fast
variables. Here we illustrate that the algorithm is indeed capable of computing trajectories
that lie on these manifolds, but we do not pursue bifurcation analysis of the system in this
paper.

The periodic trajectory discussed in section 5.2 of [18] has three different canard seg-
ments. Here we focus on the segment labeled B in Figure 6(c) of [18]. The segment is a
fold-initiated canard that begins as a fast trajectory, flows near a fold of the critical mani-
fold, and then moves along a saddle-type sheet of the slow manifold. Both neurons in the
model have parameter values ω = 0.03, γ = 10, r = −4, θ = 0.01333, a = 1, s = 1 while
σ1 = 3 and σ2 = 1.2652372051. One of the points p on the segment B has coordinates
(−0.16851015831, 0.85854544475,−0.41290838536,−0.062963871). We projected p onto the
critical manifold along the q directions retaining the v coordinates of p and computed a tra-
jectory γslow of the slow flow on the critical manifold with this initial condition. While the
slow flow is an algebraic-differential equation, the critical manifold of (3.7) is easily written
as a graph of a function q = h(v), and the slow flow equations can be written as a vector
field in v. The trajectory γslow was taken as input for our algorithm. Boundary conditions
were selected so that the initial point of the trajectory γ retains the same v coordinates as
p. Figure 14 displays the trajectory γ obtained from our algorithm in black together with
trajectories of its strong stable and unstable manifolds. The distance of the initial conditions
for the trajectories on the strong stable and unstable manifolds from γ is 10−8. Note that
the first trajectories of the strong stable manifold at the bottom of the figure both flow down
and to the right, reflecting that the initial points of these trajectories do not straddle the
slow manifold in the strong stable direction. Similar behavior occurs at the final point of
γ in the strong unstable direction. This behavior is to be expected because the boundary
conditions constrain the strong stable coordinate of the first point of γ to have a value close
to that on the critical manifold rather than the invariant slow manifold. At the final point of
γ, the strong unstable coordinate is determined by the critical manifold. The behavior of γ is
what we expect from our algorithm: the computed trajectory approaches the slow manifold
of saddle type along a strong stable direction at its beginning, flows along the slow manifold
to a high degree of accuracy to near its end, and then leaves the slow manifold along a strong
unstable direction. The length of γ is much longer than the segment B shown in Figure 6(c)
of [18].
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Figure 14. A trajectory γ on a saddle-type slow manifold of system (3.7). The trajectory is drawn in blue.
Trajectories with initial conditions that are displaced by 10−8 from γ along the direction of its strong stable
manifolds are drawn in red, while trajectories with initial conditions that are displaced by 10−8 from γ along
the direction of its strong unstable manifolds are drawn in green.

4. Conclusion. We have illustrated how slow manifolds of saddle type appear in the
bifurcation analysis of slow-fast systems. From the perspective of simulation via initial value
solvers, these manifolds are ephemeral objects. Different methods are needed to compute
them accurately. Heretofore, collocation and continuation methods incorporated into the
program AUTO [9] have been used to compute periodic and homoclinic orbits in multiple
time scale systems, but this approach becomes increasingly difficult as one approaches the
singular limit. Our experience [18] in using AUTO has been that increasingly fine meshes are
required to analyze stiff systems as the ratio of time scales becomes more extreme, especially
when the solutions of interest contain canards. Our investigations of the FitzHugh–Nagumo
model agree with this observation: AUTO appears to have difficulty computing homoclinic
or periodic orbits that contain a lengthy segment along the slow manifold Sr,ε like the one
shown in Figure 12. There has been little investigation of the limitations of boundary value
methods in computing trajectories that contain canards, but one possible reason might be that
trajectory segments which follow a slow manifold for different distances are almost impossible
to distinguish numerically. This paper approaches this difficulty by introducing a two point
boundary value solver that computes the slow manifolds themselves. The solver is based upon
a different collocation scheme than the one used in AUTO. Though our method has worked
better for us than a few attempts to solve these problems with AUTO, we have performed
neither theoretical analysis nor comparative numerical studies of stability and convergence
of different collocation methods in computing slow manifolds of saddle type. Such studies
are interesting topics for further research. Here, we present only evidence that the SMST
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algorithm is an effective, fast, and accurate method for computing slow manifolds in the
systems that we studied. Our solver works effectively with the examples presented in this
paper, yielding modestly sized systems of equations that are solved with a few iterations of
Newton’s method. Attracting and repelling manifolds of a slow manifold S with the method
are computed by numerical integration. In these numerical integrations, we start with initial
points that lie in the directions of eigenvectors of the layer equations. Since these directions are
almost tangent to the invariant manifolds of S that we seek and nearby trajectories converge
to the manifolds, we think that the resulting surfaces are very good approximations to the
manifolds. Asymptotic expansions for trajectories in the attracting and repelling manifolds
are complicated [42]: we expect that theoretical improvements in this part of the computations
would require great effort for marginal gains in accuracy.

The SMST algorithm can be incorporated into multiple shooting methods for comput-
ing periodic and homoclinic orbits along the lines of those introduced in Guckenheimer and
LaMar [20]. The strategy used in these methods is to define surfaces that separate the desired
trajectory into segments that can be stably computed by forward or backward numerical in-
tegration, or here with the SMST algorithm. In the case of the Morris–Lecar model, we seek
trajectories that lie in the family connecting bursting periodic orbits with n and n + 1 spikes.
The trajectories are partitioned into three segments: a canard that follows the slow manifold
S of saddle type, a trajectory γr that lies close to the repelling manifold of S, and a trajectory
γa that lies close to the attracting manifold of S. Forward and backward numerical integration
is used to compute γr and γa. The periodic orbit is located by choosing a cross-section to
the flow near the termination of the burst and requiring that these trajectories intersect this
cross-section at the same point. This shooting condition almost determines the arrival point
where γa meets S but the jump point for γr can be anywhere along S and γr can jump to
either side of the repelling manifold. All of these trajectories converge exponentially to one
another as they flow along the stable slow manifold of the system, yielding returns to the
cross-section within a tiny region of one another. Thus, periodic orbits within the connecting
family are largely determined by the jump point of γr. Determination of S enables the com-
putation of good approximations to the connecting orbits. Computations of the homoclinic
orbits in the FitzHugh–Nagumo model are even more complex. The decomposition of these
homoclinic orbits into segments that can be computed with the SMST algorithm and with
numerical integration changes as one moves along the homoclinic curve in parameter space.
Nonetheless, we can compute good approximations to the homoclinic orbits along the entire
curve with our methods.

Theoretical analysis of the SMST algorithm and exploration of variants have hardly begun.
As one possible variation, automatic differentiation methods that compute Taylor polynomi-
als of the vector field at mesh points [15, 16] could be used to obtain discretized equations
based upon Hermite interpolation with higher degree splines, similar to the methods used by
Guckenheimer and Meloon to compute periodic orbits [21].
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