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1.1 Introduction

The forced van der Pol equation, written in the form

εẋ = y + x − x
3

3

ẏ = −x + a sin(2πθ)

θ̇ = ω

(1.1)

defines a vector field on R
2 × S1. This dynamical system has a long his-

tory. It was the system in which Cartwright and Littlewood [2, 10, 11] first
noted the existence of chaotic solutions in a dissipative system. They stud-
ied the system when ε > 0 is small, the region of relaxation oscillations.
Van der Pol and van der Mark [19] observed multistability and hysteresis
in experimental studies of an electrical circuit roughly modeled by the van
der Pol equation. Following the observations of van der Pol and van der
Mark, Cartwright and Littlewood proved that there are parameter values
at which the system has two stable periodic orbits of different periods.
A theorem of Birkhoff then implies that the basin boundary dividing the
basins of attraction of these two periodic orbits cannot be a smooth torus.
Eventually, Littlewood produced an intricate analysis proving the existence
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of chaotic solutions in the van der Pol equation [11]. Levinson [9] gave a
more accessible analysis of a simplified, piecewise linear system that in-
spired Smale’s horseshoe [15]. Levi [8] gave a more comprehensive analysis
of a still simpler system. In parameter ranges that are not stiff, periodic
orbits of the van der Pol equation have been studied numerically by Mettin
et al. [12]. See also Flaherty and Hoppensteadt [4].

Takens [17] took a different approach to proving the existence of chaotic
solutions in the van der Pol system, investigating the dynamics associated
with codimension two bifurcations in which a periodic orbit has a return
map whose linearization has one as an eigenvalue of multiplicity two in a
regime where the system is nearly linear. He argued that there should be
nearby parameters at which there is a periodic orbit with transversal inter-
sections of its stable and unstable manifolds. If true, the Smale-Birkhoff
Theorem implies that there are invariant subsets on which the flow is con-
jugate to a subshift of finite type. Takens’ analysis was based upon the
properties of generic vector fields: the splittings between stable and un-
stable manifolds are “beyond all orders” and cannot be computed using
regular perturbation theory. To our knowledge, more sophisticated meth-
ods of singular perturbation theory have not been applied to compute these
splittings in this example.

Despite the role that this system has played historically, the global
dynamics and bifurcations of relaxation oscillations of the force van der
Pol equation have not been thoroughly studied, even numerically. When
ε ≤ 10−3, initial value solvers are unable to follow solutions of the sys-
tem that lie close to unstable portions of the critical manifold defined by
y = x3/3 − x [6]. Classification of bifurcations from numerical compu-
tations is difficult in this regime because the initial value solvers do not
resolve the flow near all of the bifurcations. When ε = 0, the character
of the equation changes, becoming a differential algebraic equation, similar
to the “constrained” systems studied by Takens [18] as models of electri-
cal circuits. The solutions of the singular limit are described by a two
dimensional slow flow augmented by jumps from fold curves of the criti-
cal manifold where existence of solutions to the slow flow equations breaks
down. We exploit this structure and investigate the global bifurcations of
the differential algebraic equations, including the effects of their jumps.

Previous studies have examined the global geometry of the system in
terms of a cross-section to the flow defined by a constant phase of the
forcing term. This is a natural thing to do for periodically forced oscilla-
tions, replacing the autonomous system as a continuous vector field in its
phase plane by a discrete time diffeomorphism. The perspective here is
different, however. The nature of the bifurcations of the system and their
relationship to the singular limit becomes more transparent when we use a
“cross-section” that contains a fold curve of the critical manifold. Our work
is based upon the decomposition of trajectories of (1.1) into regular, slow
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segments and fast segments that are almost parallel to the x-axis in this
system. The singular limit of the return map is then a map of a circle that
has discontinuities related to this degenerate decompositions of trajecto-
ries. This paper highlights the main features of these return maps and the
kinds of bifurcations displayed in the two parameter family of differential
algebraic equations.

Asymptotic analysis of the relationship between the slow flow and the
van der Pol equation with ε > 0 is subtle and involves “canards,” solu-
tion segments that follow the unstable sheet of the critical manifold. The
chaotic orbits of the van der Pol equation discovered by Cartwright and
Littlewood contain canards, and much of their work is devoted to describ-
ing the properties of trajectories with canards and developing topological
properties of chaotic invariant sets. They did not consider the bifurca-
tions of the stable periodic orbits. We observe here that the bifurcations of
these stable periodic orbits persist in the singular limit of the differential
algebraic equations, and that they can be located without analysis of ca-
nards. The key observation that we make is based upon an examination of
where the slow-fast decomposition of trajectories is degenerate. Degener-
ate decompositions occur when a trajectory jumps from a folded singular
point [1] or jumps to a point where the vector field is tangent to the pro-
jection of the fold curve along the fast flow. The first type of degeneracy
gives rise to canards; the second type of degeneracy is crucial to the ex-
istence of periodic orbits of different periods in the van der Pol equation.
Tangencies of the vector field with projection of a fold curve onto another
sheet of the critical manifold were described briefly by Grasman [5] and
Mishchenko et al. [14], but they do not appear to have been described or
analyzed previously in the van der Pol equation. This work is descriptive,
not rigorous. We unabashedly utilize the results of numerical computations
without establishing error estimates or giving proofs.

1.2 The Slow Flow and its Bifurcations

We study the van der Pol system for small values of ε. The limit ε = 0 is a
system of differential algebraic equations that we shall label the DAE when
we want to distinguish it from the slow flow defined by (1.2). The critical
manifold of the van der Pol equation is the surface defined by y = x3/3−x.
We shall use coordinates (θ, x) for the critical manifold. We denote the
circle defined by x = c by Sc. The projection of the vector field onto the
critical manifold is singular on its fold curve, consisting of the circles S±1.
At most points of the fold curve, trajectories arrive from both sides or
they leave from both sides: the existence theorem for ordinary differential
equations breaks down for the DAE at these points. However, we know
that when ε > 0 is small, trajectories of the van der Pol system are almost
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parallel to the x-axis off the critical manifold. Therefore, when trajectories
of the DAE arrive at the fold curves S±1, we apply a discrete transformation
that maps (θ,±1) to the other point of intersection of a line parallel to the x-
axis with the critical manifold, namely (θ,∓2). The exceptions to this rule
occur at folded singularities, described below. Some trajectories of the van
der Pol equation arriving at folded singularities follow the unstable sheet of
the critical manifold, jumping at a later time and place. These trajectories
are called canards. We regard the jumps from fold curves and canards as
part of the structure of the DAE. To cope better with the singularity of
the DAE, we rescale time to obtain the slow flow of the system.

The slow flow of the van der Pol equations is defined by the system

θ′ = ω(x2 − 1)
x′ = −x + a sin(2πθ)

(1.2)

These equations are obtained by setting ε = 0 in 1.1, differentiating y −
(x3/3 − x) = 0 to yield ẏ = (x2 − 1)ẋ and rescaling time by the factor
(x2 − 1). Note that the time rescaling is singular at x = ±1 and that
it reverses the direction of time in |x| < 1. This needs to be taken into
account when relating the phase portraits of the slow flow to the DAE
and to (1.1). We also take into account that there are jumps from fold
curves to the circles S∓2, so that tangencies of the slow flow with these
lines will play a special role in our analysis. Singular points of the slow
flow occur only when |a| ≥ 1. These are the folded singularities. They
are located on the fold curves at (sin−1(±1/a)/(2π),±1), where sin−1 is
regarded as a multi-valued function. They are not close to singular points
of the full system (there are none), but rather represent points where the
direction of motion towards or away from the fold curve changes. Figure 1.1
shows a plot of the critical manifold of the van der Pol equation, the folded
singularities, trajectories of the slow flow and a representative trajectory
of the van der Pol equation. The role of the folded singularities is apparent
in this figure. Trajectories of the van der Pol equation can turn along the
critical manifold near the folded singularities without jumping immediately
to another sheet.

The limit trajectories of the van der Pol equation with initial points on
S2 follow trajectories of the slow flow to their intersection with S1. Away
from the folded singularities, they then jump to S−2, follow trajectories
of the slow flow to S−1 where they jump once again to S2. This cycle
defines a return map for the DAE. Trajectories of the DAE that reach a
point that is a folded singularity for the slow flow may continue past the
singularity, backwards in time along a trajectory of the slow flow in the
region |x| < 1. These canards may jump to one of the regions with |x| > 1
at any point along their trajectories. The jumps of the DAE all occur
along lines parallel to the x-axis, so the jump from a point (θ, x) along a
canard is to one of the two points (θ, u) where u3/3 − u = x3/3 − x. The
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Figure 1.1. Three dimensional plot of a trajectory for the van der Pol equation

and the critical manifold of the system. The folded saddles occur near the points

on the critical manifold where the trajectory turns.

DAE does not adequately resolve the canards: they all appear to occur on
trajectories of the slow flow that are asymptotic to the folded singularities.
Singular perturbation analysis [5] determines asymptotic properties of the
canards for small values of ε > 0 in the van der Pol equation. We shall
not discuss these asymptotics or the geometry of canards in this paper, but
note they are essential parts of the chaotic dynamics found in the van der
Pol equation. It is relatively easy to compute the limiting images of the
canards for the DAE, but we do not pursue this matter here.

The Jacobian of the slow flow equations is
(

0 2ωx
2πa cos(2πθ) −1

)

.

The trace of the Jacobian is negative, so the slow flow is area contracting.
This has two immediate implications about the phase portraits of the slow
flow.

• There are no equilibrium points that are sources.
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• There are no unstable periodic orbits. For a < 1, the flow points into
the strip x < ±1 on its boundary, so the Poincaré-Bendixson Theorem
implies that there is a stable periodic orbit in the strip.

As a increases, we encounter the following local degeneracies in the
slow flow at points of the fold curves S±1 and the projections S∓2 of the
fold curves to stable sheets of the critical manifold [14, 16]:

• At a = 1, there is a folded saddle-node, dividing slow flows with no
folded singularities from slow flows with two folded singularities, one
a folded saddle ps = (θs, 1) = ( 1

2π
sin−1( 1

a
), 1) and the other a folded

node or focus at pa = (θa, 1) = ( 1

2
− 1

2π
sin−1( 1

a
), 1).

• At a =
√

1 + 1/(16πω)2, there is a resonant folded node dividing slow
flows with folded nodes from slow flows with folded foci.

• At a = 2, the projections of the folds at S±1 of the slow flow onto the
sheets of the critical manifold at S∓2 have inflection points. At values
of a > 2, the mappings along the slow flow from S±2 to S±1 are no
longer monotone.

The separatrices of the folded saddle ps play a significant role in the
dynamics of the DAE and the van der Pol equation. In the half plane
1 ≤ x, there is a stable separatrix Ws that arrives at ps from the left and
an unstable separatrix Wu that leaves ps to the right. Figure 1.2 shows
the saddle separatrices of (1.2) for parameter values (ω, a) = (1, 1.25) and
(ω, a) = (2, 10). We note that Wu always intersects the circle S1 before
making a full turn around the cylinder S1 × R. 1

1.3 Symmetry and Return Maps

All trajectories with initial conditions on S±2 reach S±1 except those that
lie in the stable manifold of a folded saddle or the strong stable manifold of
a folded node. Let P+ be the map along trajectories of the slow flow from
S2 to S1, P− the map along trajectories of the slow flow from S−2 to S−1,
J+(θ, 1) = (θ,−2) and J−(θ,−1) = (θ, 2). The return map for the DAE to
the circle S2 is then given by the composition J−P−J+P+. The slow flow
and the DAE are symmetric with respect to the transformation T (θ, x) =
(θ+ 1

2
,−x). Moreover, T 2 is the identity on S1×R, TP+ = P−T and TJ+ =

J−T . This implies that the return map J−P−J+P+ = J−P−TTJ+P+ =
(TJ+P+)(TJ+P+) is the square of the map H = (TJ+P+) on the circle

1 Here is the proof. Assume that Wu intersects the line θ = 1
2

and denote the segment

of Wu that extends from ps to θ = 1
2

by Wu2. Set W̄u2 to be the reflection of Wu2 in

the line θ = 1
2
. If (θ, x) and (1− θ, x) are symmetric points on Wu2 and W̄u2, the vector

(ω(x2
−1), x−a sin(2πθ)) is tangent to W̄u2. But the vector field of the slow flow at this

point is (ω(x2
− 1),−x − a sin(2πθ)), which points below the curve W̄u2. We conclude

that Wu intersects the circle S1 at a point p1u ∈ (θs, 1 − θs), proving our assertion.
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Figure 1.2. Phase portraits of the slow flow for parameter values (a)

(ω, a) = (1, 1.5) and (b) (ω, a) = (5, 20). The stable and unstable manifolds

of the folded saddles and the circles |x| = 1, |x| = 2 are drawn.

S2. Consequently, the periodic orbits of the DAE can be divided into those
that are fixed by the half return map H and those that are not. Because
T phase shifts θ by 1

2
, the fixed points of H all yield periodic orbits whose

period is an odd multiple of the forcing period 1/ω. The stable periodic
orbits studied in the work of Cartwright and Littlewood [2, 10, 11] are the
ones containing points fixed by H . In this paper, we shall also focus upon
these orbits. Figure 1.4 shows graphs of the maps H for several parameter
values.

There are three primary parameter ranges for a in which the maps
P+ and H have different properties. The map P+ is a diffeomorphism of
the circle S2 to the circle S1 for 0 < a < 1. In this regime, x decreases
along all trajectories in the strip 1 < x < 2, implying that H is a circle
diffeomorphism. Its rotation number depends upon ω, increasing with ω.
All rotation numbers in [ 1

2
,∞) are realized as ω varies in (0,∞).

When 1 < a < 2, the map P+ no longer maps the circle S2 onto
the circle S1. Its image I1 excludes the portion of S1 that lies below the
manifold Wu defined in the previous section. The discontinuities in the
domain of P+ occur at points in Ws ∩ S2. There is a single point of dis-
continuity since the circle S2 is a cross-section for the flow. It also follows
that the map P+ remains increasing in this parameter regime. Thus, H is
a family of increasing maps of the circle into itself with a single point of
jump discontinuity in this parameter regime. This implies that H still has
a well defined rotation number and periodic orbits of at most one period.
Quasiperiodic trajectories are still possible, but the set of parameter values
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yielding quasiperiodic trajectories is likely to have measure zero [7].
When 2 < a, the map P+ is no longer monotone. There are two

points p2l = ( 1

2π
sin−1( 2

a
), 2) and p2r = ( 1

2
− 1

2π
sin−1( 2

a
), 2) at which P+

has a local maximum and minimum, respectively. On the interval D =
(θ2l, θ2r), P+ has negative slope while on S1 − D̄, it has positive slope.
There are two crucial additional aspects to the structure of H as a piecewise
continuous and piecewise monotone mapping of the circle. First, there are
discontinuities of P+ at intersections of D with Ws. (There may be only
one such intersection point.) At the points of discontinuity in Ws ∩ S2,
there is a jump with limit values 1

2
+ θs = θr and 1

2
+ p1u = θl. We denote

by ql and qr the points (θl, 2) and (θr, 2) in S2. Second, we observe that
the maximum height of Wu is a decreasing function of ω and is unbounded
as ω → 0. Therefore, if ω > 0 is small enough, Wu intersects the circle
S2. When this happens, it divides S2 into two intervals. The points in S2

above Wu have image in IH = [ql, qr] while the points in S2 below Wu have
image to the left of ql. (If 0 < θs < 1

2
< θ1u < 1, then this expression yields

IH ⊂ [0, 1]. Otherwise, if 0 < θ1u < 1

2
, the circular arc IH contains 0 and

it is convenient to choose a fundamental domain for the universal cover of
the circle S2 that contains [ql, qr].) Note that Ws lies above Wu.

Figure 1.3a shows the structure of the flow in strip 1 < x < 2 for
(ω, a) = (5, 20), while figure 1.3a shows the structure of the flow in strip
1 < x < 2 for (ω, a) = (10, 20). In this figure, the folded saddles ps are
located by the symbol ×. Their stable separatrices are drawn as solid
curves, and their unstable manifolds are drawn as dot-dashed curves. The
circles S2 are drawn dotted, and the points p2l and p2r are labeled. The
dashed trajectories have initial condition p2l. The intervals IH = [ql, qr]
that are the images of H are drawn as thick lines. The points p1u ∈ Wu∩S1

are labeled and the points in Ws ∩S2 are marked by large dots. The graph
of the half-return map H for (ω, a) = (5, 20) is shown in Figure 1.4a. The
map H is discontinuous at the points of Ws ∩ S2, has a local maximum at
p2l and a local minimum at p2r.

We conclude that the graph of H can contain the following types of
intervals on which it is monotone and continuous:

• a decreasing branch with domain [p2l, p2r] (this occurs if Ws intersects
S2 in a single point),

• a branch containing p2r with a local minimum,
• a branch containing p2l with a local maximum,
• monotone decreasing branches in [p2l, p2r],
• monotone increasing branches in the complement of [p2l, p2r].

We assume for the moment that all intersections of Ws with S2 are trans-
verse. Then Ws must have an odd number of interections with S2 and every
intersection in [θ2l, θ2r] is preceded by an intersection in the complement
of this interval. Therefore, the number of monotone increasing branches is
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Figure 1.3. The structure of the slow flow in the strip 1 < x < 2 for

(a)(ω, a) = (5, 20) and (b)(ω, a) = (10, 20). Unstable manifolds Wu are drawn

with dot-dash curves, stable manifolds Ws are drawn solid, the trajectories orig-

inating at the points p2l are drawn dashed and the circles x = 2 are drawn as

dotted lines.

one larger than the number of monotone decreasing branches. Moreover,
the image of all branches is contained in IH except the branch with a local
minimum.

We next analyze the properties of the map H near a point p ∈ Ws∩S2.
If p ∈ [p2l, p2r], then the limit value on the left is ql and the limit value on
the right is qr. If p ∈ [p2r, p2l], then the limit value on the right is ql and
the limit value on the left is qr. The slope of the map H on the two sides
of p behaves very differently. The points with limit value qr cross S1 just
to the left of ps. Since the line S1 is transverse to the stable and unstable
manifolds of ps, the flow map P+ has a singularity of the form (θs−θ)α with
0 < α < 1. 2 The points with limit value ql follow the unstable manifold
Wu of ps to its first crossing with S1. The map along the flow also has a
power law singularity. The exponent is the ratio of the magnitudes of the
stable and unstable eigenvalues of ps. Since the trace of the Jacobian is
negative, the stable eigenvalue has larger magnitude and the exponent is
larger than 1. We conclude that the map H has unbounded slope as H(θ)
approaches qr, and slope approaching zero as H(θ) approaches ql.

2 This is readily computed if we assume that the flow is linear near ps. Let (u, v)
be coordinates with the stable manifold the u-axis and the unstable manifold the v-
axis. Assume that the eigenvalues are µ > 0 and λ < 0. The trajectories of the flow
are then graphs of functions v = cuµ/λ. The flow from the cross-section u = 1 to
the line v = mu sends the point (1, c) to ((c/m)−λ/(µ−λ) ,m(c/m)−λ/(µ−λ)). Since
λ < 0 < µ, 0 < −λ/(µ − λ) < 1.
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1.4 Degenerate Decompositions and Fixed Points of H

This section considers the fixed points of the half-return map H , which
correspond to periodic orbits of odd period for the DAE of the forced van
der Pol equation. The previous section describes the structure of H as a
piecewise continuous, piecewise monotone mapping. There is a substantial
difference between cases for a < 1, 1 < a < 2 and 2 < a. For a < 1, H is
a diffeomorphism and for 2 > a > 1, H has a single point of discontinuity.
There will be ranges of values of ω in these cases for which H has a fixed
point, one interval for each odd multiple of the forcing period. The case
a > 2 is the one of most interest to us, and we assume a > 2 in the
remainder of this section.

There are two types of bifurcations that affect the number of fixed
points of H :

• Bifurcations in the interior of intervals of monotonicity are saddle-
nodes where the slope of H is 1 or period-doubling bifurcations where
the slope of H is −1.

• Bifurcations that involve endpoints of the intervals of monotonicity
correspond to homoclinic bifurcations of the DAE.

We have not encountered period doubling bifurcations, but have found
saddle-nodes. We have found homoclinic bifurcations where the periodic
orbits approach ps from the left and also ones where the periodic orbits
approach ps from the right.

In addition to bifurcations, there are parameter values at which the
number of discontinuities and turning points of H change. These corre-
spond to degenerate decompositions for the DAE. For example, when a = 1,
the DAE has a saddle-node and its preimage under P+ is a singular point of
H . Despite the fact that a saddle-node has a half-space of trajectories that
approach the saddle-node point, all of the trajectories starting at S2 reach
S1 under the slow flow except for the one on the strong stable manifold of
the equilibrium point. The other degenerate decompositions we consider
involve tangencies of the slow flow with the circle S2.

The general structure of H for a > 2 was described in the previous sec-
tion. There is one local maximum, one local minimum and an odd number
of jump discontinuities with the same limit values at each discontinuity.
Here we examine how the number of intervals of monotonicity and the
number of fixed points of H change. The discontinuities occur at points
in Ws ∩ S2. As the parameters vary, the number of these points changes
only when there is a point where Ws is tangent to S2. The tangency points
of the slow flow with S2 are p2l and p2r. When ω increases with a fixed,
the stable manifold Ws tends to move downwards. Consequently, points of
Ws ∩ S2 appear at p2l where trajectories of the vector field are tangent to
S2 from above and disappear at p2r where where trajectories of the vector
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field are tangent to S2 from below. Before a new branch appears at θ2l,
H(θ2l) approaches ql. The new branch appears with H(θ2l) taking a value
near θl = θ1u − 1

2
. New branches can disappear at θ2r only in the regime

where Wu does not intersect S2 since Ws lies above Wu and p2r lies below
Wu when Wu ∩ S2 is nonempty. As ω increases, the domain of the branch
with local minimum at θ2r shrinks and H(θ2r) approaches θr. When the
branch disappears, H(θ2r) jumps down to θl.

In addition to changes in the number of branches of H associated with
tangencies of Ws with S2, there also are parameter values at which the
point p2r is in the forward trajectory of p2l and parameter values at which
Wu is tangent to S2. Combinations of these degeneracies are also possible
at isolated points. For example, near (ω, a) = (3, 15) there appear to be
parameter values for which Ws passes through p2l and Wu passes through
p2r.

We observe in our numerical computations that the point p1u = Wu ∩
S1 does not change much with varying ω. The points of intersection in
Ws ∩ S2 vary much more quickly. Thus, in describing the bifurcations of
fixed points of H , we shall speak as if p1u is independent of ω though this is
not the case. The only fixed points of H that we have observed occur in the
branch containing p2r and the branch immediately to the left of this one.
We denote the domains of these two branches by Im and Ilm, respectively.
The branch of H with domain Im is a unimodal map with a turning point
at p2r with θ2r < 1

2
. As ω increases, Im shrinks. The value of H at the

endpoints of Im is θr = θs + 1

2
> 1

2
. As the branch shrinks, its minimum

value also approaches qr. Therefore, the branch contains no fixed points
when it is short enough. On the other hand, for many parameter values
the branch is wide enough that its right endpoint is to the right of the
diagonal. The graph of H |Im must then cross the diagonal an odd number
of times, so we expect a single fixed point. There are two bifurcations that
occur as the branch shrinks: at the first bifurcation, the right endpoint of
the graph of H |Im meets the diagonal, and a second fixed point appears
at the right end of the branch. This fixed point is unstable since the slope
of H is unbounded near the endpoints of Im. The second bifurcation is a
saddle-node that occurs as the two fixed points collide and the graph of
H |Im moves completely above the diagonal.

As Im shrinks with increasing ω, the right endpoint of Ilm moves to the
right. It crosses the diagonal, creating a fixed point of H in Ilm. This often
occurs before the homoclinic and saddle-node bifurcation within Im. Since
H is decreasing on Ilm, it can contain only this single fixed point of H .
Because the slope of H approaches 0 at the right endpoint of Ilm, the fixed
point in Ilm is stable when it is created. Thus, our observations indicate
that as ω varies, there are parameter regions in which H has two stable
fixed points, and in part of this region, there is also an unstable fixed point
in Im. Figure 1.4 displays graphs of H for four different values of (ω, a):
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a = 20 and ω = 5, 5.38, 5.4, 5.5. At ω = 5, there is bistability and the right
end of the branch Im lies below the diagonal. At ω = 5.38, Im has shrunk,
and its right endpoint is almost on the diagonal. At ω = 5.4, the branch
Im has shrunk still further and lies just above the diagonal. At ω = 5.5,
the number of branches has changed as the former Im disappeared.
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Figure 1.4. Graphs of the half-return map for parameter values a = 20 and (a)

ω = 5, (a) ω = 5.38, (a) ω = 5.4, (a) ω = 5.5.

The periods of the branches are evident in Figure 1.3. In Figure 1.3a,
the value of θ changes by less than 1 as points in Im flow from S2 to S1.
The value of θ changes by an amount between 1 and 2 as points in Ilm

flow from S2 to S1. Therefore, the fixed point in Im has θ-period 1 and the
fixed point in Ilm has θ-period 3. These two periodic orbits are displayed
in Figure 1.5. In Figure 1.3b, the theta periods in Im and Ilm are 9 and
11, respectively.

We end this section with an observation about the limit of the slow
flow equations in which a → ∞ and ω → ∞ with the ratio ω/a constant.
If we rescale the equations by dividing by a and denote δ = 1/a, the slow
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Figure 1.5. Stable periodic orbits of (a) ω-period 1 and (b) ω-period 3 for

parameter values (ω, a) = (5, 20).

flow equations become

θ′ = β(x2 − 1)
x′ = −δx + sin(2πθ),

(1.3)

where β = ω/a. The limit δ = 0 is a Hamiltonian system, with Hamiltonian

E(θ, x) =
cos(2πθ) − 1

2π
+ β

(

x3/3− x + 2/3
)

,

so we can use perturbation analysis to characterize the phase portraits of
the system when δ is small. We have only begun to carry out this analysis
and record here some of the properties of the case δ = 0:

• There is a saddle at (θ, x) = (0, 1) with a homoclinic connection γu

above the center at (0.5, 1). The constant part of E(θ, x) was chosen
so that E(θ, x) = 0 on the saddle and the homoclinic connection.

• When β > 3/(4π), there is also a homoclinic connection γl that encir-
cles the cylinder and goes below (0.5, 1). The homoclinic connection
γu does not intersect the line x = 2. See Figure 1.6(a).

• When β = 3/(4π), the homoclinic connection γu is tangent to x = 2
at θ = 0.5. Moreover, the lower homoclinic connection γl meets the
saddle at (0.5,−1), forming a heteroclinic cycle. See Figure 1.6(b).

• When 0 < β < 3/(4π), the homoclinic orbit γu intersects x = 2 twice.
Moreover, the saddle at (0.5,−1) has a homoclinic connection γ0 that
encircles the center (0.5, 1) and is tangent to x = 2 at θ = 0.5. This
homoclinic connection does not encircle the cylinder. It intersects
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the fold line x = 1 at the points where cos(2πθ) = 8πβ/3 − 1. See
Figures 1.6(c) and 1.6(d).
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Figure 1.6. Phase portraits of the system (1.3) with δ = 0: (a)

β = 0.30 > 3/(4π); (b) β = 3/(4π); (c) β = 0.15 < 3/(4π); (d)

β = 0.03 � 3/(4π).

1.5 Concluding Remarks

This paper is an initial step towards determining the global bifurcation
diagram for the forced van der Pol equation near its singular perturbation
limit. We exhibit stable periodic orbits in the singular limit of the differen-
tial algebraic equation and establish that their existence is due primarily to
a phenomenon that has received little attention in the literature on singu-
larly perturbed dynamical systems. In particular, the “projection” of a fold
curve along the fast flow of the system is tangent to the slow flow on a sheet
of the critical manifold. These tangencies lead to a lack of monotonicity
in the return map for the system along folds of the critical manifold. Our
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work appears to be the first time that such tangencies have been noted in
the van der Pol equation and related to its bifurcations. By viewing the
system in terms of return maps to the fold curves rather than by fixing a
cross-section of constant phase, the tangencies become evident.

We conjecture that the parameter region with stable periodic orbits
that have θ-period 2n + 1 forms a strip in the (ω, a) plane that extends
from the ω-axis to ∞ with increasing a. One boundary of these strips is
conjectured to be a saddle-node bifurcation of periodic orbits and the other
boundary is a bifurcation that approaches a homoclinic orbit of the differ-
ential algebraic equation as ε → 0. We have not yet characterized these
bifurcations outside the singular limit, but conjecture that they become
saddle-nodes as the stable periodic orbits collide with unstable periodic
orbits at the edge of regions where there are periodic orbits with canards.
For each pair of adjacent odd integers 2n ± 1, we further conjecture that
there is a number an > 2 such that the strips overlap for a > an and that
no overlaps occur for a < an. For the differential algebraic equation, there
is a codimension two point with a = an at which the period 2n − 1 orbit
has a saddle-node and the period 2n+1 orbit has a homoclinic bifurcation.

The differential algebraic equation can be used to give approxima-
tions to the locations of canards in the van der Pol equation. The stable
separatrix of the folded saddle in the strip |x| < 1 gives the approximate
location of the canards, and the jumps from the canards to the stable sheets
of the critical manifold can be calculated explicitly within the differential
algebraic equation. This information is a starting point for asymptotic
analysis that should lead to global bifurcation diagrams of the van der Pol
equation in the relaxation oscillation regime with ε > 0 small. Additional
perturbation analysis should characterize the properties of the system in
the parameter regions where ω and a are large, but have a bounded ratio.
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