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Quadratic Fields

Even when one’s primary interest is in integer solutions to equations, it can some-

times be very helpful to consider more general sorts of numbers. For example, when

studying the principal quadratic form x2 −Dy2 of discriminant 4D it can be a great

aid to understanding to allow ourselves to factor this form as (x+y
√
D)(x−y

√
D) .

Here we allow D to be negative as well as positive, in which case we would be moving

into the realm of complex numbers.

To illustrate this idea, consider the case D = −1, so the form is x2 + y2 which

we are factoring as (x + yi)(x − yi) . Writing a number n as a sum a2 + b2 is then

equivalent to factoring it as (a+bi)(a−bi) . For example 5 = 22+12 = (2+ i)(2− i) ,

and 13 = 32 + 22 = (3+ 2i)(3− 2i) , so 5 and 13 are no longer prime when we allow

factorizations using numbers a+bi . Sometimes a nonprime number such as 65 can

be written as the sum of two squares in more than one way: 65 = 82 + 12 = 42 + 72 ,

so it has factorizations as (8 + i)(8 − i) and (4 + 7i)(4 − 7i) . This becomes more

understandable if one uses the factorization

65 = 5 · 13 = (2+ i)(2− i)(3+ 2i)(3− 2i)

If we combine these four terms as (2− i)(3 + 2i) = 8+ i and (2+ i)(3 − 2i) = 8− i

we get the representation 65 = 82 + 12 = (8+ i)(8− i) , whereas if we combine them

as (2+ i)(3+2i) = 4+7i and (2− i)(3−2i) = 4−7i we get the other representation

65 = 42 + 72 = (4+ 7i)(4− 7i) .

Thus we will consider the set

Z[
√
D] = {x +y

√
D
∣∣ x,y ∈ Z }

which consists of real numbers if D > 0 and complex numbers if D < 0. We will

always assume D is not a square, so Z[
√
D] is not just Z . When D = −1 we have

Z[
√
D] = Z[i] , and numbers a+ bi in Z[i] are known as Gaussian integers.

Primes and Units

We will be interested in factorizations of numbers in Z[
√
D] , particularly how

they factor into ‘primes’. If a prime p in Z happens to be representable as p =

x2 − Dy2 then this is saying that p is no longer prime in Z[
√
D] since it factors as

p = (x + y
√
D)(x − y

√
D) . Of course, we should say precisely what we mean by

a ‘prime’ in Z[
√
D] . For an ordinary integer p > 1, being prime means that p is

divisible only by itself and 1. If we allow negative numbers, we can “factor" a prime

p as (−1)(−p) , but this should not count as a genuine factorization, otherwise there
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would be no primes at all in Z . In Z[
√
D] things can be a little more complicated

because of the existence of units in Z[
√
D] , the nonzero elements ε ∈ Z[

√
D] whose

inverse ε−1 also lies in Z[
√
D] . For example, in the Gaussian integers Z[i] there are

four obvious units, ±1 and ±i , since (i)(−i) = 1. We will see in a little while that these

are the only units in Z[i] . Having four units in Z[i] instead of just ±1 complicates

the factorization issue slightly, but not excessively so.

For positive values of D things are somewhat less tidy because there are always

infinitely many units in Z[
√
D] when D > 0. For example, when D = 2 the number

ε = 3 + 2
√

2 is a unit because (3 + 2
√

2)(3 − 2
√

2) = 1. All the powers of 3 + 2
√

2

are therefore also units, and there are infinitely many of them since 3+ 2
√

2 > 1 so

(3+ 2
√

2)n→∞ as n→∞ .

Whenever ε is a unit in Z[
√
D] we can factor any other number α in Z[

√
D] as

α = (αε)(ε−1) . If we allowed this as a genuine factorization there would be no primes

in Z[
√
D] , so it is best not to consider it as a genuine factorization. This leads us to

the following definition:

An element α of Z[
√
D] is said to be prime in Z[

√
D] if it is neither 0 nor a unit,

and if whenever we have a factorization of α as α = βγ with both β,γ in Z[
√
D] ,

then it must be the case that either β or γ is a unit in Z[
√
D] .

Not allowing units as primes is analogous to the standard practice of not considering

1 to be a prime in Z .

If we replace Z[
√
D] by Z in the definition of primeness above, we get the con-

dition that an integer a in Z is prime if its only factorizations are the trivial ones

a = (a)(1) = (1)(a) and a = (−a)(−1) = (−1)(−a) , which is what we would expect.

This definition of primeness also means that we are allowing negative primes as the

negatives of the positive primes in Z .

A word of caution: An integer p in Z can be prime in Z but not prime in Z[
√
D] .

For example, in Z[i] we have the factorization 5 = (2 + i)(2 − i) , and as we will be

able to verify soon, neither 2+ i nor 2− i is a unit in Z[i] . Hence by our definition 5

is not a prime in Z[i] , even though it is prime in Z . Thus one always has to be careful

when speaking about primeness to distinguish “prime in Z" from “prime in Z[
√
D]".

Having defined what we mean by primes in Z[
√
D] we can now ask the fundamen-

tal questions that will be central to this chapter:

Does every element of Z[
√
D] , apart from 0 and units, have a factorization into

primes in Z[
√
D]? And if it does, is this factorization unique?

The uniqueness question needs a little explanation. If we have a unit ε in Z[
√
D] we
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can always modify a factorization α = βγ to give other factorizations α = (εβ)(ε−1γ)

and α = (ε−1β)(εγ) . This is analogous to writing 6 = (2)(3) = (−2)(−3) in Z . This

sort of nonuniqueness is unavoidable, but it is also not too serious a problem. So

when we speak of factorization in Z[
√
D] being unique, we will always mean unique

up to insertion of units (and their inverses).

The Norm

We introduce now a basic tool that is of great use in studying factorizations. For

a number x +y
√
D define its norm to be

N(x +y
√
D) = (x +y

√
D)(x −y

√
D) = x2 −Dy2

Thus the norm is a function N :Z[
√
D]→Z . The main reason the norm is important

is because of the following multiplicativity property:

Proposition. N(αβ) = N(α)N(β) for all α,β ∈ Q(
√
D) .

Proof : This is simply a calculation. Let α = a + b
√
D and β = c + d

√
D . Then

αβ = (ac + bdD)+ (ad+ bc)
√
D and hence

N(αβ) = a2c2 + 2abcdD + b2d2D2 − (a2d2 + b2c2 + 2abcd)D

= a2c2 + b2d2D2 − a2d2D − b2c2D

On the other hand we have

N(α)N(β) = (a2 − b2D)(c2 − d2D)

= a2c2 + b2d2D2 − a2d2D − b2c2D

So N(αβ) = N(α)N(β) . ⊔⊓

The multiplicative property N(αβ) = N(α)N(β) implies that if two integers m

and n are represented by the form x2 − Dy2 , then so is their product mn . In the

case of the form x2 + y2 this fact played a role in our proof of Fermat’s theorem in

Section 2.3, so now we see how this fits into a more general picture.

Using the multiplicative property of the norm we can derive a simple criterion for

recognizing units:

Proposition. An element ε ∈ Z[
√
D] is a unit if and only if N(ε) = ±1 .

Proof : Suppose ε is a unit, so its inverse ε−1 also lies in Z[
√
D] . Then we have

N(ε)N(ε−1) = N(εε−1) = N(1) = 1. Since both N(ε) and N(ε−1) are elements of

Z , this forces N(ε) to be ±1. Conversely, the inverse of an element ε = a+ b
√
D in
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Z[
√
D] is ε−1 = (a−b

√
D)/N(ε) since multiplying this by a+b

√
D gives 1. Hence if

N(ε) = ±1 we have ε−1 = ±(a− b
√
D) , an element of Z[

√
D] , so ε is a unit. ⊔⊓

When D is negative there are very few units in Z[
√
D] since in these cases the

equation N(x + y
√
D) = x2 − Dy2 = ±1 has very few integer solutions, namely, if

D = −1 there are only the four solutions (x,y) = (±1,0) and (0,±1) while if D < −1

there are only the two solutions (x,y) = (±1,0) . Thus the only units in Z[i] are ±1

and ±i , and the only units in Z[
√
D] for D < −1 are ±1.

The situation for Z[
√
D] with D positive is quite different. Here we are looking

for solutions of x2 − Dy2 = ±1 with D > 0. This is Pell’s equation, and we know

from our study of topographs of hyperbolic forms that the equation x2 − Dy2 = 1

has infinitely many solutions since the value 1 occurs along the periodic separator

line in the topograph of x2 −Dy2 when (x,y) = (1,0) , so it appears infinitely often

by periodicity. For some values of D the number −1 also appears along the separator

line, and then it too appears infinitely often. Thus Z[
√
D] has infinitely many units

ε = x+y
√
D , with arbitrarily large values of x and y . Fortunately the situation turns

out to be not so bad as it seems at first glance:

Proposition. The units in Z[
√
D] , when D > 0 , are the elements ±εn for n ∈ Z , where

ε = p + q
√
D and (p, q) is the smallest positive solution of x2 −Dy2 = ±1 .

The unit p + q
√
D given by this proposition is called the fundamental unit.

Proof : We know from Chapter 2 that the translation or glide-reflection symmetry

along the separator line for x2 −Dy2 is given by the transformation
(
p Dq

q p

)(
x

y

)
=

(
px +Dqy

qx + py

)

On the other hand, we also have

(p + q
√
D)(x +y

√
D) = (px +Dqy)+ (qx + py)

√
D

which is really the same transformation of the coefficients x and y . The units in

Z[
√
D] are exactly the elements x + y

√
D satisfying x2 − Dy2 = ±1, and we know

that the solutions of this equation are exactly the pairs
(
x
y

)
obtainable as products

±

(
px +Dqy

qx + py

)n (
1

0

)

as n ranges over Z . Hence the units are exactly the elements ±εn times 1. ⊔⊓

Another basic application of the norm is the following useful fact:
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Proposition. Let α be an element of Z[
√
D] . If N(α) is prime in Z then α is prime

in Z[
√
D] .

For example, when we factor 5 as (2+ i)(2− i) in Z[i] , this proposition implies

that both factors are prime since the norm of each one is 5, which is prime in Z .

Proof : Suppose an element α ∈ Z[
√
D] has a factorization α = βγ , hence N(α) =

N(β)N(γ) . If N(α) is prime in Z , this forces one of N(β) and N(γ) to be ±1, hence

one of β and γ is a unit. This means α is a prime since it cannot be 0 or a unit, as

its norm is a prime. ⊔⊓

The converse of this proposition is not generally true. For example the num-

ber 3 has norm 9, which is not prime in Z , and yet 3 is prime in Z[i] since if we

had a factorization 3 = αβ in Z[i] with neither α nor β a unit, then the equation

N(α)N(β) = N(3) = 9 would imply that N(α) = ±3 = N(β) , but there are no ele-

ments of Z[i] with norm ±3 since the equation x2+y2 = ±3 has no integer solutions.

Prime Factorizations

Now we can prove that prime factorizations always exist:

Proposition. Every nonzero element of Z[
√
D] that is not a unit can be factored as a

product of primes in Z[
√
D] .

Proof : We argue by induction on |N(α)| . Since we are excluding 0 and units, the

induction starts with the case |N(α)| = 2. In this case α must itself be a prime by the

preceding proposition, since 2 is prime in Z . For the induction step, if α is a prime

there is nothing to prove. If α is not prime, it factors as α = βγ with neither β nor

γ a unit, so |N(β)| > 1 and |N(γ)| > 1. Since N(α) = N(β)N(γ) , it follows that

|N(β)| < |N(α)| and |N(γ)| < |N(α)| . By induction, both β and γ are products of

primes in Z[
√
D] , hence their product α is also a product of primes. ⊔⊓

Let us investigate how to compute a prime factorization by looking at the case of

Z[i] , the Gaussian integers. Assuming that factorizations of Gaussian integers into

primes are unique (up to units), which we will prove later, here is a procedure for

finding the prime factorization of a Gaussian integer α = a+ bi :

(1) Factor the integer N(α) = a2 + b2 into primes pk in Z .

(2) Determine how each pk factors into primes in Z[i] .

(3) By the uniqueness of prime factorizations, the primes found in step (2) will be

factors of either a+bi or a−bi since they are factors of (a+bi)(a−bi) , so all

that remains is to test which of the prime factors of each pk are factors of a+bi .
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To illustrate this with a simple example, let us see how 3+ i factors in Z[i] . We have

N(3+ i) = (3+ i)(3− i) = 10 = 2 · 5. These two numbers factor as 2 = (i+ i)(1− i)

and 5 = (2+ i)(2− i) . These are prime factorizations in Z[i] since N(1± i) = 2 and

N(2± i) = 5, both primes in Z . Now we test whether for example 1+ i divides 3+ i

by dividing:
3+ i

1+ i
=
(3+ i)(1− i)

(1+ i)(1− i)
=

4− 2i

2
= 2− i

Since the quotient 2 − i is a Gaussian integer, we conclude that 1 + i is a divisor of

3+i and we have the factorization 3+i = (1+i)(2−i) . The is the prime factorization

of 3+ i since we have already noted that both 1+ i and 2− i are primes in Z[i] .

For a more complicated example consider 244 + 158i . For a start, this factors

as 2(122 + 79i) . Since 122 and 79 have no common factors in Z we can’t go any

farther by factoring out ordinary integers. We know that 2 factors as (1 + i)(1 − i)

and these two factors are prime in Z[i] since their norm is 2. It remains to factor

122 + 79i . This has norm 1222 + 792 = 21125 = 53 · 132 . Both 5 and 13 happen

to factor in Z[i] , namely 5 = (2 + i)(2 − i) and 13 = (3+ 2i)(3 − 2i) , and these are

prime factorizations since the norms of 2± i and 3± 2i are 5 and 13, primes in Z .

Thus we have the prime factorization

(122+ 79i)(122− 79i) = 53 · 132 = (2+ i)3(2− i)3(3+ 2i)2(3− 2i)2

Now we look at the factors on the right side of this equation to see which ones are

factors of 122+ 79i . Suppose for example we test whether 2+ i divides 122+ 79i :

122+ 79i

2+ i
=
(122+ 79i)(2− i)

(2+ i)(2− i)
=

323+ 36i

5

This is not a Gaussian integer, so 2 + i does not divide 122 + 79i . Let’s try 2 − i

instead:
122+ 79i

2− i
=
(122+ 79i)(2+ i)

(2− i)(2+ i)
=

165+ 280i

5
= 33+ 56i

So 2−i does divide 122+79i . In fact, we can expect that (2−i)3 will divide 122+79i ,

and it can be checked that it does. In a similar way one can check whether 3+ 2i or

3 − 2i divides 122+ 79i , and one finds that it is 3 − 2i that divides 122+ 79i , and

in fact (3 − 2i)2 divides 122 + 79i . After these calculations one might expect that

122+ 79i was the product (2 − i)3(3 − 2i)2 , but upon multiplying this product out

one finds that it is the negative of 122+ 79i , so

122+ 79i = (−1)(2− i)3(3− 2i)2
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The factor −1 is a unit, so it could be combined with one of the other factors, for

example changing one of the factors 2− i to i−2. Alternatively, we could replace the

factor −1 by i2 and then multiply each 3−2i factor by i to get the prime factorization

122+ 79i = (2− i)3(2+ 3i)2

Hence for 244+ 158i we have the prime factorization

244+ 158i = (1+ i)(1− i)(2− i)3(2+ 3i)2

The question of uniqueness of prime decompositions in Z[
√
D] is much more

subtle. Even if the ambiguity of inserting units is allowed, there are still cases when

prime factorizations fail to be unique. One of the simplest instances is in Z[
√
−5]

where we have the factorizations

6 = (2)(3) = (1+
√
−5)(1−

√
−5)

The only units in Z[
√
−5] are ±1, so these two factorizations do not differ just by

units. We can see that 2, 3, and 1±
√
−5 are prime in Z[

√
−5] by looking at norms.

The norms of 2, 3, and 1±
√
−5 are 4, 9, and 6, so if one 2, 3, or 1±

√
−5 was not

a prime, it would have a factor of norm 2 or 3 since these are the only numbers that

occur in nontrivial factorizations of 4, 9, and 6. However, the equations x2+5y2 = 2

and x2 + 5y2 = 3 have no integer solutions so there are no elements of Z[
√
−5] of

norm 2 or 3. Thus in Z[
√
−5] the number 6 has two prime factorizations that do not

differ merely by units.

What is secretly going on in this example is that x2+5y2 is not the only quadratic

form of discriminant −20, up to equivalence. Another form of the same discriminant

is 2x2+2xy+3y2 , and this form takes on the values 2 and 3 that the form x2+5y2

omits, even though x2+5y2 does take on the value 6 = 2·3. Here are the topographs

of these two forms, with prime values circled and with boxes around nonprime values

that yield nonunique prime factorizations:
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In the topograph for x2 + 5y2 some numbers occur in boxes twice, leading to

three different prime factorizations. For example 21 factors into primes in Z[
√
−5]

as 3 · 7, as (1+ 2
√
−5)(1− 2

√
−5) and as (4+

√
−5)(4−

√
−5) . Another example is

69 = 3 · 23 = (7+ 2
√
−5)(7− 2

√
−5) = (8+

√
−5)(8−

√
−5) .

Proposition. Let p be a prime in Z . Then:

(a) If either p or −p is represented by the form x2−Dy2 , so p = ±(a2−Db2) , then

±p factors in Z[
√
D] as p = ±(a+b

√
D)(a−b

√
D) and both these factors are prime

in ZD .

(b) If neither p nor −p is represented by x2−Dy2 then p remains prime in Z[
√
D] .

Proof : For part (a), if p = ±(a2 − Db2) , then certainly ±p factors in Z[
√
D] as p =

±(a + b
√
D)(a − b

√
D) . The two factors are prime since their norm is ±p which is

prime in Z by assumption.

For (b), if p is not a prime in Z[
√
D] then it factors in Z[

√
D] as p = αβ with

neither α nor β a unit. Then N(p) = p2 = N(α)N(β) with neither N(α) nor N(β)

equal to ±1, hence we must have N(α) = ±p and N(β) = ±p . Focusing our attention

just on α , this can be written as a + b
√
D , and then we have ±p = N(a + b

√
D) =

a2−Db2 , which says that the form x2−Dy2 represents ±p . Turning this statement
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around, it says that if x2−Dy2 does not represent p or −p then p is prime in Z[
√
D] .

⊔⊓

Proposition. If Z[
√
D] has unique factorization into primes then the only primes in

Z[
√
D] are the primes described in (a) or (b) of the preceding proposition (or units

times these primes).

Proof : Let α = a + b
√
D be an arbitrary prime in Z[

√
D] . The norm n = N(α) =

(a+b
√
D)(a−b

√
D) is an integer in Z so it can be factored as a product n = p1 · · ·pk

of primes in Z . Each pi either stays prime in Z[
√
D] or factors as a product (ai +

bi
√
D)(ai−bi

√
D) of primes in Z[

√
D] . This gives a factorization of n into primes in

Z[
√
D] . A second factorization of n into primes in Z[

√
D] can be obtained from the

formula n = (a+ b
√
D)(a − b

√
D) by factoring the second factor into primes, since

the first factor a+b
√
D is already prime by assumption. (In fact if a+b

√
D is prime

then a−b
√
D will also be a prime, but we don’t need to know this.) If we have unique

factorization in Z[
√
D] then the prime factor a + b

√
D of n will have to be one of

the prime factors in the first prime factorization of n , or a unit times one of these

primes. Thus a+b
√
D will be a unit times a prime of one of the two types described

in the previous proposition. ⊔⊓

Unique Factorization via the Euclidean Algorithm

Our goal now is to show that unique factorization holds for the Gaussian integers

Z[i] , and in a few other cases as well. The plan will be to see that Gaussian inte-

gers have a Euclidean algorithm much like the Euclidean algorithm in Z , then deduce

unique factorization from this Euclidean algorithem.

In order to prove that prime factorizations are unique we will use the following

special property that holds in Z and in some other rings Z[
√
D] as well:

(∗) If a prime p divides a product ab then p must divide either a or b .

One way to prove this for Z would be to consider the prime factorization of ab , which

can be obtained by factoring each of a and b into primes separately. Then if the prime

p divides ab , it would have to occur in the prime factorization of ab , hence it would

occur in the prime factorization of either a or b , which would say that p divides a

or b .

This argument assumed implicitly that the prime factorization of ab was unique.

Thus the property (∗) is a consequence of unique factorization into primes. But the
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property (∗) also implies that prime factorizations are unique. To see why, consider

two prime factorizations of a number n :

n = p1p2 · · ·pk = q1q2 · · ·ql

We can assume k ≤ l by interchanging the pi ’s and qi ’s if necessary. We want to

argue that if (∗) holds for each pi , then the qi ’s are just a permutation of the pi ’s

and in particular k = l . The argument to prove this goes as follows. Consider first the

prime p1 . This divides the product q1(q2 · · ·ql) so by property (∗) it divides either

q1 or q2q3 · · ·ql . In the latter case, another application of (∗) shows that p1 divides

either q2 or q3q4 · · ·ql . Repeating this argument as often as necessary, we conclude

that p1 must divide at least one qi . After permuting the qi ’s we can assume that

p1 divides q1 . If we are assuming all the pi ’s and qi ’s are positive integers, the fact

that the primep1 divides the prime q1 implies that p1 equals q1 , so we can cancel

p1 and q1 from the equation p1p2 · · ·pk = q1q2 · · ·ql to get p2 · · ·pk = q2 · · ·ql .

Now repeat the argument to show that p2 equals some remaining qi which we can

assume is q2 after a permutation. After further repetitions we eventually reach the

point that the final pk is a product of the remaining qi ’s. But then since pk is prime

there could only be one remaining qi , so we would have k = l and pk = qk , finishing

the argument.

If we knew the analog of property (∗) held for primes in Z[
√
D] we could make

essentially the same argument to show that unique factorization holds in Z[
√
D] .

The only difference in the argument would be that we would have to take units into

account. The argument would be exactly the same up to the point where we concluded

that p1 divides q1 . Then the fact that q1 is prime would not say that p1 and q1 were

equal, but only that q1 is a unit times p1 , so we would have an equation q1 = ep1 with

e a unit. Then we would have p1p2 · · ·pk = ep1q2 · · ·ql . Canceling p1 would then

yield p2p3 · · ·pk = eq2q3 · · ·ql . The product eq2 is prime if q2 is prime, so if we

let q′2 = eq2 we would have p2p3 · · ·pk = q
′
2q3 · · ·ql . The argument could then be

repeated to show eventually that the qi ’s are the same as the pi ’s up to permutation

and multiplication by units, which is what unique factorization means.

Since the property (∗) implies unique factorization, it will not hold in Z[
√
D]

when Z[
√
D] does not have unique factorization. For a concrete example consider

Z[
√
−5] . Here we had nonunique prime factorizations 6 = 2·3 = (1+

√
−5)(1−

√
−5) .

The prime 2 thus divides the product (1+
√
−5)(1−

√
−5) but it does not divide either

factor 1±
√
−5 since (1±

√
−5)/2 is not an element of Z[

√
−5] .

For Z we know from Chapter 1 that an equation ax+by = 1 always has solutions
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in Z whenever a and b have no common factors. This fact can be used to deduce

that property (∗) holds in Z . To see this, suppose that a prime p divides a product

ab . It will suffice to show that if p does not divide a then it must divide b . If p does

not divide a , then since p is prime, p and a have no common factors. This implies

that the equation px +ay = 1 is solvable with integers x and y . Now multiply this

equation by b to get an equation b = pbx + aby . The number p divides the right

side of this equation since it obviously divides pbx and it divides ab by assumption.

Hence p divides b , which is what we wanted to show. Thus we have (finally!) proved

that Z has unique factorization.

How did we know that equations ax + by = 1 in Z are solvable when a and b

have no common factors? We deduced this from properties of continued fractions

and the Farey diagram, but these ultimately came from the Euclidean algorithm. In

fact it is not hard to deduce solvability of ax + by = 1 directly from the Euclidean

algorithm.

What the Euclidean algorithm gives us, in the case of Z , is a method for starting

with two positive integers α0 and α1 and constructing a sequence of positive numbers

αi and βi satisfying equations

α0 = β1α1 +α2

α1 = β2α2 +α3

...

αn−2 = βn−1αn−1 +αn

αn−1 = βnαn +αn+1

αn = βn+1αn+1

From these equations we can deduce two consequences:

(1) αn+1 divides α0 and α1 .

(2) The equation αn+1 = α0x +α1y is solvable in Z .

To see why (1) is true, note that the last equation implies that αn+1 divides αn . Then

the next-to-last equation implies that αn+1 divides αn−1 , and the equation before this

then implies that αn+1 divides αn−2 , and so on until one deduces that αn+1 divides

all the αi ’s and in particular α0 and α1 .

To see why (2) is true, observe that each equation before the last one allows

an αi to be expressed as a linear combination of αi−1 and αi−2 , so by repeatedly

substituting in, one can express each αi in terms of α0 and α1 as a linear combination
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xα0+yα1 with integer coefficients x and y , so in particular αn+1 can be represented

in this way, which says that the equation αn+1 = α0x +α1y is solvable in Z .

Now if we assume that α0 and α1 have no common divisors except 1, then αn+1

must by 1 by statement (1), and by statement (2) we get integers x and y such that

α0x + α1y = 1, as we wanted. In this way we see that the Euclidean algorithm in Z

implies unique factorization.

A very similar argument works in Z[
√
D] provided that one has a Euclidean algo-

rithm to produce the sequence of equations above starting with any nonzero pair of

elements α0 and α1 in Z[
√
D] . The only difference in the more general case is that

αn+1 might not be 1, but only a unit in Z[
√
D] . Thus one would apply statements (1)

and (2) to a pair α0 , α1 whose only common divisors were units, hence αn+1 would

be a unit, and then the equation αn+1 = α0x+α1y could be modified by multiplying

through by α−1
n+1 to get an equation 1 = α0x+α1y with solutions x,y in Z[

√
D] . As

we have seen earlier, this would imply unique factorization in Z[
√
D] .

Let us show now that there is a Euclidean algorithm in the Gaussian integers Z[i] .

The key step is to be able to find, for each pair of nonzero Gaussian integers α0 and α1 ,

two more Gaussian integers β1 and α2 such that α0 = β1α1+α2 and N(α2) < N(α1) .

If we can always do this, then by repeating the same step over and over we construct a

sequence of αi ’s and βi ’s where the successive αi ’s have smaller and smaller norms.

Since these norms are positive integers, they cannot keep decreasing infinitely often,

so eventually the process will reach an αi of norm 0, so this αi must be 0 and the

Euclidean algorithm will end in a finite number of steps, as it should.

The equation α0 = β1α1+α2 is saying that when we divide α1 into α0 , we obtain

a quotient β1 and a remainder α2 . What we want is for the remainder to be ‘smaller’

than the divisor α1 , in the sense of having a smaller norm. To get an idea how we can

do this it may be helpful to look at the equivalent equation

α0

α1

= β1 +
α2

α1

If we were working with ordinary integers, the quotient β1 would be the integer part

of the rational number α0/α1 and α2/α1 would be the remaining fractional part. For

Gaussian integers we do something similar, but instead of taking β1 to be the ‘integer

part’ of α0/α1 we take it to be the closest Gaussian integer to α0/α1 .

Here is an example, where we choose α0 to be 12 + 15i and α1 to be 5 + 2i .

Then:

α0

α1

=
12+ 15i

5+ 2i
=
(12+ 15i)(5− 2i)

(5+ 2i)(5− 2i)
=

90+ 51i

29
= (3+ 2i)+

3− 7i

29
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Here in the last step we chose 3+ 2i as β1 because 3 is the closest integer to 90/29

and 2 is the closest integer to 51/29. Having found a likely candidate for β1 , we can

use the equation α0 = β1α1 +α2 to find α2 . This equation is

12+ 15i = (3+ 2i)(5+ 2i)+α2 = (11+ 16i)+α2 hence α2 = 1− i

Notice that N(1− i) = 2 < N(5+ 2i) = 29 so we have N(α2) < N(α1) as we wanted.

Will the process of choosing β1 as the nearest Gaussian integer to the ‘Gaussian

rational’ α0/α1 always lead to an α2 with N(α2) < N(α1)? The answer is yes because

if we write the quotient α2/α1 in the form x +yi for rational numbers x and y (in

the example above we have x + yi = 3
29
+

−7
29
i ) then having β1 the closest Gaussian

integer to α0/α1 says that |x| ≤ 1
2

and |y| ≤ 1
2

, so

N
(α2

α1

)
= x2 +y2 ≤

1

4
+

1

4
< 1

and hence

N(α2) = N
(α2

α1

·α1

)
= N

(α2

α1

)
N(α1) < N(α1)

This shows that there is a general Euclidean algorithm in Z[i] , hence Z[i] has unique

factorization.

Let us finish carrying out the Euclidean algorithm for α0 = 12 + 15i and α1 =

5+ 2i . The next step is to divide α2 = 1− i into α1 = 5+ 2i :

5+ 2i

1− i
=
(5+ 2i)(1+ i)

(1− i)(1+ i)
=

3+ 7i

2
= (1+ 3i)+

1+ i

2

Notice that the fractions 3/2 and 7/2 are exactly halfway between two consecutive

integers, so instead of choosing 1+ 3i for the closest integer to (3+ 7i)/2 we could

equally well have chosen 2+ 3i , 1+ 4i , or 2+ 4i . If we stick with the choice 1+ 3i

then we use this to calculate the next αi :

5+ 2i = (1+ 3i)(1− i)+α3 = (4+ 2i)+α3 hence α3 = 1

The final step would be simply to write 1 − i = (1− i)1 + 0. Thus the full Euclidean

algorithm is:
12+ 15i = (3+ 2i)(5+ 2i)+ (1− i)

5+ 2i = (1+ 3i)(1− i)+ 1

1− i = (1− i)1+ 0

In particular, since the last nonzero remainder is 1, a unit in Z[i] , we deduce that

this is the greatest common divisor of 12+15i and 5+2i , where ‘greatest’ means ‘of
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greatest norm’. In other words 12+ 15i and 5 + 2i have no common divisors other

than units.

As in the case of ordinary integers, the equations that display the results of car-

rying out the Euclidean algorithm can be used to express the last nonzero remainder

in terms of the original two numbers:

1 = (5+ 2i)− (1+ 3i)(1− i)

= (5+ 2i)− (1+ 3i)[(12+ 15i)− (3+ 2i)(5+ 2i)]

= −(1+ 3i)(12+ 15i)+ (−2+ 11i)(5+ 2i)

If it had happened that the last nonzero remainder was a unit other than 1, we could

have expressed this unit in terms of the original two Gaussian integers, and then

multiplied the equation by the inverse of the unit to get an expression for 1 in terms

of the original two Gaussian integers.
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Other Instances of Unique Factorization

Elements of Z[
√
−2] factor uniquely into primes because there is a Euclidean

algorithm in Z[
√
−2] . The crucial point we used in the verification that Z[i] had a

Euclidean algorithm was that each complex number is within a distance less than 1

from some Gaussian integer. The same thing is true for Z[
√
−2] since the numbers

in Z[
√
−2] form a rectangular lattice in the plane, where the rectangles have width 1

and height
√

2. Every point in such a rectangle is at distance less than 1 from one of

the four vertices since the worst case is the center point of the rectangle, which is at

distance
√

3/2 from the vertices.

This argument does not work in Z[
√
−3] since in a rectangle of width 1 and height

√
3 the center point is at distance exactly 1 from the vertices, and one needs distance

strictly less than 1 for the Euclidean algorithm. In fact unique factorization fails in

Z[
√
−3] , and in many other cases too:

Proposition. Unique factorization fails in Z[
√
D] whenever D < −2 , and it also fails

when D > 0 and D ≡ 1 modulo 4 . (In the latter case we assume as always that D is

not a square).

Proof : The number D2 − D factors in Z[
√
D] as (D +

√
D)(D −

√
D) , and it also

factors as D(D − 1) . The number 2 divides either D or D − 1 since one of these

two consecutive integers must be even. However, 2 does not divide either D +
√
D

or D −
√
D in Z[

√
D] since (D±

√
D)/2 is not an element of Z[

√
D] as the coefficient

of
√
D in this quotient is not an integer. If we knew that 2 was prime in Z[

√
D] we

would then have two distinct factorizations of D2 − D into primes in Z[
√
D] : One

obtained by combining prime factorizations of D and D − 1, and the other obtained

by combining prime factorizations of D +
√
D and D −

√
D . The first factorization

would contain the prime 2 and the second would not.

It remains to check that 2 is a prime in Z[
√
D] in the cases listed. If it is not

a prime, then it factors as 2 = αβ with neither α nor β a unit, so we would have

N(α) = N(β) = ±2. Thus the equation x2−Dy2 = ±2 would have an integer solution

(x,y) . This is clearly impossible if D = −3 or any negative integer less than −3. If

D > 0 and D ≡ 1 modulo 4 then if we look at the equation x2 −Dy2 = ±2 modulo

4 it becomes x2 −y2 ≡ 2, but this is impossible since x2 and y2 are congruent to 0

or 1 modulo 4, so x2 −y2 is congruent to 0, 1, or −1. ⊔⊓

In the cases D ≡ 1 modulo 4 there is a way to enlarge Z[
√
D] to a slightly larger

ring Z[ω] which sometimes has unique factorization when Z[
√
D] does not. The
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construction also fills a gap by providing a norm form whose discriminant is congruent

to 1 modulo 4, complementing the norm form x2 − Dy2 of discriminant 4D ≡ 0

modulo 4. The new norm form will be x2 + xy − dy2 , of discriminant 1+ 4d .

The number ω = (1+
√

1+ 4d)/2 satisfies the quadratic equation ω2−ω−d = 0,

whose other root is ω = (1−
√

1+ 4d)/2. From the quadratic equation we obtain the

relation ω2 = ω + d , and this implies that the set Z[ω] = {x + yω | x,y ∈ Z } is

closed under multiplication and hence forms a ring, like Z[
√
D] . The norm in Z[ω]

is defined by

N(x +yω) = (x +yω)(x +yω) = x2 + xy(ω+ω)+ y2ωω

= x2 + xy − dy2

since ω +ω = 1 and ωω = −d . This norm function still satisfies the key property

N(αβ) = N(α)N(β) for α,β ∈ Z[ω] since it is in fact just the restriction of the earlier

norm to the subring Z[ω] of Q(
√

1+ 4d) .

For example, when d = −1 we have ω = (1+
√
−3)/2 and the elements of Z[ω]

form a lattice of equilateral triangles in the xy -plane:

+1

0 11 2 3 4

ω +2 ω +3 ωω

+1 2ω +2 2ω+1 2ω 2ω

�

�+2 2ω�+3 2ω�+4 2ω�

�1 2ω �2 2ω �3 2ω �4 2ω� �1 2ω 2ω��2 2ω�

�1 ω �2 ω �3 ω �4 ω�1 ω � ω��2 ω��3 ω�

+1 ω�+2 ω�+3 ω�+4 ω�

2�3�4�

When ω = (1+
√
−3)/2 there is a Euclidean algorithm in Z[ω] since every complex

number is within distance less than 1 of some element of Z[ω] . Hence unique fac-

torization holds in Z[ω] . There are six units, the six lattice points of distance 1 from

the origin, which are the numbers ±1, ±ω , and ±(ω − 1) . Equivalently, these are

the powers ωn for n = 0,1,2,3,4,5, with ω6 = 1. The norm in Z[ω] is given by

the formula N(x +yω) = x2 +xy +y2 . The primes p in Z that factor in Z[ω] are

those that can be written in the form p = x2 + xy + y2 = N(x + yω) . The analog

of Fermat’s theorem in this context is the fact that the primes p that can be written

as x2 + xy + y2 are p = 3 and the primes p = 3k+ 1. For example 3 = N(1+ω) ,
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7 = N(2 +ω) , 13 = N(3 +ω) , and 17 = N(3 + 2ω) . The factorization in each of

these cases is given by the formula p = N(x +yω) = (x + yω)(x +yω) .

For larger negative values of d the picture of Z[ω] in the complex plane is similar

but stretched in the vertical direction. It is not hard to do the measurements to show

that Z[ω] is Euclidean only in the three cases d = −1,−2,−3 when the discriminant

∆ = 1+ 4d is −3,−7,−11. There are four other negative values of the discriminant

when Z[ω] has unique factorization even though it does not have a Euclidean algo-

rithm, the discriminants ∆ = −19,−43,−67,−163. Together with Z[i] and Z[
√
−2]

this brings the total number of negative discriminants for which Z[
√
D] or Z[ω] has

unique factorization to nine, the discriminants

∆ = −3,−4,−7,−8,−11,−19,−43,−67,−163

These are exactly the nine negative discriminants for which all quadratic forms of that

discriminant are equivalent. (This is not an accident.)

At first glance the choice of ω as (1 +
√

1+ 4d)/2 might seem somewhat arbi-

trary, and one might wonder whether similar constructions using other denominators

besides 2 would also be possible. In order to do multiplication within the set Z[ω]

of complex numbers x+yω with x and y integers one must be able to express ω2

in this form as mω+n , so ω must satisfy a quadratic equation ω2 −mω−n = 0.

This has roots (m ±
√
m2 + 4n)/2, so we see that larger denominators than 2 will

not work. If m is even, say m = 2k , then ω becomes k±
√
k2 +n , with no denomi-

nators at all. If m is odd, m = 2k+ 1, then ω is
(
2k+ 1±

√
4k2 + 4k+ 1+ 4n

)
/2,

which can be written as k+(1+
√

1+ 4d)/2 so we are actually in the situation already

considered.

We have seen that enlarging the ring Z[
√
D] to Z[ω] in the cases D = 1+4d can

sometimes restore unique factorization. Another sort of enlargement comes from the

fact that Z[
√
n2D] is contained in Z[

√
D] . For example Z[

√
−8] , which does not have

unique factorization, is contained in Z[
√
−2] which does. For this reason it is often

best to restrict attention to integers D having no square factors, and in this case we

unify the notation by letting RD denote the ring Z[
√
D] if D 6= 1 + 4d and Z[ω] if

D = 1 + 4d . The discriminant of RD is then D when D = 1 + 4d and 4D when

D 6= 1+ 4d .

When the discriminant is positive, RD is a subring of the real numbers, so it is

somewhat paradoxical that these cases tend to be more complex than in the case

of negative discriminant, when RD contains complex numbers. One reason for the

added complication is that the norm form x2−Dy2 or x2+xy−dy2 is a hyperbolic
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form rather than elliptic. In particular, this means that norms can be negative as well

as positive, and the norm doesn’t have the nice geometric meaning of the square of

the distance to the origin that it has in the imaginary case. Since the norm can be

negative, the definition of a Euclidean algorithm is modified so that in the equations

αi−1 = βiαi +αi+1 it is required that |N(αi+1)| < |N(αi)| . It is known that there are

exactly 16 positive values of D for which there is a Euclidean algorithm in RD :

2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73

In these cases one has unique factorization, but there are 22 other values of D < 100

where unique factorization holds even though there is no Euclidean algorithm:

14,22,23,31,38,43,46,47,53,59,61,62,67,69,71,77,83,86,89,93,94,97

It is still not known whether there are infinitely many values of D where there is

unique factorization, although it is known that there are infinitely many values of D

for which unique factorization fails.


