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The Duality Theorem

The form of Poincaré duality we will prove asserts that for an R orientable closed

n manifold, a certain naturally defined map Hk(M ;R)→Hn−k(M ;R) is an isomor-

phism. The definition of this map will be in terms of a more general construction

called cap product, which has close connections with cup product.

Cap Product

Let us see how cup product leads naturally to cap product. For an arbitrary

space X and coefficient ring R let us for simplicity write Ck(X;R) as Ck and its

dual Ck(X;R) = HomR(Ck,R) as Ck . For cochains ϕ ∈ Ck and ψ ∈ C` we have their

cup product ϕ `ψ ∈ Ck+` . When we regard ϕ `ψ as a function of ψ for fixed ϕ ,

we get a map C`→Ck+` , ψ,ϕ`ψ . One might ask whether this map C`→Ck+` is

the dual of a map Ck+`→C` . The answer turns out to be yes, and this map on chains

will be the cap product map α,αaϕ .

In order to define αaϕ it suffices by linearity to take α to be a singular simplex

σ :∆k+`→X , and then the formula for σ aϕ is rather like the formula defining cup

product:

σ aϕ =ϕ(σ ||[v0, ··· , vk]
)
σ ||[vk, ··· , vk+`]

To say that for fixed ϕ the map α, αaϕ has as its dual the map ψ,ϕ `ψ is

to say that the composition Ck+` --------------→aϕ C`
ψ-----→R is the map α, (ϕ `ψ)(α) , or in

other words,

(∗) ψ(αaϕ) = (ϕ`ψ)(α)

This holds since for σ :∆k+`→X we have

ψ(σ aϕ) = ψ(ϕ(σ ||[v0, ··· , vk]
)
σ ||[vk, ··· , vk+`]

)
=ϕ(σ ||[v0, ··· , vk]

)
ψ
(
σ ||[vk, ··· , vk+`]

) = (ϕ`ψ)(σ)
Another way to write the formula (∗) that may be more suggestive is in the form

〈αaϕ,ψ〉 = 〈α,ϕ`ψ〉

where 〈−,−〉 is the map Ci×Ci→R evaluating a cochain on a chain.

In order to show that the cap product Ck+`×Ck→C` , (α,ϕ),αaϕ , induces a

corresponding cap product Hk+`(X;R)×Hk(X;R)→H`(X;R) we need a formula for

∂(α a ϕ) . This could be derived by a direct calculation similar to the one for cup



240 Chapter 3 Cohomology

products, but it is easier to use the duality relation 〈αaϕ,ψ〉 = 〈α,ϕ`ψ〉 to reduce

to the cup product formula. We have

〈∂(αaϕ),ψ〉 = 〈αaϕ,δψ〉 = 〈α,ϕ` δψ〉
= (−1)k

[〈α,δ(ϕ`ψ)〉 − 〈α,δϕ`ψ〉]
= (−1)k

[〈∂α,ϕ`ψ〉 − 〈α,δϕ`ψ〉]
= (−1)k

[〈∂αaϕ,ψ〉 − 〈αa δϕ,ψ〉]
Since this holds for all ψ ∈ C` and C` is a free R module, we must have

∂(αaϕ) = (−1)k(∂αaϕ −αa δϕ)
From this it follows that the cap product of a cycle α and a cocycle ϕ is a cycle.

Further, if ∂α = 0 then ∂(αaϕ) = ±(αa δϕ) , so the cap product of a cycle and a

coboundary is a boundary. And if δϕ = 0 then ∂(α aϕ) = ±(∂α aϕ) , so the cap

product of a boundary and a cocycle is a boundary. These facts imply that there is an

induced cap product

Hk+`(X;R)×Hk(X;R) a-----------------------→H`(X;R)

This is R linear in each variable.

We have seen that the map ϕ` :C`→Ck+` is dual to aϕ :Ck+`→C` , but when we

pass to homology and cohomology this may no longer be true since cohomology is not

always just the dual of homology. What we have instead is a slightly weaker relation

between cap and cup product in the form

of the commutative diagram at the right.
−−−→h (Hom;X RH ( R)` ;X RH (

( )

) ,R )`

−−−→h (Hom;X RH ( R) k ` ;X RH ( ),R )

−−−−−→ −−−−−→ϕ ϕ ∗

+
k `+

When the maps h are isomorphisms, for

example when R is a field or when R = Z

and the homology groups of X are free, then the map ϕ ` on cohomology is the

dual of aϕ on homology. In these cases cup and cap product determine each other,

at least if one assumes finite generation so that cohomology determines homology as

well as vice versa. However, there are examples where cap and cup products are not

equivalent when R = Z and there is torsion in homology.

We shall also need relative forms of the cap product. Using the same formulas as

before, one checks that there are relative cap product maps

Hk+`(X,A;R)×Hk(X;R) a-----------------------→H`(X,A;R)

Hk+`(X,A;R)×Hk(X,A;R) a-----------------------→H`(X;R)

For example, in the second case the cap product Ck+`(X;R)×Ck(X;R)→C`(X;R)
restricts to zero on the submodule Ck+`(A;R)×Ck(X,A;R) , so there is an induced

cap product Ck+`(X,A;R)×Ck(X,A;R)→C`(X;R) . The formula for ∂(σ aϕ) still

holds, so we can pass to homology and cohomology groups. There is also a more

general relative cap product

Hk+`(X,A∪ B;R)×Hk(X,A;R) a-----------------------→H`(X, B;R),
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defined when A and B are open sets in X , using the fact that Hk+`(X,A∪ B;R) can

be computed using the chain groups Cn(X,A + B;R) = Cn(X;R)/Cn(A + B;R) , as in

the derivation of relative Mayer–Vietoris sequences in §2.2.

Cap product satisfies a naturality property that is a little more awkward to state

than the corresponding result for cup product since both covariant and contravariant

functors are involved. Given a map f :X→Y , the relevant induced maps on homology

and cohomology fit into the diagram shown below. It does not quite make sense

to say this diagram commutes, but the spirit of

commutativity is contained in the formula
XH ( ) XH ( )k XH ( )k× `

`-−−−→
YH ( ) YH ( )k YH ( )k× `

`-−−−→
−−−−−→

∗f −−−−−→ ∗f

−−−−−→

∗f

f∗(α)aϕ = f∗
(
αa f∗(ϕ)

)
which is obtained by substituting fσ for σ in the definition of cap product: fσaϕ =
ϕ
(
fσ ||[v0, ··· , v`]

)
fσ ||[v`, ··· , vk] . There are evident relative versions as well.

Now we can state Poincaré duality for closed manifolds:

Theorem 3.30 (Poincaré Duality). If M is a closed R orientable n manifold with

fundamental class [M] ∈ Hn(M ;R) , then the map D :Hk(M ;R) -→Hn−k(M ;R) de-

fined by D(α) = [M]aα is an isomorphism for all k .

Recall that a fundamental class for M is an element of Hn(M ;R) whose image in

Hn(M ||x;R) is a generator for each x ∈ M . The existence of such a class was shown

in Theorem 3.26.

Example 3.31: Surfaces. Let M be the closed orientable surface of genus g . In

Example 3.7 we computed the cup product structure in H∗(M ;Z) directly from the

definitions using simplicial cohomology, and the same procedure could be used to

compute cap products. However, let us instead deduce the cap product structure from

the cup product structure. This is possible since we are in the favorable situation

where the cohomology groups are exactly the Hom duals of the homology groups.

Using the notation from Example 3.7, the homomorphism αi` sends βi to γ and all

other αj ’s and βj ’s to 0, so the dual homomorphism aαi sends [M] to the homology

class [bi] Hom dual to βi . Thus [M]a αi = [bi] and so the Poincaré dual of αi is

D(αi) = [bi] . Similarly we have D(βi) = −[ai] where the minus sign comes from the

relation βi `αi = −γ .

It is tempting to try to interpret Poincaré duality geometrically, replacing coho-

mology by homology which is more geometric, and taking explicit cycles representing

homology classes. Thus the geometric interpretation of the relation D(αi) = [bi]
might be the statement that the cycle bi is the Poincaré dual of the cycle ai . The

special feature of these two cycles is that they intersect transversely in a single point,

while all other aj ’s and bj ’s are disjoint from ai and bi , or can be made disjoint after

a homotopy. There are some difficulties with this geometric interpretation of Poincaré

duality in terms of geometric intersections of cycles, however. For example, take the
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genus 1 case when the surface is a torus. Here there are other homology classes be-

sides [b1] that are represented by cycles that are embedded loops intersecting a1

transversely in one point, namely each homology class [b1] +m[a1] is represented

by such a loop, a loop going once around the torus in the b1 direction and m times in

the a1 direction. Thus there is not a unique homology class Poincaré dual to [a1] , in

contrast with the situation for cohomology where the inverse of the Poincaré duality

isomorphism [M]a gives a unique cohomology class β1 dual to [a1] . The reason for

this difference between homology and cohomology is that the isomorphism between

H1 and its Hom dual H1 is not canonical, but depends on a choice of basis, just as in

linear algebra there is no canonical isomorphism between a vector space and its dual

vector space.

Thus it is best to keep Poincaré duality as a statement involving both homol-

ogy and cohomology. Based on the example of orientable surfaces, one might then

guess that a reasonable geometric interpretation of Poincaré duality is to say that the

Poincaré dual of a k cycle in an n manifold is the (n−k) cocycle that assigns to each

(n − k) cycle the number of points in which it intersects the given k cycle. Making

this idea rigorous takes quite a bit of work, however, and this is not a book about

manifolds so we will not attempt to do this here.

Poincaré duality for closed nonorientable surfaces using Z2 coefficients can be

made explicit just as in the orientable case. With the notation of Example 3.8 we

have αi ` αj nonzero only for i = j , so D(αi) = [ai] . This corresponds to the

geometric fact that the loops ai can be homotoped to be all disjoint, and each ai can

be homotoped to a nearby loop a′i that intersects ai in one point transversely. Thus,

loosely speaking, the loops ai are their own Poincaré duals.

A nice high-dimensional example to think about is the n dimensional torus Tn ,

the product of n circles. With Z coefficients the cup product ring is the exterior

algebra ΛZ[α1, ··· , αn] where αi is the Hom dual of the homology class of the ith

circle factor S1
i . The group Hk(T

n;Z) is free of rank
(
n
k

)
with basis the fundamental

classes of the k dimensional subtori S1
i1× ··· ×S1

ik for 1 ≤ i1 < ··· < ik ≤ n . The

Hom dual of such a fundamental class is the product αi1 ···αik . When this product

is multiplied by an (n − k) dimensional class αj1 ···αjn−k the result is 0 except for

the complementary product α1 ··· α̂i1 ··· α̂ik ···αn where the product of these two

monomials is a generator of Hn(Tn;Z) . As in the examples of surfaces it follows that

the Poincaré dual of αi1 ···αik is the fundamental class of the (n − k) dimensional

subtorus S1
1× ··· × Ŝ1

i1× ··· × Ŝ1
ik× ··· ×S1

n , up to a sign depending on orientations.

This means that we again have the nice geometric interpretation of Poincaré duality

in terms of intersections of subtori with subtori of complementary dimension.

Cohomology with Compact Supports

Our proof of Poincaré duality, like the construction of fundamental classes, will
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be by an inductive argument using Mayer–Vietoris sequences. The induction step

requires a version of Poincaré duality for open subsets of M , which are noncompact

and can satisfy Poincaré duality only when a different kind of cohomology called

cohomology with compact supports is used. Before defining what this is, let us look

at the conceptually simpler notion of simplicial cohomology with compact supports.

Here one starts with a ∆ complex X which is locally compact. This is equivalent to

saying that every point has a neighborhood that meets only finitely many simplices.

Consider the subgroup ∆ic(X;G) of the simplicial cochain group ∆i(X;G) consisting

of cochains that are compactly supported in the sense that they take nonzero values on

only finitely many simplices. The coboundary of such a cochain ϕ can have a nonzero

value only on those (i+1) simplices having a face on which ϕ is nonzero, and there

are only finitely many such simplices by the local compactness assumption, so δϕ
lies in ∆i+1

c (X;G) . Thus we have a subcomplex of the simplicial cochain complex. The

cohomology groups for this subcomplex will be denoted temporarily by Hic(X;G) .

Example 3.32. Let us compute these cohomology groups when X = R with the∆ complex structure having as 1 simplices the segments [n,n + 1] for n ∈ Z . For

a simplicial 0 cochain to be a cocycle it must take the same value on all vertices, but

then if the cochain lies in ∆0
c(X) it must be identically zero. Thus H0

c (R;G) = 0.

However, H1
c (R;G) is nonzero. Namely, consider the map Σ :∆1

c(R;G)→G sending

each cochain to the sum of its values on all the 1 simplices. Note that Σ is not defined

on all of ∆1(X) , just on ∆1
c(X) . The map Σ vanishes on coboundaries, so it induces

a map H1
c (R;G)→G . This is surjective since every element of ∆1

c(X) is a cocycle. It

is an easy exercise to verify that it is also injective, so H1
c (R;G) ≈ G .

Compactly supported cellular cohomology for a locally compact CW complex

could be defined in a similar fashion, using cellular cochains that are nonzero on

only finitely many cells. However, what we really need is singular cohomology with

compact supports for spaces without any simplicial or cellular structure. The quickest

definition of this is the following. Let Cic(X;G) be the subgroup of Ci(X;G) consisting

of cochains ϕ :Ci(X)→G for which there exists a compact set K = Kϕ ⊂ X such that

ϕ is zero on all chains in X −K . Note that δϕ is then also zero on chains in X −K ,

so δϕ lies in Ci+1
c (X;G) and the Cic(X;G) ’s for varying i form a subcomplex of the

singular cochain complex of X . The cohomology groups Hic(X;G) of this subcomplex

are the cohomology groups with compact supports.

Cochains in Cic(X;G) have compact support in only a rather weak sense. A

stronger and perhaps more natural condition would have been to require cochains

to be nonzero only on singular simplices contained in some compact set, depending

on the cochain. However, cochains satisfying this condition do not in general form

a subcomplex of the singular cochain complex. For example, if X = R and ϕ is a

0 cochain assigning a nonzero value to one point of R and zero to all other points,
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then δϕ assigns a nonzero value to arbitrarily large 1 simplices.

It will be quite useful to have an alternative definition of Hic(X;G) in terms of alge-

braic limits, which enter the picture in the following way. The cochain group Cic(X;G)
is the union of its subgroups Ci(X,X − K;G) as K ranges over compact subsets of

X . Each inclusion K↩ L induces inclusions Ci(X,X − K;G)↩ Ci(X,X − L;G) for

all i , so there are induced maps Hi(X,X − K;G)→Hi(X,X − L;G) . These need not

be injective, but one might still hope that Hic(X;G) is somehow describable in terms

of the system of groups Hi(X,X − K;G) for varying K . This is indeed the case, and

it is algebraic limits that provide the description.

Suppose one has abelian groups Gα indexed by some partially ordered index set

I having the property that for each pair α,β ∈ I there exists γ ∈ I with α ≤ γ and

β ≤ γ . Such an I is called a directed set. Suppose also that for each pair α ≤ β one

has a homomorphism fαβ :Gα→Gβ , such that fαα = 11 for each α , and if α ≤ β ≤ γ
then fαγ is the composition of fαβ and fβγ . Given this data, which is called a directed

system of groups, there are two equivalent ways of defining the direct limit group

lim--→Gα . The shorter definition is that lim--→Gα is the quotient of the direct sum
⊕
αGα

by the subgroup generated by all elements of the form a− fαβ(a) for a ∈ Gα , where

we are viewing each Gα as a subgroup of
⊕
αGα . The other definition, which is often

more convenient to work with, runs as follows. Define an equivalence relation on the

set
∐
αGα by a ∼ b if fαγ(a) = fβγ(b) for some γ , where a ∈ Gα and b ∈ Gβ .

This is clearly reflexive and symmetric, and transitivity follows from the directed set

property. It could also be described as the equivalence relation generated by setting

a ∼ fαβ(a) . Any two equivalence classes [a] and [b] have representatives a′ and

b′ lying in the same Gγ , so define [a] + [b] = [a′ + b′] . One checks this is well-

defined and gives an abelian group structure to the set of equivalence classes. It is

easy to check further that the map sending an equivalence class [a] to the coset of a
in lim--→Gα is a homomorphism, with an inverse induced by the map

∑
i ai,

∑
i[ai]

for ai ∈ Gαi . Thus we can identify lim--→Gα with the group of equivalence classes [a] .
A useful consequence of this is that if we have a subset J ⊂ I with the property

that for each α ∈ I there exists a β ∈ J with α ≤ β , then lim--→Gα is the same whether

we compute it with α varying over I or just over J . In particular, if I has a maximal

element γ , we can take J = {γ} and then lim--→Gα = Gγ .

Suppose now that we have a space X expressed as the union of a collection of

subspaces Xα forming a directed set with respect to the inclusion relation. Then

the groups Hi(Xα;G) for fixed i and G form a directed system, using the homo-

morphisms induced by inclusions. The natural maps Hi(Xα;G)→Hi(X;G) induce a

homomorphism lim--→Hi(Xα;G)→Hi(X;G) .

Proposition 3.33. If a space X is the union of a directed set of subspaces Xα with

the property that each compact set in X is contained in some Xα , then the natural

map lim--→Hi(Xα;G)→Hi(X;G) is an isomorphism for all i and G .
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Proof: For surjectivity, represent a cycle in X by a finite sum of singular simplices.

The union of the images of these singular simplices is compact in X , hence lies in

some Xα , so the map lim--→Hi(Xα;G)→Hi(X;G) is surjective. Injectivity is similar: If

a cycle in some Xα is a boundary in X , compactness implies it is a boundary in some

Xβ ⊃ Xα , hence represents zero in lim--→Hi(Xα;G) . tu

Now we can give the alternative definition of cohomology with compact supports

in terms of direct limits. For a space X , the compact subsets K ⊂ X form a directed

set under inclusion since the union of two compact sets is compact. To each compact

K ⊂ X we associate the group Hi(X,X−K;G) , with a fixed i and coefficient group G ,

and to each inclusion K ⊂ L of compact sets we associate the natural homomorphism

Hi(X,X−K;G)→Hi(X,X−L;G) . The resulting limit group lim--→Hi(X,X−K;G) is then

equal to Hic(X;G) since each element of this limit group is represented by a cocycle in

Ci(X,X−K;G) for some compact K , and such a cocycle is zero in lim--→Hi(X,X−K;G)
iff it is the coboundary of a cochain in Ci−1(X,X − L;G) for some compact L ⊃ K .

Note that if X is compact, then Hic(X;G) = Hi(X;G) since there is a unique

maximal compact set K ⊂ X , namely X itself. This is also immediate from the original

definition since Cic(X;G) = Ci(X;G) if X is compact.

Example 3.34: H∗c (R
n;G) . To compute lim--→Hi(Rn,Rn − K;G) it suffices to let K

range over balls Bk of integer radius k centered at the origin since every compact set

is contained in such a ball. Since Hi(Rn,Rn − Bk;G) is nonzero only for i = n , when

it is G , and the maps Hn(Rn,Rn − Bk;G)→Hn(Rn,Rn − Bk+1;G) are isomorphisms,

we deduce that Hic(R
n;G) = 0 for i ≠ n and Hnc (R

n;G) ≈ G .

This example shows that cohomology with compact supports is not an invariant

of homotopy type. This can be traced to difficulties with induced maps. For example,

the constant map from Rn to a point does not induce a map on cohomology with

compact supports. The maps which do induce maps on H∗c are the proper maps,

those for which the inverse image of each compact set is compact. In the proof of

Poincaré duality, however, we will need induced maps of a different sort going in the

opposite direction from what is usual for cohomology, maps Hic(U ;G)→Hic(V ;G)
associated to inclusions U↩ V of open sets in the fixed manifold M .

The group Hi(X,X−K;G) for K compact depends only on a neighborhood of K in

X by excision, assuming X is Hausdorff so that K is closed. As convenient shorthand

notation we will write this group as Hi(X ||K;G) , in analogy with the similar notation

used earlier for local homology. One can think of cohomology with compact supports

as the limit of these ‘local cohomology groups at compact subsets.’

Duality for Noncompact Manifolds

For M an R orientable n manifold, possibly noncompact, we can define a dual-

ity map DM :Hkc (M ;R)→Hn−k(M ;R) by a limiting process in the following way. For

compact sets K ⊂ L ⊂ M we have a diagram
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M L RH ( )n

H (n

×
k-

−−−−−→
−−−−−→

−−−−−→

∗i −−−−−→ ∗i

;|| M L RH ( )k ;||

M K RH ( )n ×;|| M K RH ( )k ;||
M R);

where Hn(M ||A;R) = Hn(M,M − A;R) and Hk(M ||A;R) = Hk(M,M − A;R) . By

Lemma 3.27 there are unique elements µK ∈ Hn(M ||K;R) and µL ∈ Hn(M ||L;R)
restricting to a given orientation of M at each point of K and L , respectively. From

the uniqueness we have i∗(µL) = µK . The naturality of cap product implies that

i∗(µL)ax = µLai∗(x) for all x ∈ Hk(M ||K;R) , so µKax = µLai∗(x) . Therefore, let-

ting K vary over compact sets in M , the homomorphisms Hk(M ||K;R)→Hn−k(M ;R) ,
x,µKax , induce in the limit a duality homomorphism DM :Hkc (M ;R)→Hn−k(M ;R) .

Since H∗c (M ;R) = H∗(M ;R) if M is compact, the following theorem generalizes

Poincaré duality for closed manifolds:

Theorem 3.35. The duality map DM :Hkc (M ;R)→Hn−k(M ;R) is an isomorphism

for all k whenever M is an R oriented n manifold.

The proof will not be difficult once we establish a technical result stated in the

next lemma, concerning the commutativity of a certain diagram. Commutativity state-

ments of this sort are usually routine to prove, but this one seems to be an exception.

The reader who consults other books for alternative expositions will find somewhat

uneven treatments of this technical point, and the proof we give is also not as simple

as one would like.

The coefficient ring R will be fixed throughout the proof, and for simplicity we

will omit it from the notation for homology and cohomology.

Lemma 3.36. If M is the union of two open sets U and V , then there is a diagram

of Mayer–Vietoris sequences, commutative up to sign :

VUH ( ) −−−−−→ −−−−−→ −−−−−→−−−−−→−−−−−→ c
k +∩

∩

VUH ( )c
k 1 ∩UH ( )c

k MH ( )c
kVH

DU DV

( )c
k⊕
⊕

. . .. . .

VUH ( ) −−−−−→ −−−−−→ −−−−−→−−−−−→−−−−−→ n k ∩ VUH ( )∩UH ( ) MH ( )VH ( )⊕ . . .. . .
- n k- n k-

-

n k- n k 1- -

−−−−−→ DM  

−−−−−→DU V

−−−−−→

∩DU V

−−−−−→

Proof: Compact sets K ⊂ U and L ⊂ V give rise to the Mayer–Vietoris sequence in

the upper row of the following diagram, whose lower row is also a Mayer–Vietoris

sequence.

LKH ( ) ) −−−−−→ −−−−−→−−−−−→−−−−−→ k ∩

∩

M H ( )k⊕

⊕

. . .. . .

VUH ( ) −−−−−−−−−−−−−→ −−−−−−−−−→−−−−−−−−−−−−−→−−−−−→ n k ∩ UH ( ) MH ( )VH ( )⊕ . . .. . .
- n k- n k-

-

n k-

−−−−−→
−−−−−→

−−−−−−−−−−−−−−−→

K L

−−−−−→
−−−−−→

|| KH (k M || KM ||)L LH (k M ||

LKH ( ) )k ∩VU∩ ⊕|| KH (k U || )LH (k V ||

∪

∪

≈ ≈

µ Kµ Lµ
LKµ
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The two maps labeled isomorphisms come from excision. Assuming this diagram

commutes, consider passing to the limit over compact sets K ⊂ U and L ⊂ V . Since

each compact set in U∩V is contained in an intersection K∩L of compact sets K ⊂ U
and L ⊂ V , and similarly for U ∪ V , the diagram induces a limit diagram having the

form stated in the lemma. The first row of this limit diagram is exact since a direct

limit of exact sequences is exact; this is an exercise at the end of the section, and

follows easily from the definition of direct limits.

It remains to consider the commutativity of the preceding diagram involving K
and L . In the two squares shown, not involving boundary or coboundary maps, it is a

triviality to check commutativity at the level of cycles and cocycles. Less trivial is the

third square, which we rewrite in the following way:

(∗)
−−−−−→

∩

H ( )k

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→MH ( ) VUH ( )n k 1 ∩- -n k-

−−−−−−→ −−−−−−→

K L

LKH ( )−−−−−→k 1 ∩M ||KM || L LK )∩VU∩ ||∪
∪

≈

µLKµ

δ + H (k 1+

∂

Letting A = M−K and B = M−L , the map δ is the coboundary map in the Mayer–

Vietoris sequence obtained from the short exact sequence of cochain complexes

0 -→C∗(M,A+ B) -→C∗(M,A) ⊕ C∗(M,B) -→C∗(M,A∩ B) -→0

where C∗(M,A+ B) consists of cochains on M vanishing on chains in A and chains

in B . To evaluate the Mayer–Vietoris coboundary map δ on a cohomology class rep-

resented by a cocycle ϕ ∈ C∗(M,A∩ B) , the first step is to write ϕ = ϕA − ϕB
for ϕA ∈ C∗(M,A) and ϕB ∈ C∗(M,B) . Then δ[ϕ] is represented by the cocy-

cle δϕA = δϕB ∈ C∗(M,A + B) , where the equality δϕA = δϕB comes from the

fact that ϕ is a cocycle, so δϕ = δϕA − δϕB = 0. Similarly, the boundary map ∂
in the homology Mayer–Vietoris sequence is obtained by representing an element of

Hi(M) by a cycle z that is a sum of chains zU ∈ Ci(U) and zV ∈ Ci(V) , and then

∂[z] = [∂zU] .
Via barycentric subdivision, the class µK∪L can be represented by a chain α that

is a sum αU−L + αU∩V + αV−K of

chains in U −L , U ∩V , and V −K ,

respectively, since these three open

K L
U V

αα
α
U L V K

U∩V
_ _

sets cover M . The chain αU∩V rep-

resents µK∩L since the other two

chains αU−L and αV−K lie in the

complement of K ∩ L , hence van-

ish in Hn(M ||K ∩ L) ≈ Hn(U ∩ V ||K ∩ L) . Similarly, αU−L +αU∩V represents µK .

In the square (∗) let ϕ be a cocycle representing an element of Hk(M ||K ∪ L) .
Under δ this maps to the cohomology class of δϕA . Continuing on to Hn−k−1(U ∩ V)



248 Chapter 3 Cohomology

we obtain αU∩V a δϕA , which is in the same homology class as ∂αU∩V aϕA since

∂(αU∩V aϕA) = (−1)k(∂αU∩V aϕA − αU∩V a δϕA)

and αU∩V aϕA is a chain in U ∩ V .

Going around the square (∗) the other way, ϕ maps first to αaϕ . To apply the

Mayer–Vietoris boundary map ∂ to this, we first write αaϕ as a sum of a chain in U
and a chain in V :

αaϕ = (αU−L aϕ)+ (αU∩V aϕ +αV−K aϕ)

Then we take the boundary of the first of these two chains, obtaining the homology

class [∂(αU−Laϕ)] ∈ Hn−k−1(U ∩V) . To compare this with [∂αU∩V aϕA] , we have

∂(αU−L aϕ) = (−1)k∂αU−L aϕ since δϕ = 0

= (−1)k∂αU−L aϕA since ∂αU−L aϕB = 0, ϕB being

zero on chains in B = M − L
= (−1)k+1∂αU∩V aϕA

where this last equality comes from the fact that ∂(αU−L + αU∩V ) a ϕA = 0 since

∂(αU−L + αU∩V ) is a chain in U − K by the earlier observation that αU−L + αU∩V
represents µK , and ϕA vanishes on chains in A = M −K .

Thus the square (∗) commutes up to a sign depending only on k . tu

Proof of Poincaré Duality: There are two inductive steps, finite and infinite:

(A) If M is the union of open sets U and V and if DU , DV , and DU∩V are isomor-

phisms, then so is DM . Via the five-lemma, this is immediate from the preceding

lemma.

(B) If M is the union of a sequence of open sets U1 ⊂ U2 ⊂ ··· and each duality map

DUi :Hkc (Ui)→Hn−k(Ui) is an isomorphism, then so is DM . To show this we notice

first that by excision, Hkc (Ui) can be regarded as the limit of the groups Hk(M ||K) as K
ranges over compact subsets of Ui . Then there are natural maps Hkc (Ui)→Hkc (Ui+1)
since the second of these groups is a limit over a larger collection of K ’s. Thus we can

form lim--→Hkc (Ui) which is obviously isomorphic to Hkc (M) since the compact sets in M
are just the compact sets in all the Ui ’s. By Proposition 3.33, Hn−k(M) ≈ lim--→Hn−k(Ui) .
The map DM is thus the limit of the isomorphisms DUi , hence is an isomorphism.

Now after all these preliminaries we can prove the theorem in three easy steps:

(1) The case M = Rn begins the inductive process. For a ball B ⊂ Rn the maps

Hk(Rn,Rn − B)→Hkc (Rn) are isomorphisms for all k , as we saw in Example 3.34, so

we can consider the cap product map Hn(R
n,Rn − B)×Hk(Rn,Rn − B)→Hn−k(Rn) .

The only nontrivial case is k = n , where each group is isomorphic to the coefficient

ring R and we need to show that the cap product of a generator with a generator is a

generator. Using the formula 〈αaϕ,ψ〉 = 〈α,ϕ`ψ〉 with ψ = 1 ∈ H0(Rn) , we see
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that if α and ϕ are generators of their respective homology and cohomology groups

then 〈αaϕ,1〉 = 〈α,ϕ〉 generates R so αaϕ must generate H0(R
n) .

(2) More generally, DM is an isomorphism for M an arbitrary open set in Rn . To see

this, first write M as a countable union of nonempty bounded convex open sets Ui ,
for example open balls, and let Vi =

⋃
j<i Uj . Both Vi and Ui ∩Vi are unions of i− 1

bounded convex open sets, so by induction on the number of such sets in a cover we

may assume that DVi and DUi∩Vi are isomorphisms. By (1), DUi is an isomorphism

since Ui is homeomorphic to Rn . Hence DUi∪Vi is an isomorphism by (A). Since M is

the increasing union of the Vi ’s and each DVi is an isomorphism, so is DM by (B).

(3) If M is a finite or countably infinite union of open sets Ui homeomorphic to Rn ,

the theorem now follows by the argument in (2), with each appearance of the words

‘bounded convex open set’ replaced by ‘open set in Rn .’ Thus the proof is finished for

closed manifolds, as well as for all the noncompact manifolds one ever encounters in

actual practice.

To handle a completely general noncompact manifold M we use a Zorn’s Lemma

argument. Consider the collection of open sets U ⊂ M for which the duality maps

DU are isomorphisms. This collection is partially ordered by inclusion, and the union

of every totally ordered subcollection is again in the collection by the argument in (B),

which did not really use the hypothesis that the collection {Ui} was indexed by the

positive integers. Zorn’s Lemma then implies that there exists a maximal open set

U for which the theorem holds. If U ≠ M , choose a point x ∈ M − U and an open

neighborhood V of x homeomorphic to Rn . The theorem holds for V and U ∩V by

(1) and (2), and it holds for U by assumption, so by (A) it holds for U∪V , contradicting

the maximality of U . tu

Corollary 3.37. A closed manifold of odd dimension has Euler characteristic zero.

Proof: Let M be a closed n manifold. If M is orientable, we have rankHi(M ;Z) =
rankHn−i(M ;Z) , which equals rankHn−i(M ;Z) by the universal coefficient theorem.

Thus if n is odd, all the terms of
∑
i(−1)i rankHi(M ;Z) cancel in pairs.

If M is not orientable we apply the same argument using Z2 coefficients, with

rankHi(M ;Z) replaced by dimHi(M ;Z2) , the dimension as a vector space over Z2 ,

to conclude that
∑
i(−1)i dimHi(M ;Z2) = 0. It remains to check that this alternating

sum equals the Euler characteristic
∑
i(−1)i rankHi(M ;Z) . We can do this by using

the isomorphisms Hi(M ;Z2) ≈ Hi(M ;Z2) and applying the universal coefficient theo-

rem for cohomology. Each Z summand of Hi(M ;Z) gives a Z2 summand of Hi(M ;Z2) .
Each Zm summand of Hi(M ;Z) with m even gives Z2 summands of Hi(M ;Z2) and

Hi+1(M,Z2) , whose contributions to
∑
i(−1)i dimHi(M ;Z2) cancel. And Zm sum-

mands of Hi(M ;Z) with m odd contribute nothing to H∗(M ;Z2) . tu
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Connection with Cup Product

Because of the close connection between cap and cup products, expressed in the

formula 〈α a ϕ,ψ〉 = 〈α,ϕ ` ψ〉 , Poincaré duality has nontrivial implications for

the cup product structure of manifolds. For a closed R orientable n manifold M ,

consider the cup product pairing

Hk(M ;R)× Hn−k(M ;R) ---------→R, (ϕ,ψ), 〈[M],ϕ`ψ〉 = (ϕ`ψ)[M]

Such a bilinear pairing A×B→R is said to be nonsingular if the maps A→Hom(B,R)
and B→Hom(A,R) , obtained by viewing the pairing as a function of each variable

separately, are both isomorphisms.

Proposition 3.38. The cup product pairing is nonsingular for closed R orientable

manifolds when R is a field, or when R = Z and torsion in H∗(M ;Z) is factored out.

Proof: Consider the composition

Hn−k(M ;R) h-----→HomR(Hn−k(M ;R),R) D
∗
-----→HomR(H

k(M ;R),R)

where h is the map appearing in the universal coefficient theorem, induced by eval-

uation of cochains on chains, and D∗ is the Hom dual of the Poincaré duality map

D :Hk→Hn−k . The composition D∗h sends ψ ∈ Hn−k(M ;R) to the homomorphism

ϕ, 〈[M]aϕ, 〉 = 〈[M],ϕ`ψ〉 . For field coefficients or for integer coefficients with

torsion factored out, h is an isomorphism. Nonsingularity of the pairing in one of its

variables is then equivalent to D being an isomorphism. Nonsingularity in the other

variable follows by commutativity of cup product. tu

Corollary 3.39. If M is a closed connected orientable n manifold, then for each

element α ∈ Hk(M ;Z) of infinite order that is not a proper multiple of another

element, there exists an element β ∈ Hn−k(M ;Z) such that α ` β is a generator of

Hn(M ;Z) ≈ Z . With coefficients in a field the same conclusion holds for any α ≠ 0 .

Proof: The hypotheses on α mean that it generates a Z summand of Hk(M ;Z) . There

is then a homomorphism ϕ :Hk(M ;Z)→Z with ϕ(α) = 1. By the nonsingularity

of the cup product pairing, ϕ is realized by taking cup product with an element

β ∈ Hn−k(M ;Z) and evaluating on [M] , so α ` β generates Hn(M ;Z) . The case of

field coefficients is similar. tu

Example 3.40: Projective Spaces. The cup product structure of H∗(CPn;Z) as a

truncated polynomial ring Z[α]/(αn+1) with |α| = 2 can easily be deduced from this

as follows. The inclusion CPn−1↩CPn induces an isomorphism on Hi for i ≤ 2n−2,

so by induction on n , H2i(CPn;Z) is generated by αi for i < n . By the corollary, there

is an integer m such that the product α `mαn−1 = mαn generates H2n(CPn;Z) .
This can only happen if m = ±1, and therefore H∗(CPn;Z) ≈ Z[α]/(αn+1) . The same
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argument shows H∗(HPn;Z) ≈ Z[α]/(αn+1) with |α| = 4. For RPn one can use the

same argument with Z2 coefficients to deduce that H∗(RPn;Z2) ≈ Z2[α]/(α
n+1) with

|α| = 1. The cup product structure in infinite-dimensional projective spaces follows

from the finite-dimensional case, as we saw in the proof of Theorem 3.12.

Could there be a closed manifold whose cohomology is additively isomorphic to

that of CPn but with a different cup product structure? For n = 2 the answer is

no since duality implies that the square of a generator of H2 must be a generator of

H4 . For n = 3, duality says that the product of generators of H2 and H4 must be a

generator of H6 , but nothing is said about the square of a generator of H2 . Indeed, for

S2×S4 , whose cohomology has the same additive structure as CP3 , the square of the

generator of H2(S2×S4;Z) is zero since it is the pullback of a generator of H2(S2;Z)
under the projection S2×S4→S2 , and in H∗(S2;Z) the square of the generator of H2

is zero. More generally, an exercise for §4.D describes closed 6 manifolds having the

same cohomology groups as CP3 but where the square of the generator of H2 is an

arbitrary multiple of a generator of H4 .

Example 3.41: Lens Spaces. Cup products in lens spaces can be computed in the same

way as in projective spaces. For a lens space L2n+1 of dimension 2n+ 1 with funda-

mental group Zm , we computed Hi(L
2n+1;Z) in Example 2.43 to be Z for i = 0 and

2n+1, Zm for odd i < 2n+1, and 0 otherwise. In particular, this implies that L2n+1

is orientable, which can also be deduced from the fact that L2n+1 is the orbit space of

an action of Zm on S2n+1 by orientation-preserving homeomorphisms, using an exer-

cise at the end of this section. By the universal coefficient theorem, Hi(L2n+1;Zm) is

Zm for each i ≤ 2n+1. Let α ∈ H1(L2n+1;Zm) and β ∈ H2(L2n+1;Zm) be generators.

The statement we wish to prove is:

Hj(L2n+1;Zm) is generated by

{
βi for j = 2i
αβi for j = 2i+ 1

By induction on n we may assume this holds for j ≤ 2n−1 since we have a lens space

L2n−1 ⊂ L2n+1 with this inclusion inducing an isomorphism on Hj for j ≤ 2n− 1, as

one sees by comparing the cellular chain complexes for L2n−1 and L2n+1 . The pre-

ceding corollary does not apply directly for Zm coefficients with arbitrary m , but its

proof does since the maps h :Hi(L2n+1;Zm)→Hom(Hi(L
2n+1;Zm),Zm) are isomor-

phisms. We conclude that β` kαβn−1 generates H2n+1(L2n+1;Zm) for some integer

k . We must have k relatively prime to m , otherwise the product β`kαβn−1 = kαβn
would have order less than m and so could not generate H2n+1(L2n+1;Zm) . Then

since k is relatively prime to m , αβn is also a generator of H2n+1(L2n+1;Zm) . From

this it follows that βn must generate H2n(L2n+1;Zm) , otherwise it would have order

less than m and so therefore would αβn .

The rest of the cup product structure on H∗(L2n+1;Zm) is determined once α2

is expressed as a multiple of β . When m is odd, the commutativity formula for cup

product implies α2 = 0. When m is even, commutativity implies only that α2 is
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either zero or the unique element of H2(L2n+1;Zm) ≈ Zm of order two. In fact it is

the latter possibility which holds, since the 2 skeleton L2 is the circle L1 with a 2 cell

attached by a map of degree m , and we computed the cup product structure in this

2 complex in Example 3.9. It does not seem to be possible to deduce the nontriviality

of α2 from Poincaré duality alone, except when m = 2.

The cup product structure for an infinite-dimensional lens space L∞ follows from

the finite-dimensional case since the restriction map Hj(L∞;Zm)→Hj(L2n+1;Zm) is

an isomorphism for j ≤ 2n + 1. As with RPn , the ring structure in H∗(L2n+1;Z)
is determined by the ring structure in H∗(L2n+1;Zm) , and likewise for L∞ , where

one has the slightly simpler structure H∗(L∞;Z) ≈ Z[α]/(mα) with |α| = 2. The

case of L2n+1 is obtained from this by setting αn+1 = 0 and adjoining the extra

Z ≈ H2n+1(L2n+1;Z) .
A different derivation of the cup product structure in lens spaces is given in

Example 3E.2.

Using the ad hoc notation Hkfree(M) for Hk(M) modulo its torsion subgroup,

the preceding proposition implies that for a closed orientable manifold M of dimen-

sion 2n , the middle-dimensional cup product pairing Hnfree(M)×Hnfree(M)→Z is a

nonsingular bilinear form on Hnfree(M) . This form is symmetric or skew-symmetric

according to whether n is even or odd. The algebra in the skew-symmetric case is

rather simple: With a suitable choice of basis, the matrix of a skew-symmetric nonsin-

gular bilinear form over Z can be put into the standard form consisting of 2×2 blocks(0
1
−1

0

)
along the diagonal and zeros elsewhere, according to an algebra exercise at the

end of the section. In particular, the rank of Hn(M2n) must be even when n is odd.

We are already familiar with these facts in the case n = 1 by the explicit computations

of cup products for surfaces in §3.2.

The symmetric case is much more interesting algebraically. There are only finitely

many isomorphism classes of symmetric nonsingular bilinear forms over Z of a fixed

rank, but this ‘finitely many’ grows rather rapidly, for example it is more than 80

million for rank 32; see [Serre 1973] for an exposition of this beautiful chapter of

number theory. It is known that for each even n ≥ 2, every symmetric nonsingular

form actually occurs as the cup product pairing in some closed manifold M2n . One

can even take M2n to be simply-connected and have the bare minimum of homol-

ogy: Z ’s in dimensions 0 and 2n and a Zk in dimension n . For n = 2 there are

at most two nonhomeomorphic simply-connected closed 4 manifolds with the same

bilinear form. Namely, there are two manifolds with the same form if the square

α ` α of some α ∈ H2(M4) is an odd multiple of a generator of H4(M4) , for ex-

ample for CP2 , and otherwise the M4 is unique, for example for S4 or S2×S2 ; see

[Freedman & Quinn 1990]. In §4.C we take the first step in this direction by proving

a classical result of J. H. C. Whitehead that the homotopy type of a simply-connected

closed 4 manifold is uniquely determined by its cup product structure.


