
Algebraic topology can be roughly defined as the study of techniques for forming

algebraic images of topological spaces. Most often these algebraic images are groups,

but more elaborate structures such as rings, modules, and algebras also arise. The

mechanisms that create these images — the ‘lanterns’ of algebraic topology, one might

say — are known formally as functors and have the characteristic feature that they

form images not only of spaces but also of maps. Thus, continuous maps between

spaces are projected onto homomorphisms between their algebraic images, so topo-

logically related spaces have algebraically related images.

With suitably constructed lanterns one might hope to be able to form images with

enough detail to reconstruct accurately the shapes of all spaces, or at least of large

and interesting classes of spaces. This is one of the main goals of algebraic topology,

and to a surprising extent this goal is achieved. Of course, the lanterns necessary to

do this are somewhat complicated pieces of machinery. But this machinery also has

a certain intrinsic beauty.

This first chapter introduces one of the simplest and most important functors

of algebraic topology, the fundamental group, which creates an algebraic image of a

space from the loops in the space, the paths in the space starting and ending at the

same point.

The Idea of the Fundamental Group

To get a feeling for what the fundamental group is about, let us look at a few

preliminary examples before giving the formal definitions.
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Consider two linked circles A and B in R
3 , as shown

in the figure. Our experience with actual links and chains

tells us that since the two circles are linked, it is impossi-

ble to separate B from A by any continuous motion of B ,

such as pushing, pulling, or twisting. We could even take

B to be made of rubber or stretchable string and allow completely general continu-

ous deformations of B , staying in the complement of A at all times, and it would

still be impossible to pull B off A . At least that is what intuition suggests, and the

fundamental group will give a way of making this intuition mathematically rigorous.

Instead of having B link with A just once, we could

make it link with A two or more times, as in the figures to the

right. As a further variation, by assigning an orientation to B

we can speak of B linking A a positive or a negative number

of times, say positive when B comes forward through A and

negative for the reverse direction. Thus for each nonzero

integer n we have an oriented circle Bn linking A n times,

where by ‘circle’ we mean a curve homeomorphic to a circle.

To complete the scheme, we could let B0 be a circle not

linked to A at all.

Now, integers not only measure quantity, but they form a group under addition.

Can the group operation be mimicked geometrically with some sort of addition op-

eration on the oriented circles B linking A? An oriented circle B can be thought

of as a path traversed in time, starting and ending at the same point x0 , which we

can choose to be any point on the circle. Such a path starting and ending at the

same point is called a loop. Two different loops B and B′ both starting and end-

ing at the same point x0 can be ‘added’ to form a new loop B + B′ that travels first

around B , then around B′ . For example, if B1 and B′1 are loops each linking A once in

the positive direction,

then their sum B1+B
′
1

is deformable to B2 ,

linking A twice. Simi-

larly, B1 + B−1 can be

deformed to the loop

B0 , unlinked from A .

More generally, we see

that Bm + Bn can be

deformed to Bm+n for

arbitrary integers m and n .

Note that in forming sums of loops we produce loops that pass through the base-

point more than once. This is one reason why loops are defined merely as continuous
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paths, which are allowed to pass through the same point many times. So if one is

thinking of a loop as something made of stretchable string, one has to give the string

the magical power of being able to pass through itself unharmed. However, we must

be sure not to allow our loops to intersect the fixed circle A at any time, otherwise we

could always unlink them from A .

Next we consider a slightly more complicated sort of linking, involving three cir-

cles forming a configuration known as the Borromean rings, shown at the left in the fig-

ure below. The interesting feature here is that if any one of the three circles is removed,

the other two are not

linked. In the same

spirit as before, let us

regard one of the cir-

cles, say C , as a loop

in the complement of

the other two, A and

B , and we ask whether C can be continuously deformed to unlink it completely from

A and B , always staying in the complement of A and B during the deformation. We

can redraw the picture by pulling A and B apart, dragging C along, and then we see

C winding back and forth between A and B as shown in the second figure above.

In this new position, if we start at the point of C indicated by the dot and proceed

in the direction given by the arrow, then we pass in sequence: (1) forward through

A , (2) forward through B , (3) backward through A , and (4) backward through B . If

we measure the linking of C with A and B by two integers, then the ‘forwards’ and

‘backwards’ cancel and both integers are zero. This reflects the fact that C is not

linked with A or B individually.

To get a more accurate measure of how C links with A and B together, we re-

gard the four parts (1)–(4) of C as an ordered sequence. Taking into account the

directions in which these segments of C pass

through A and B , we may deform C to the sum

a+b−a−b of four loops as in the figure. We

write the third and fourth loops as the nega-

tives of the first two since they can be deformed

to the first two, but with the opposite orienta-

tions, and as we saw in the preceding exam-

ple, the sum of two oppositely oriented loops

is deformable to a trivial loop, not linked with

anything. We would like to view the expression

a + b − a − b as lying in a nonabelian group, so that it is not automatically zero.

Changing to the more usual multiplicative notation for nonabelian groups, it would

be written aba−1b−1 , the commutator of a and b .
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To shed further light on this example, suppose we modify it slightly so that the cir-

cles A and B are now linked, as in the next figure. The circle C can then be deformed

into the position shown at

the right, where it again rep-

resents the composite loop

aba−1b−1 , where a and b

are loops linking A and B .

But from the picture on the

left it is apparent that C can

actually be unlinked completely from A and B . So in this case the product aba−1b−1

should be trivial.

The fundamental group of a space X will be defined so that its elements are

loops in X starting and ending at a fixed basepoint x0 ∈ X , but two such loops

are regarded as determining the same element of the fundamental group if one loop

can be continuously deformed to the other within the space X . (All loops that occur

during deformations must also start and end at x0 .) In the first example above, X is

the complement of the circle A , while in the other two examples X is the complement

of the two circles A and B . In the second section in this chapter we will show:

The fundamental group of the complement of the circle A in the first example is

infinite cyclic with the loop B as a generator. This amounts to saying that every

loop in the complement of A can be deformed to one of the loops Bn , and that

Bn cannot be deformed to Bm if n ≠m .

The fundamental group of the complement of the two unlinked circles A and B in

the second example is the nonabelian free group on two generators, represented

by the loops a and b linking A and B . In particular, the commutator aba−1b−1

is a nontrivial element of this group.

The fundamental group of the complement of the two linked circles A and B in

the third example is the free abelian group on two generators, represented by the

loops a and b linking A and B .

As a result of these calculations, we have two ways to tell when a pair of circles A

and B is linked. The direct approach is given by the first example, where one circle

is regarded as an element of the fundamental group of the complement of the other

circle. An alternative and somewhat more subtle method is given by the second and

third examples, where one distinguishes a pair of linked circles from a pair of unlinked

circles by the fundamental group of their complement, which is abelian in one case and

nonabelian in the other. This method is much more general: One can often show that

two spaces are not homeomorphic by showing that their fundamental groups are not

isomorphic, since it will be an easy consequence of the definition of the fundamental

group that homeomorphic spaces have isomorphic fundamental groups.
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This first section begins with the basic definitions and constructions, and then

proceeds quickly to an important calculation, the fundamental group of the circle,

using notions developed more fully in §1.3. More systematic methods of calculation

are given in §1.2. These are sufficient to show for example that every group is realized

as the fundamental group of some space. This idea is exploited in the Additional

Topics at the end of the chapter, which give some illustrations of how algebraic facts

about groups can be derived topologically, such as the fact that every subgroup of a

free group is free.

Paths and Homotopy

The fundamental group will be defined in terms of loops and deformations of

loops. Sometimes it will be useful to consider more generally paths and their defor-

mations, so we begin with this slight extra generality.

By a path in a space X we mean a continuous map f : I→X where I is the unit

interval [0,1] . The idea of continuously deforming a path, keeping its endpoints

fixed, is made precise by the following definition. A homotopy of paths in X is a

family ft : I→X , 0 ≤ t ≤ 1, such that

(1) The endpoints ft(0) = x0 and ft(1) = x1

are independent of t .

(2) The associated map F : I×I→X defined by

F(s, t) = ft(s) is continuous.

When two paths f0 and f1 are connected in this way by a homotopy ft , they are said

to be homotopic. The notation for this is f0 ≃ f1 .

Example 1.1: Linear Homotopies. Any two paths f0 and f1 in Rn having the same

endpoints x0 and x1 are homotopic via the homotopy ft(s) = (1− t)f0(s)+ tf1(s) .

During this homotopy each point f0(s) travels along the line segment to f1(s) at con-

stant speed. This is because the line through f0(s) and f1(s) is linearly parametrized

as f0(s) + t[f1(s) − f0(s)] = (1 − t)f0(s) + tf1(s) , with the segment from f0(s) to

f1(s) covered by t values in the interval from 0 to 1. If f1(s) happens to equal f0(s)

then this segment degenerates to a point and ft(s) = f0(s) for all t . This occurs in

particular for s = 0 and s = 1, so each ft is a path from x0 to x1 . Continuity of

the homotopy ft as a map I×I→R
n follows from continuity of f0 and f1 since the

algebraic operations of vector addition and scalar multiplication in the formula for ft
are continuous.

This construction shows more generally that for a convex subspace X ⊂ Rn , all

paths in X with given endpoints x0 and x1 are homotopic, since if f0 and f1 lie in

X then so does the homotopy ft .
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Before proceeding further we need to verify a technical property:

Proposition 1.2. The relation of homotopy on paths with fixed endpoints in any space

is an equivalence relation.

The equivalence class of a path f under the equivalence relation of homotopy

will be denoted [f ] and called the homotopy class of f .

Proof: Reflexivity is evident since f ≃ f by the constant homotopy ft = f . Symmetry

is also easy since if f0 ≃ f1 via ft , then f1 ≃ f0 via the inverse homotopy f1−t . For

transitivity, if f0 ≃ f1 via ft and if f1 = g0 with g0 ≃ g1

via gt , then f0 ≃ g1 via the homotopy ht that equals f2t for

0 ≤ t ≤ 1/2 and g2t−1 for 1/2 ≤ t ≤ 1. These two definitions

agree for t = 1/2 since we assume f1 = g0 . Continuity of the

associated map H(s, t) = ht(s) comes from the elementary

fact, which will be used frequently without explicit mention, that a function defined

on the union of two closed sets is continuous if it is continuous when restricted to

each of the closed sets separately. In the case at hand we have H(s, t) = F(s,2t) for

0 ≤ t ≤ 1/2 and H(s, t) = G(s,2t − 1) for 1/2 ≤ t ≤ 1 where F and G are the maps

I×I→X associated to the homotopies ft and gt . Since H is continuous on I×[0, 1/2]

and on I×[1/2,1], it is continuous on I×I . ⊔⊓

Given two paths f ,g : I→X such that f(1) = g(0) , there is a composition or

product path f g that traverses first f and then g , defined by the formula

f g(s) =

{
f(2s), 0 ≤ s ≤ 1/2
g(2s − 1), 1/2 ≤ s ≤ 1

Thus f and g are traversed twice as fast in order for f g to be traversed in unit

time. This product operation respects homotopy classes

since if f0 ≃ f1 and g0 ≃ g1 via homotopies ft and gt ,

and if f0(1) = g0(0) so that f0 g0 is defined, then ft gt
is defined and provides a homotopy f0 g0 ≃ f1 g1 .

In particular, suppose we restrict attention to paths f : I→X with the same start-

ing and ending point f(0) = f(1) = x0 ∈ X . Such paths are called loops, and the

common starting and ending point x0 is referred to as the basepoint. The set of all

homotopy classes [f ] of loops f : I→X at the basepoint x0 is denoted π1(X,x0) .

Proposition 1.3. π1(X,x0) is a group with respect to the product [f ][g] = [f g] .

This group is called the fundamental group of X at the basepoint x0 . We

will see in Chapter 4 that π1(X,x0) is the first in a sequence of groups πn(X,x0) ,

called homotopy groups, which are defined in an entirely analogous fashion using the

n dimensional cube In in place of I .
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Proof: By restricting attention to loops with a fixed basepoint x0 ∈ X we guarantee

that the product f g of any two such loops is defined. We have already observed

that the homotopy class of f g depends only on the homotopy classes of f and g ,

so the product [f ][g] = [f g] is well-defined. It remains to verify the three axioms

for a group.

As a preliminary step, define a reparametrization of a path f to be a composi-

tion fϕ where ϕ : I→I is any continuous map such that ϕ(0) = 0 and ϕ(1) = 1.

Reparametrizing a path preserves its homotopy class since fϕ ≃ f via the homotopy

fϕt where ϕt(s) = (1 − t)ϕ(s) + ts so that ϕ0 = ϕ and ϕ1(s) = s . Note that

(1 − t)ϕ(s) + ts lies between ϕ(s) and s , hence is in I , so the composition fϕt is

defined.

If we are given paths f ,g,h with f(1) = g(0) and g(1) = h(0) , then both prod-

ucts (f g)h and f (g h) are defined, and f (g h) is a reparametrization

of (f g) h by the piecewise linear function ϕ whose graph is shown

in the figure at the right. Hence (f g) h ≃ f (g h) . Restricting atten-

tion to loops at the basepoint x0 , this says the product in π1(X,x0) is

associative.

Given a path f : I→X , let c be the constant path at f(1) , defined by c(s) = f(1)

for all s ∈ I . Then f c is a reparametrization of f via the function ϕ whose graph is

shown in the first figure at the right, so f c ≃ f . Similarly,

c f ≃ f where c is now the constant path at f(0) , using

the reparametrization function in the second figure. Taking

f to be a loop, we deduce that the homotopy class of the

constant path at x0 is a two-sided identity in π1(X,x0) .

For a path f from x0 to x1 , the inverse path f from x1 back to x0 is defined

by f(s) = f(1 − s) . To see that f f is homotopic to a constant path we use the

homotopy ht = ft gt where ft is the path that equals f on the interval [0,1 − t]

and that is stationary at f(1− t) on the interval [1− t,1] , and gt is the inverse path

of ft . We could also describe ht in terms of the associated function

H : I×I→X using the decomposition of I×I shown in the figure. On

the bottom edge of the square H is given by f f and below the ‘V’ we

let H(s, t) be independent of t , while above the ‘V’ we let H(s, t) be

independent of s . Going back to the first description of ht , we see that since f0 = f

and f1 is the constant path c at x0 , ht is a homotopy from f f to c c = c . Replacing

f by f gives f f ≃ c for c the constant path at x1 . Taking f to be a loop at the

basepoint x0 , we deduce that [f ] is a two-sided inverse for [f ] in π1(X,x0) . ⊔⊓

Example 1.4. For a convex set X in Rn with basepoint x0 ∈ X we have π1(X,x0) = 0,

the trivial group, since any two loops f0 and f1 based at x0 are homotopic via the

linear homotopy ft(s) = (1− t)f0(s)+ tf1(s) , as described in Example 1.1.
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It is not so easy to show that a space has a nontrivial fundamental group since one

must somehow demonstrate the nonexistence of homotopies between certain loops.

We will tackle the simplest example shortly, computing the fundamental group of the

circle.

It is natural to ask about the dependence of π1(X,x0) on the choice of the base-

point x0 . Since π1(X,x0) involves only the path-component of X containing x0 , it

is clear that we can hope to find a relation between π1(X,x0) and π1(X,x1) for two

basepoints x0 and x1 only if x0 and x1 lie in the same path-component of X . So

let h : I→X be a path from x0 to x1 , with the inverse path

h(s) = h(1−s) from x1 back to x0 . We can then associate

to each loop f based at x1 the loop h f h based at x0 .

Strictly speaking, we should choose an order of forming the product h f h , either

(h f) h or h (f h) , but the two choices are homotopic and we are only interested in

homotopy classes here. Alternatively, to avoid any ambiguity we could define a gen-

eral n fold product f1 ··· fn in which the path fi is traversed in the time interval[ i−1
n ,

i
n

]
. Either way, we define a change-of-basepoint map βh :π1(X,x1)→π1(X,x0)

by βh[f ] = [h f h] . This is well-defined since if ft is a homotopy of loops based at

x1 then h ft h is a homotopy of loops based at x0 .

Proposition 1.5. The map βh :π1(X,x1)→π1(X,x0) is an isomorphism.

Proof: We see first that βh is a homomorphism since βh[f g] = [h f g h] =

[h f h h g h] = βh[f ]βh[g] . Further, βh is an isomorphism with inverse βh since

βhβh[f ] = βh[h f h] = [h h f h h] = [f ] , and similarly βhβh[f ] = [f ] . ⊔⊓

Thus if X is path-connected, the group π1(X,x0) is, up to isomorphism, inde-

pendent of the choice of basepoint x0 . In this case the notation π1(X,x0) is often

abbreviated to π1(X) , or one could go further and write just π1X .

In general, a space is called simply-connected if it is path-connected and has

trivial fundamental group. The following result explains the name.

Proposition 1.6. A space X is simply-connected iff there is a unique homotopy class

of paths connecting any two points in X .

Proof: Path-connectedness is the existence of paths connecting every pair of points,

so we need be concerned only with the uniqueness of connecting paths. Suppose

π1(X) = 0. If f and g are two paths from x0 to x1 , then f ≃ f g g ≃ g since

the loops g g and f g are each homotopic to constant loops, using the assumption

π1(X,x0) = 0 in the latter case. Conversely, if there is only one homotopy class of

paths connecting a basepoint x0 to itself, then all loops at x0 are homotopic to the

constant loop and π1(X,x0) = 0. ⊔⊓
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The Fundamental Group of the Circle

Our first real theorem will be the calculation π1(S
1) ≈ Z . Besides its intrinsic

interest, this basic result will have several immediate applications of some substance,

and it will be the starting point for many more calculations in the next section. It

should be no surprise then that the proof will involve some genuine work.

Theorem 1.7. π1(S
1) is an infinite cyclic group generated by the homotopy class of

the loop ω(s) = (cos 2πs, sin 2πs) based at (1,0) .

Note that [ω]n = [ωn] where ωn(s) = (cos 2πns, sin 2πns) for n ∈ Z . The

theorem is therefore equivalent to the statement that every loop in S1 based at (1,0)

is homotopic to ωn for a unique n ∈ Z . To prove this the idea will

be to compare paths in S1 with paths in R via the map p :R→S1

given by p(s) = (cos 2πs, sin 2πs) . This map can be visualized

geometrically by embedding R in R
3 as the helix parametrized by

s֏ (cos 2πs, sin 2πs, s) , and then p is the restriction to the helix

of the projection of R3 onto R2 , (x,y, z)֏ (x,y) . Observe that

the loop ωn is the composition pω̃n where ω̃n : I→R is the path

ω̃n(s) = ns , starting at 0 and ending at n , winding around the helix

|n| times, upward if n > 0 and downward if n < 0. The relation

ωn = pω̃n is expressed by saying that ω̃n is a lift of ωn .

We will prove the theorem by studying how paths in S1 lift to paths in R . Most

of the arguments will apply in much greater generality, and it is both more efficient

and more enlightening to give them in the general context. The first step will be to

define this context.

Given a space X , a covering space of X consists of a space X̃ and a map p : X̃→X
satisfying the following condition:

(∗)

For each point x ∈ X there is an open neighborhood U of x in X such that

p−1(U) is a union of disjoint open sets each of which is mapped homeomor-

phically onto U by p .

Such a U will be called evenly covered. For example, for the previously defined map

p :R→S1 any open arc in S1 is evenly covered.

To prove the theorem we will need just the following two facts about covering

spaces p : X̃→X .

(a) For each path f : I→X starting at a point x0 ∈ X and each x̃0 ∈ p
−1(x0) there

is a unique lift f̃ : I→X̃ starting at x̃0 .

(b) For each homotopy ft : I→X of paths starting at x0 and each x̃0 ∈ p
−1(x0) there

is a unique lifted homotopy f̃t : I→X̃ of paths starting at x̃0 .

Before proving these facts, let us see how they imply the theorem.



30 Chapter 1 The Fundamental Group

Proof of Theorem 1.7: Let f : I→S1 be a loop at the basepoint x0 = (1,0) , repre-

senting a given element of π1(S
1, x0) . By (a) there is a lift f̃ starting at 0. This path

f̃ ends at some integer n since pf̃ (1) = f(1) = x0 and p−1(x0) = Z ⊂ R . Another

path in R from 0 to n is ω̃n , and f̃ ≃ ω̃n via the linear homotopy (1− t)f̃ + tω̃n .

Composing this homotopy with p gives a homotopy f ≃ωn so [f ] = [ωn] .

To show that n is uniquely determined by [f ] , suppose that f ≃ ωn and f ≃

ωm , so ωm ≃ ωn . Let ft be a homotopy from ωm = f0 to ωn = f1 . By (b) this

homotopy lifts to a homotopy f̃t of paths starting at 0. The uniqueness part of (a)

implies that f̃0 = ω̃m and f̃1 = ω̃n . Since f̃t is a homotopy of paths, the endpoint

f̃t(1) is independent of t . For t = 0 this endpoint is m and for t = 1 it is n , so

m = n .

It remains to prove (a) and (b). Both statements can be deduced from a more

general assertion about covering spaces p : X̃→X :

(c) Given a map F :Y×I→X and a map F̃ :Y×{0}→X̃ lifting F|Y×{0} , then there

is a unique map F̃ :Y×I→X̃ lifting F and restricting to the given F̃ on Y×{0} .

Statement (a) is the special case that Y is a point, and (b) is obtained by applying (c)

with Y = I in the following way. The homotopy ft in (b) gives a map F : I×I→X
by setting F(s, t) = ft(s) as usual. A unique lift F̃ : I×{0}→X̃ is obtained by an

application of (a). Then (c) gives a unique lift F̃ : I×I→X̃ . The restrictions F̃|{0}×I

and F̃|{1}×I are paths lifting constant paths, hence they must also be constant by

the uniqueness part of (a). So f̃t(s) = F̃(s, t) is a homotopy of paths, and f̃t lifts ft
since pF̃ = F .

To prove (c) we will first construct a lift F̃ :N×I→X̃ for N some neighborhood

in Y of a given point y0 ∈ Y . Since F is continuous, every point (y0, t) ∈ Y×I

has a product neighborhood Nt×(at , bt) such that F
(
Nt×(at , bt)

)
is contained in

an evenly covered neighborhood of F(y0, t) . By compactness of {y0}×I , finitely

many such products Nt×(at, bt) cover {y0}×I . This implies that we can choose

a single neighborhood N of y0 and a partition 0 = t0 < t1 < ··· < tm = 1 of I so

that for each i , F(N×[ti, ti+1]) is contained in an evenly covered neighborhood Ui .

Assume inductively that F̃ has been constructed on N×[0, ti] , starting with the given

F̃ on N×{0} . We have F(N×[ti, ti+1]) ⊂ Ui , so since Ui is evenly covered there is

an open set Ũi ⊂ X̃ projecting homeomorphically onto Ui by p and containing the

point F̃(y0, ti) . After replacing N by a smaller neighborhood of y0 we may assume

that F̃(N×{ti}) is contained in Ũi , namely, replace N×{ti} by its intersection with

(F̃ ||N×{ti})
−1(Ũi) . Now we can define F̃ on N×[ti, ti+1] to be the composition of F

with the homeomorphism p−1 :Ui→Ũi . After a finite number of steps we eventually

get a lift F̃ :N×I→X̃ for some neighborhood N of y0 .

Next we show the uniqueness part of (c) in the special case that Y is a point. In this

case we can omit Y from the notation. So suppose F̃ and F̃
′
are two lifts of F : I→X
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such that F̃(0) = F̃
′
(0) . As before, choose a partition 0 = t0 < t1 < ··· < tm = 1 of

I so that for each i , F([ti, ti+1]) is contained in some evenly covered neighborhood

Ui . Assume inductively that F̃ = F̃
′

on [0, ti] . Since [ti, ti+1] is connected, so is

F̃([ti, ti+1]) , which must therefore lie in a single one of the disjoint open sets Ũi
projecting homeomorphically to Ui as in (∗) . By the same token, F̃

′
([ti, ti+1]) lies

in a single Ũi , in fact in the same one that contains F̃([ti, ti+1]) since F̃
′
(ti) = F̃(ti) .

Because p is injective on Ũi and pF̃ = pF̃
′
, it follows that F̃ = F̃

′
on [ti, ti+1] , and

the induction step is finished.

The last step in the proof of (c) is to observe that since the F̃ ’s constructed above

on sets of the form N×I are unique when restricted to each segment {y}×I , they

must agree whenever two such sets N×I overlap. So we obtain a well-defined lift F̃

on all of Y×I . This F̃ is continuous since it is continuous on each N×I . And F̃ is

unique since it is unique on each segment {y}×I . ⊔⊓

Now we turn to some applications of the calculation of π1(S
1) , beginning with a

proof of the Fundamental Theorem of Algebra.

Theorem 1.8. Every nonconstant polynomial with coefficients in C has a root in C .

Proof: We may assume the polynomial is of the form p(z) = zn+a1z
n−1
+ ··· +an .

If p(z) has no roots in C , then for each real number r ≥ 0 the formula

fr (s) =
p(re2πis)/p(r)

|p(re2πis)/p(r)|

defines a loop in the unit circle S1
⊂ C based at 1. As r varies, fr is a homotopy of

loops based at 1. Since f0 is the trivial loop, we deduce that the class [fr ] ∈ π1(S
1)

is zero for all r . Now fix a large value of r , bigger than |a1| + ··· + |an| and bigger

than 1. Then for |z| = r we have

|zn| > (|a1| + ··· + |an|)|z
n−1
| > |a1z

n−1
| + ··· + |an| ≥ |a1z

n−1
+ ··· + an|

From the inequality |zn| > |a1z
n−1
+···+an| it follows that the polynomial pt(z) =

zn+t(a1z
n−1
+···+an) has no roots on the circle |z| = r when 0 ≤ t ≤ 1. Replacing

p by pt in the formula for fr above and letting t go from 1 to 0, we obtain a homo-

topy from the loop fr to the loop ωn(s) = e
2πins . By Theorem 1.7, ωn represents

n times a generator of the infinite cyclic group π1(S
1) . Since we have shown that

[ωn] = [fr ] = 0, we conclude that n = 0. Thus the only polynomials without roots

in C are constants. ⊔⊓

Our next application is the Brouwer fixed point theorem in dimension 2.

Theorem 1.9. Every continuous map h :D2→D2 has a fixed point, that is, a point

x ∈ D2 with h(x) = x .

Here we are using the standard notation Dn for the closed unit disk in R
n , all

vectors x of length |x| ≤ 1. Thus the boundary of Dn is the unit sphere Sn−1 .
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Proof: Suppose on the contrary that h(x) ≠ x for all x ∈ D2 .

Then we can define a map r :D2→S1 by letting r(x) be the

point of S1 where the ray in R2 starting at h(x) and passing

through x leaves D2 . Continuity of r is clear since small per-

turbations of x produce small perturbations of h(x) , hence

also small perturbations of the ray through these two points.

The crucial property of r , besides continuity, is that r(x) = x if x ∈ S1 . Thus r is

a retraction of D2 onto S1 . We will show that no such retraction can exist.

Let f0 be any loop in S1 . In D2 there is a homotopy of f0 to a constant loop, for

example the linear homotopy ft(s) = (1 − t)f0(s) + tx0 where x0 is the basepoint

of f0 . Since the retraction r is the identity on S1 , the composition rft is then a

homotopy in S1 from rf0 = f0 to the constant loop at x0 . But this contradicts the

fact that π1(S
1) is nonzero. ⊔⊓

This theorem was first proved by Brouwer around 1910, quite early in the history

of topology. Brouwer in fact proved the corresponding result for Dn , and we shall

obtain this generalization in Corollary 2.15 using homology groups in place of π1 .

One could also use the higher homotopy group πn . Brouwer’s original proof used

neither homology nor homotopy groups, which had not been invented at the time.

Instead it used the notion of degree for maps Sn→Sn , which we shall define in §2.2

using homology but which Brouwer defined directly in more geometric terms.

These proofs are all arguments by contradiction, and so they show just the exis-

tence of fixed points without giving any clue as to how to find one in explicit cases.

Our proof of the Fundamental Theorem of Algebra was similar in this regard. There

exist other proofs of the Brouwer fixed point theorem that are somewhat more con-

structive, for example the elegant and quite elementary proof by Sperner in 1928,

which is explained very nicely in [Aigner-Ziegler 1999].

The techniques used to calculate π1(S
1) can be applied to prove the Borsuk–Ulam

theorem in dimension two:

Theorem 1.10. For every continuous map f :S2→R
2 there exists a pair of antipodal

points x and −x in S2 with f(x) = f(−x) .

It may be that there is only one such pair of antipodal points x , −x , for example

if f is simply orthogonal projection of the standard sphere S2
⊂ R

3 onto a plane.

The Borsuk–Ulam theorem holds more generally for maps Sn→R
n , as we will

show in Corollary 2B.7. The proof for n = 1 is easy since the difference f(x)−f(−x)

changes sign as x goes halfway around the circle, hence this difference must be zero

for some x . For n ≥ 2 the theorem is certainly less obvious. Is it apparent, for

example, that at every instant there must be a pair of antipodal points on the surface

of the earth having the same temperature and the same barometric pressure?
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The theorem says in particular that there is no one-to-one continuous map from

S2 to R2 , so S2 is not homeomorphic to a subspace of R2 , an intuitively obvious fact

that is not easy to prove directly.

Proof: If the conclusion is false for f :S2→R
2 , we can define a map g :S2→S1 by

g(x) =
(
f(x) − f(−x)

)
/|f(x) − f(−x)| . Define a loop η circling the equator of

S2
⊂ R

3 by η(s) = (cos 2πs, sin 2πs,0) , and let h : I→S1 be the composed loop gη .

Since g(−x) = −g(x) , we have the relation h(s+ 1/2) = −h(s) for all s in the interval

[0, 1/2]. As we showed in the calculation of π1(S
1) , the loop h can be lifted to a path

h̃ : I→R . The equation h(s + 1/2) = −h(s) implies that h̃(s + 1/2) = h̃(s) +
q/2 for

some odd integer q that might conceivably depend on s ∈ [0, 1/2]. But in fact q is

independent of s since by solving the equation h̃(s+1/2) = h̃(s)+
q/2 for q we see that

q depends continuously on s ∈ [0, 1/2], so q must be a constant since it is constrained

to integer values. In particular, we have h̃(1) = h̃(1/2) +
q/2 = h̃(0) + q. This means

that h represents q times a generator of π1(S
1) . Since q is odd, we conclude that h

is not nullhomotopic. But h was the composition gη : I→S2→S1 , and η is obviously

nullhomotopic in S2 , so gη is nullhomotopic in S1 by composing a nullhomotopy of

η with g . Thus we have arrived at a contradiction. ⊔⊓

Corollary 1.11. Whenever S2 is expressed as the union of three closed sets A1 , A2 ,

and A3 , then at least one of these sets must contain a pair of antipodal points {x,−x} .

Proof: Let di :S
2→R measure distance to Ai , that is, di(x) = infy∈Ai |x − y| . This

is a continuous function, so we may apply the Borsuk–Ulam theorem to the map

S2→R
2 , x֏

(
d1(x),d2(x)

)
, obtaining a pair of antipodal points x and −x with

d1(x) = d1(−x) and d2(x) = d2(−x) . If either of these two distances is zero, then

x and −x both lie in the same set A1 or A2 since these are closed sets. On the other

hand, if the distances from x and −x to A1 and A2 are both strictly positive, then

x and −x lie in neither A1 nor A2 so they must lie in A3 . ⊔⊓

To see that the number ‘three’ in this result is best possible, consider a sphere

inscribed in a tetrahedron. Projecting the four faces of the tetrahedron radially onto

the sphere, we obtain a cover of S2 by four closed sets, none of which contains a pair

of antipodal points.

Assuming the higher-dimensional version of the Borsuk–Ulam theorem, the same

arguments show that Sn cannot be covered by n + 1 closed sets without antipodal

pairs of points, though it can be covered by n+2 such sets, as the higher-dimensional

analog of a tetrahedron shows. Even the case n = 1 is somewhat interesting: If the

circle is covered by two closed sets, one of them must contain a pair of antipodal

points. This is of course false for nonclosed sets since the circle is the union of two

disjoint half-open semicircles.
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The relation between the fundamental group of a product space and the funda-

mental groups of its factors is as simple as one could wish:

Proposition 1.12. π1(X×Y) is isomorphic to π1(X)×π1(Y ) if X and Y are path-

connected.

Proof: A basic property of the product topology is that a map f :Z→X×Y is con-

tinuous iff the maps g :Z→X and h :Z→Y defined by f(z) = (g(z),h(z)) are both

continuous. Hence a loop f in X×Y based at (x0, y0) is equivalent to a pair of loops

g in X and h in Y based at x0 and y0 respectively. Similarly, a homotopy ft of a loop

in X×Y is equivalent to a pair of homotopies gt and ht of the corresponding loops

in X and Y . Thus we obtain a bijection π1

(
X×Y , (x0, y0)

)
≈ π1(X,x0)×π1(Y ,y0) ,

[f ]֏ ([g], [h]) . This is obviously a group homomorphism, and hence an isomor-

phism. ⊔⊓

Example 1.13: The Torus. By the proposition we have an isomorphism π1(S
1
×S1) ≈

Z×Z . Under this isomorphism a pair (p, q) ∈ Z×Z corresponds to a loop that winds

p times around one S1 factor of the torus and q times around the

other S1 factor, for example the loop ωpq(s) = (ωp(s),ωq(s)) .

Interestingly, this loop can be knotted, as the figure shows for

the case p = 3, q = 2. The knots that arise in this fashion, the

so-called torus knots, are studied in Example 1.24.

More generally, the n dimensional torus, which is the product of n circles, has

fundamental group isomorphic to the product of n copies of Z . This follows by

induction on n .

Induced Homomorphisms

Suppose ϕ :X→Y is a map taking the basepoint x0 ∈ X to the basepoint y0 ∈ Y .

For brevity we write ϕ : (X,x0)→(Y ,y0) in this situation. Then ϕ induces a homo-

morphism ϕ∗ :π1(X,x0)→π1(Y ,y0) , defined by composing loops f : I→X based at

x0 with ϕ , that is, ϕ∗[f ] = [ϕf] . This induced map ϕ∗ is well-defined since a

homotopy ft of loops based at x0 yields a composed homotopy ϕft of loops based

at y0 , so ϕ∗[f0] = [ϕf0] = [ϕf1] =ϕ∗[f1] . Furthermore, ϕ∗ is a homomorphism

since ϕ(f g) = (ϕf) (ϕg) , both functions having the value ϕf(2s) for 0 ≤ s ≤ 1/2
and the value ϕg(2s − 1) for 1/2 ≤ s ≤ 1.

Two basic properties of induced homomorphisms are:

(ϕψ)∗ =ϕ∗ψ∗ for a composition (X,x0)
ψ
-----→(Y ,y0)

ϕ
-----→(Z, z0) .

11∗ = 11, which is a concise way of saying that the identity map 11 :X→X induces

the identity map 11 :π1(X,x0)→π1(X,x0) .

The first of these follows from the fact that composition of maps is associative, so

(ϕψ)f = ϕ(ψf) , and the second is obvious. These two properties of induced homo-

morphisms are what makes the fundamental group a functor. The formal definition
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of a functor requires the introduction of certain other preliminary concepts, however,

so we postpone this until it is needed in §2.3.

As an application we can deduce easily that if ϕ is a homeomorphism with inverse

ψ then ϕ∗ is an isomorphism with inverse ψ∗ since ϕ∗ψ∗ = (ϕψ)∗ = 11∗ = 11

and similarly ψ∗ϕ∗ = 11. We will use this fact in the following calculation of the

fundamental groups of higher-dimensional spheres:

Proposition 1.14. π1(S
n) = 0 if n ≥ 2 .

The main step in the proof will be a general fact that will also play a key role in

the next section:

Lemma 1.15. If a space X is the union of a collection of path-connected open sets

Aα each containing the basepoint x0 ∈ X and if each intersection Aα ∩Aβ is path-

connected, then every loop in X at x0 is homotopic to a product of loops each of

which is contained in a single Aα .

Proof: Given a loop f : I→X at the basepoint x0 , we claim there is a partition 0 =

s0 < s1 < ··· < sm = 1 of I such that each subinterval [si−1, si] is mapped by f to

a single Aα . Namely, since f is continuous, each s ∈ I has an open neighborhood

Vs in I mapped by f to some Aα . We may in fact take Vs to be an interval whose

closure is mapped to a single Aα . Compactness of I implies that a finite number of

these intervals cover I . The endpoints of this finite set of intervals then define the

desired partition of I .

Denote the Aα containing f([si−1, si]) by Ai , and let fi be the path obtained by

restricting f to [si−1, si] . Then f is the composition f1 ··· fm with fi a path in

Ai . Since we assume Ai ∩ Ai+1 is path-connected,

we may choose a path gi in Ai ∩ Ai+1 from x0 to

the point f(si) ∈ Ai ∩Ai+1 . Consider the loop

(f1 g1) (g1 f2 g2) (g2 f3 g3) ··· (gm−1 fm)

which is homotopic to f . This loop is a composition

of loops each lying in a single Ai , the loops indicated

by the parentheses. ⊔⊓

Proof of Proposition 1.14: We can express Sn as the union of two open sets A1

and A2 each homeomorphic to Rn such that A1 ∩A2 is homeomorphic to Sn−1
×R ,

for example by taking A1 and A2 to be the complements of two antipodal points in

Sn . Choose a basepoint x0 in A1 ∩ A2 . If n ≥ 2 then A1 ∩ A2 is path-connected.

The lemma then applies to say that every loop in Sn based at x0 is homotopic to a

product of loops in A1 or A2 . Both π1(A1) and π1(A2) are zero since A1 and A2 are

homeomorphic to Rn . Hence every loop in Sn is nullhomotopic. ⊔⊓
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Corollary 1.16. R2 is not homeomorphic to Rn for n ≠ 2 .

Proof: Suppose f :R2→R
n is a homeomorphism. The case n = 1 is easily dis-

posed of since R2
−{0} is path-connected but the homeomorphic space Rn − {f(0)}

is not path-connected when n = 1. When n > 2 we cannot distinguish R
2
− {0}

from R
n
− {f(0)} by the number of path-components, but we can distinguish them

by their fundamental groups. Namely, for a point x in Rn , the complement Rn−{x}

is homeomorphic to Sn−1
×R , so Proposition 1.12 implies that π1(R

n
− {x}) is iso-

morphic to π1(S
n−1)×π1(R) ≈ π1(S

n−1) . Hence π1(R
n
− {x}) is Z for n = 2 and

trivial for n > 2, using Proposition 1.14 in the latter case. ⊔⊓

The more general statement that Rm is not homeomorphic to Rn if m ≠ n can

be proved in the same way using either the higher homotopy groups or homology

groups. In fact, nonempty open sets in R
m and R

n can be homeomorphic only if

m = n , as we will show in Theorem 2.26 using homology.

Induced homomorphisms allow relations between spaces to be transformed into

relations between their fundamental groups. Here is an illustration of this principle:

Proposition 1.17. If a space X retracts onto a subspace A , then the homomorphism

i∗ :π1(A,x0)→π1(X,x0) induced by the inclusion i :A֓ X is injective. If A is a

deformation retract of X , then i∗ is an isomorphism.

Proof: If r :X→A is a retraction, then ri = 11, hence r∗i∗ = 11, which implies that i∗
is injective. If rt :X→X is a deformation retraction of X onto A , so r0 = 11, rt|A = 11,

and r1(X) ⊂ A , then for any loop f : I→X based at x0 ∈ A the composition rtf gives

a homotopy of f to a loop in A , so i∗ is also surjective. ⊔⊓

This gives another way of seeing that S1 is not a retract of D2 , a fact we showed

earlier in the proof of the Brouwer fixed point theorem, since the inclusion-induced

map π1(S
1)→π1(D

2) is a homomorphism Z→0 that cannot be injective.

The exact group-theoretic analog of a retraction is a homomorphism ρ of a group

G onto a subgroup H such that ρ restricts to the identity on H . In the notation

above, if we identify π1(A) with its image under i∗ , then r∗ is such a homomorphism

from π1(X) onto the subgroup π1(A) . The existence of a retracting homomorphism

ρ :G→H is quite a strong condition on H . If H is a normal subgroup, it implies that

G is the direct product of H and the kernel of ρ . If H is not normal, then G is what

is called in group theory the semi-direct product of H and the kernel of ρ .

Recall from Chapter 0 the general definition of a homotopy as a family ϕt :X→Y ,

t ∈ I , such that the associated map Φ :X×I→Y ,Φ(x, t) = ϕt(x) , is continuous. If ϕt
takes a subspace A ⊂ X to a subspace B ⊂ Y for all t , then we speak of a homotopy of

maps of pairs, ϕt : (X,A)→(Y , B) . In particular, a basepoint-preserving homotopy
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ϕt : (X,x0)→(Y ,y0) is the case that ϕt(x0) = y0 for all t . Another basic property

of induced homomorphisms is their invariance under such homotopies:

If ϕt : (X,x0)→(Y ,y0) is a basepoint-preserving homotopy, then ϕ0∗ =ϕ1∗ .

This holds since ϕ0∗[f ] = [ϕ0f] = [ϕ1f] = ϕ1∗[f ] , the middle equality coming

from the homotopy ϕtf .

There is a notion of homotopy equivalence for spaces with basepoints. One says

(X,x0) ≃ (Y ,y0) if there are maps ϕ : (X,x0)→(Y ,y0) and ψ : (Y ,y0)→(X,x0)

with homotopies ϕψ ≃ 11 and ψϕ ≃ 11 through maps fixing the basepoints. In

this case the induced maps on π1 satisfy ϕ∗ψ∗ = (ϕψ)∗ = 11∗ = 11 and likewise

ψ∗ϕ∗ = 11, so ϕ∗ and ψ∗ are inverse isomorphisms π1(X,x0) ≈ π1(Y ,y0) . This

somewhat formal argument gives another proof that a deformation retraction induces

an isomorphism on fundamental groups, since if X deformation retracts onto A then

(X,x0) ≃ (A,x0) for any choice of basepoint x0 ∈ A .

Having to pay so much attention to basepoints when dealing with the fundamental

group is something of a nuisance. For homotopy equivalences one does not have to

be quite so careful, as the conditions on basepoints can actually be dropped:

Proposition 1.18. If ϕ :X→Y is a homotopy equivalence, then the induced homo-

morphism ϕ∗ :π1(X,x0)→π1

(
Y ,ϕ(x0)

)
is an isomorphism for all x0 ∈ X .

The proof will use a simple fact about homotopies that do not fix the basepoint:

Lemma 1.19. If ϕt :X→Y is a homotopy and

h is the path ϕt(x0) formed by the images of

a basepoint x0 ∈ X , then the three maps in the

diagram at the right satisfy ϕ0∗ = βhϕ1∗ .

Proof: Let ht be the restriction of h to the interval [0, t] ,

with a reparametrization so that the domain of ht is still

[0,1] . Explicitly, we can take ht(s) = h(ts) . Then if f is

a loop in X at the basepoint x0 , the product ht (ϕtf) ht
gives a homotopy of loops at ϕ0(x0) . Restricting this

homotopy to t = 0 and t = 1, we see that ϕ0∗([f ]) =

βh
(
ϕ1∗([f ])

)
. ⊔⊓

Proof of 1.18: Let ψ :Y→X be a homotopy-inverse for ϕ , so that ϕψ ≃ 11 and

ψϕ ≃ 11. Consider the maps

π1(X,x0)
ϕ∗
------------→π1

(
Y ,ϕ(x0)

) ψ∗
------------→π1

(
X,ψϕ(x0)

) ϕ∗
------------→π1

(
Y ,ϕψϕ(x0)

)

The composition of the first two maps is an isomorphism since ψϕ ≃ 11 implies that

ψ∗ϕ∗ = βh for some h , by the lemma. In particular, since ψ∗ϕ∗ is an isomorphism,



38 Chapter 1 The Fundamental Group

ϕ∗ is injective. The same reasoning with the second and third maps shows that ψ∗
is injective. Thus the first two of the three maps are injections and their composition

is an isomorphism, so the first map ϕ∗ must be surjective as well as injective. ⊔⊓

Exercises

1. Show that composition of paths satisfies the following cancellation property: If

f0 g0 ≃ f1 g1 and g0 ≃ g1 then f0 ≃ f1 .

2. Show that the change-of-basepoint homomorphism βh depends only on the homo-

topy class of h .

3. For a path-connected space X , show that π1(X) is abelian iff all basepoint-change

homomorphisms βh depend only on the endpoints of the path h .

4. A subspace X ⊂ Rn is said to be star-shaped if there is a point x0 ∈ X such that,

for each x ∈ X , the line segment from x0 to x lies in X . Show that if a subspace

X ⊂ Rn is locally star-shaped, in the sense that every point of X has a star-shaped

neighborhood in X , then every path in X is homotopic in X to a piecewise linear

path, that is, a path consisting of a finite number of straight line segments traversed

at constant speed. Show this applies in particular when X is open or when X is a

union of finitely many closed convex sets.

5. Show that for a space X , the following three conditions are equivalent:

(a) Every map S1→X is homotopic to a constant map, with image a point.

(b) Every map S1→X extends to a map D2→X .

(c) π1(X,x0) = 0 for all x0 ∈ X .

Deduce that a space X is simply-connected iff all maps S1→X are homotopic. [In

this problem, ‘homotopic’ means ‘homotopic without regard to basepoints’.]

6. We can regard π1(X,x0) as the set of basepoint-preserving homotopy classes of

maps (S1, s0)→(X,x0) . Let [S1, X] be the set of homotopy classes of maps S1→X ,

with no conditions on basepoints. Thus there is a natural map Φ :π1(X,x0)→[S
1, X]

obtained by ignoring basepoints. Show that Φ is onto if X is path-connected, and that

Φ([f ]) = Φ([g]) iff [f ] and [g] are conjugate in π1(X,x0) . Hence Φ induces a one-

to-one correspondence between [S1, X] and the set of conjugacy classes in π1(X) ,

when X is path-connected.

7. Define f :S1
×I→S1

×I by f(θ, s) = (θ + 2πs, s) , so f restricts to the identity

on the two boundary circles of S1
×I . Show that f is homotopic to the identity by

a homotopy ft that is stationary on one of the boundary circles, but not by any ho-

motopy ft that is stationary on both boundary circles. [Consider what f does to the

path s֏ (θ0, s) for fixed θ0 ∈ S
1 .]

8. Does the Borsuk–Ulam theorem hold for the torus? In other words, for every map

f :S1
×S1→R

2 must there exist (x,y) ∈ S1
×S1 such that f(x,y) = f(−x,−y)?
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9. Let A1 , A2 , A3 be compact sets in R
3 . Use the Borsuk–Ulam theorem to show

that there is one plane P ⊂ R3 that simultaneously divides each Ai into two pieces of

equal measure.

10. From the isomorphism π1

(
X×Y , (x0, y0)

)
≈ π1(X,x0)×π1(Y ,y0) it follows that

loops in X×{y0} and {x0}×Y represent commuting elements of π1

(
X×Y , (x0, y0)

)
.

Construct an explicit homotopy demonstrating this.

11. If X0 is the path-component of a space X containing the basepoint x0 , show that

the inclusion X0֓X induces an isomorphism π1(X0, x0)→π1(X,x0) .

12. Show that every homomorphism π1(S
1)→π1(S

1) can be realized as the induced

homomorphism ϕ∗ of a map ϕ :S1→S1 .

13. Given a space X and a path-connected subspace A containing the basepoint x0 ,

show that the map π1(A,x0)→π1(X,x0) induced by the inclusion A֓X is surjective

iff every path in X with endpoints in A is homotopic to a path in A .

14. Show that the isomorphism π1(X×Y) ≈ π1(X)×π1(Y ) in Proposition 1.12 is

given by [f ]֏ (p1∗([f ]), p2∗([f ])) where p1 and p2 are the projections of X×Y

onto its two factors.

15. Given a map f :X→Y and a path h : I→X
from x0 to x1 , show that f∗βh = βfhf∗ in the

diagram at the right.

16. Show that there are no retractions r :X→A in the following cases:

(a) X = R3 with A any subspace homeomorphic to S1 .

(b) X = S1
×D2 with A its boundary torus S1

×S1 .

(c) X = S1
×D2 and A the circle shown in the figure.

(d) X = D2
∨D2 with A its boundary S1

∨ S1 .

(e) X a disk with two points on its boundary identified and A its boundary S1
∨ S1 .

(f) X the Möbius band and A its boundary circle.

17. Construct infinitely many nonhomotopic retractions S1
∨ S1→S1 .

18. Using Lemma 1.15, show that if a space X is obtained from a path-connected

subspace A by attaching a cell en with n ≥ 2, then the inclusion A֓ X induces a

surjection on π1 . Apply this to show:

(a) The wedge sum S1
∨ S2 has fundamental group Z .

(b) For a path-connected CW complex X the inclusion map X1֓X of its 1 skeleton

induces a surjection π1(X
1)→π1(X) . [For the case that X has infinitely many

cells, see Proposition A.1 in the Appendix.]

19. Show that if X is a path-connected 1 dimensional CW complex with basepoint x0

a 0 cell, then every loop in X is homotopic to a loop consisting of a finite sequence of

edges traversed monotonically. [See the proof of Lemma 1.15. This exercise gives an

elementary proof that π1(S
1) is cyclic generated by the standard loop winding once
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around the circle. The more difficult part of the calculation of π1(S
1) is therefore the

fact that no iterate of this loop is nullhomotopic.]

20. Suppose ft :X→X is a homotopy such that f0 and f1 are each the identity map.

Use Lemma 1.19 to show that for any x0 ∈ X , the loop ft(x0) represents an element of

the center of π1(X,x0) . [One can interpret the result as saying that a loop represents

an element of the center of π1(X) if it extends to a loop of maps X→X .]

The van Kampen theorem gives a method for computing the fundamental groups

of spaces that can be decomposed into simpler spaces whose fundamental groups are

already known. By systematic use of this theorem one can compute the fundamental

groups of a very large number of spaces. We shall see for example that for every group

G there is a space XG whose fundamental group is isomorphic to G .

To give some idea of how one might hope to compute fundamental groups by

decomposing spaces into simpler pieces, let us look at an example. Consider the

space X formed by two circles A and B intersecting in a single point, which we

choose as the basepoint x0 . By our preceding calculations we know that π1(A) is

infinite cyclic, generated by a loop a that goes once around A .

Similarly, π1(B) is a copy of Z generated by a loop b going

once around B . Each product of powers of a and b then gives

an element of π1(X) . For example, the product a5b2a−3ba2 is the loop that goes

five times around A , then twice around B , then three times around A in the opposite

direction, then once around B , then twice around A . The set of all words like this

consisting of powers of a alternating with powers of b forms a group usually denoted

Z ∗ Z . Multiplication in this group is defined just as one would expect, for example

(b4a5b2a−3)(a4b−1ab3) = b4a5b2ab−1ab3 . The identity element is the empty word,

and inverses are what they have to be, for example (ab2a−3b−4)−1
= b4a3b−2a−1 .

It would be very nice if such words in a and b corresponded exactly to elements of

π1(X) , so that π1(X) was isomorphic to the group Z∗ Z . The van Kampen theorem

will imply that this is indeed the case.

Similarly, if X is the union of three circles touching at a single point, the van

Kampen theorem will imply that π1(X) is Z ∗ Z ∗ Z , the group consisting of words

in powers of three letters a , b , c . The generalization to a union of any number of

circles touching at one point will also follow.

The group Z ∗ Z is an example of a general construction called the free product

of groups. The statement of van Kampen’s theorem will be in terms of free products,

so before stating the theorem we will make an algebraic digression to describe the

construction of free products in some detail.



Van Kampen’s Theorem Section 1.2 41

Free Products of Groups

Suppose one is given a collection of groups Gα and one wishes to construct a

single group containing all these groups as subgroups. One way to do this would be

to take the product group
∏
αGα , whose elements can be regarded as the functions

α֏ gα ∈ Gα . Or one could restrict to functions taking on nonidentity values at

most finitely often, forming the direct sum
⊕
αGα . Both these constructions produce

groups containing all the Gα ’s as subgroups, but with the property that elements of

different subgroups Gα commute with each other. In the realm of nonabelian groups

this commutativity is unnatural, and so one would like a ‘nonabelian’ version of
∏
αGα

or
⊕
αGα . Since the sum

⊕
αGα is smaller and presumably simpler than

∏
αGα , it

should be easier to construct a nonabelian version of
⊕
αGα , and this is what the free

product ∗αGα achieves.

Here is the precise definition. As a set, the free product ∗αGα consists of all

words g1g2 ···gm of arbitrary finite length m ≥ 0, where each letter gi belongs to

a group Gαi and is not the identity element of Gαi , and adjacent letters gi and gi+1

belong to different groups Gα , that is, αi ≠ αi+1 . Words satisfying these conditions

are called reduced , the idea being that unreduced words can always be simplified to

reduced words by writing adjacent letters that lie in the same Gαi as a single letter and

by canceling trivial letters. The empty word is allowed, and will be the identity element

of ∗αGα . The group operation in ∗αGα is juxtaposition, (g1 ···gm)(h1 ···hn) =

g1 ···gmh1 ···hn . This product may not be reduced, however: If gm and h1 belong

to the same Gα , they should be combined into a single letter (gmh1) according to the

multiplication in Gα , and if this new letter gmh1 happens to be the identity of Gα , it

should be canceled from the product. This may allow gm−1 and h2 to be combined,

and possibly canceled too. Repetition of this process eventually produces a reduced

word. For example, in the product (g1 ···gm)(g
−1
m ···g

−1
1 ) everything cancels and

we get the identity element of ∗αGα , the empty word.

Verifying directly that this multiplication is associative would be rather tedious,

but there is an indirect approach that avoids most of the work. Let W be the set of

reduced words g1 ···gm as above, including the empty word. To each g ∈ Gα we

associate the function Lg :W→W given by multiplication on the left, Lg(g1 ···gm) =

gg1 ···gm where we combine g with g1 if g1 ∈ Gα to make gg1 ···gm a reduced

word. A key property of the association g֏ Lg is the formula Lgg′ = LgLg′ for

g,g′ ∈ Gα , that is, g(g′(g1 ···gm)) = (gg
′)(g1 ···gm) . This special case of asso-

ciativity follows rather trivially from associativity in Gα . The formula Lgg′ = LgLg′

implies that Lg is invertible with inverse Lg−1 . Therefore the association g֏ Lg de-

fines a homomorphism from Gα to the group P(W) of all permutations of W . More

generally, we can define L :W→P(W) by L(g1 ···gm) = Lg1
···Lgm for each reduced

word g1 ···gm . This function L is injective since the permutation L(g1 ···gm) sends

the empty word to g1 ···gm . The product operation in W corresponds under L to
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composition in P(W) , because of the relation Lgg′ = LgLg′ . Since composition in

P(W) is associative, we conclude that the product in W is associative.

In particular, we have the free product Z ∗ Z as described earlier. This is an

example of a free group, the free product of any number of copies of Z , finite or

infinite. The elements of a free group are uniquely representable as reduced words in

powers of generators for the various copies of Z , with one generator for each Z , just

as in the case of Z∗Z . These generators are called a basis for the free group, and the

number of basis elements is the rank of the free group. The abelianization of a free

group is a free abelian group with basis the same set of generators, so since the rank

of a free abelian group is well-defined, independent of the choice of basis, the same

is true for the rank of a free group.

An interesting example of a free product that is not a free group is Z2 ∗ Z2 . This

is like Z∗Z but simpler since a2
= e = b2 , so powers of a and b are not needed, and

Z2∗Z2 consists of just the alternating words in a and b : a , b , ab , ba , aba , bab ,

abab , baba , ababa, ··· , together with the empty word. The structure of Z2 ∗ Z2

can be elucidated by looking at the homomorphism ϕ :Z2 ∗ Z2→Z2 associating to

each word its length mod 2. Obviously ϕ is surjective, and its kernel consists of the

words of even length. These form an infinite cyclic subgroup generated by ab since

ba = (ab)−1 in Z2 ∗ Z2 . In fact, Z2 ∗ Z2 is the semi-direct product of the subgroups

Z and Z2 generated by ab and a , with the conjugation relation a(ab)a−1
= (ab)−1 .

This group is sometimes called the infinite dihedral group.

For a general free product ∗αGα , each group Gα is naturally identified with a

subgroup of ∗αGα , the subgroup consisting of the empty word and the nonidentity

one-letter words g ∈ Gα . From this viewpoint the empty word is the common iden-

tity element of all the subgroups Gα , which are otherwise disjoint. A consequence

of associativity is that any product g1 ···gm of elements gi in the groups Gα has a

unique reduced form, the element of ∗αGα obtained by performing the multiplica-

tions in any order. Any sequence of reduction operations on an unreduced product

g1 ···gm , combining adjacent letters gi and gi+1 that lie in the same Gα or canceling

a gi that is the identity, can be viewed as a way of inserting parentheses into g1 ···gm
and performing the resulting sequence of multiplications. Thus associativity implies

that any two sequences of reduction operations performed on the same unreduced

word always yield the same reduced word.

A basic property of the free product ∗αGα is that any collection of homomor-

phisms ϕα :Gα→H extends uniquely to a homomorphism ϕ :∗αGα→H . Namely,

the value of ϕ on a word g1 ···gn with gi ∈ Gαi must be ϕα1
(g1) ···ϕαn(gn) , and

using this formula to define ϕ gives a well-defined homomorphism since the process

of reducing an unreduced product in ∗αGα does not affect its image under ϕ . For

example, for a free product G∗H the inclusions G֓G×H and H֓G×H induce

a surjective homomorphism G ∗H→G×H .
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The van Kampen Theorem

Suppose a space X is decomposed as the union of a collection of path-connected

open subsets Aα , each of which contains the basepoint x0 ∈ X . By the remarks in the

preceding paragraph, the homomorphisms jα :π1(Aα)→π1(X) induced by the inclu-

sions Aα֓ X extend to a homomorphism Φ :∗απ1(Aα)→π1(X) . The van Kampen

theorem will say that Φ is very often surjective, but we can expect Φ to have a nontriv-

ial kernel in general. For if iαβ :π1(Aα∩Aβ)→π1(Aα) is the homomorphism induced

by the inclusion Aα ∩ Aβ֓ Aα then jαiαβ = jβiβα , both these compositions being

induced by the inclusion Aα ∩Aβ֓ X , so the kernel of Φ contains all the elements

of the form iαβ(ω)iβα(ω)
−1 for ω ∈ π1(Aα ∩ Aβ) . Van Kampen’s theorem asserts

that under fairly broad hypotheses this gives a full description of Φ :

Theorem 1.20. If X is the union of path-connected open sets Aα each containing

the basepoint x0 ∈ X and if each intersection Aα ∩ Aβ is path-connected, then the

homomorphism Φ :∗απ1(Aα)→π1(X) is surjective. If in addition each intersection

Aα ∩ Aβ ∩ Aγ is path-connected, then the kernel of Φ is the normal subgroup N

generated by all elements of the form iαβ(ω)iβα(ω)
−1 for ω ∈ π1(Aα ∩ Aβ) , and

hence Φ induces an isomorphism π1(X) ≈ ∗απ1(Aα)/N .

Example 1.21: Wedge Sums. In Chapter 0 we defined the wedge sum
∨
αXα of a

collection of spaces Xα with basepoints xα ∈ Xα to be the quotient space of the

disjoint union
∐
αXα in which all the basepoints xα are identified to a single point.

If each xα is a deformation retract of an open neighborhood Uα in Xα , then Xα is

a deformation retract of its open neighborhood Aα = Xα
∨
β≠αUβ . The intersection

of two or more distinct Aα ’s is
∨
αUα , which deformation retracts to a point. Van

Kampen’s theorem then implies that Φ :∗απ1(Xα)→π1(
∨
αXα) is an isomorphism,

assuming that each Xα is path-connected, hence also each Aα .

Thus for a wedge sum
∨
αS

1
α of circles, π1(

∨
αS

1
α) is a free group, the free product

of copies of Z , one for each circle S1
α . In particular, π1(S

1
∨S1) is the free group Z∗Z ,

as in the example at the beginning of this section.

It is true more generally that the fundamental group of any connected graph is

free, as we show in §1.A. Here is an example illustrating the general technique.

Example 1.22. Let X be the graph shown in the figure, consist-

ing of the twelve edges of a cube. The seven heavily shaded edges

form a maximal tree T ⊂ X , a contractible subgraph containing all

the vertices of X . We claim that π1(X) is the free product of five

copies of Z , one for each edge not in T . To deduce this from van

Kampen’s theorem, choose for each edge eα of X − T an open neighborhood Aα of

T ∪ eα in X that deformation retracts onto T ∪ eα . The intersection of two or more

Aα ’s deformation retracts onto T , hence is contractible. The Aα ’s form a cover of



44 Chapter 1 The Fundamental Group

X satisfying the hypotheses of van Kampen’s theorem, and since the intersection of

any two of them is simply-connected we obtain an isomorphism π1(X) ≈ ∗απ1(Aα) .

Each Aα deformation retracts onto a circle, so π1(X) is free on five generators, as

claimed. As explicit generators we can choose for each edge eα of X − T a loop fα
that starts at a basepoint in T , travels in T to one end of eα , then across eα , then

back to the basepoint along a path in T .

Van Kampen’s theorem is often applied when there are just two sets Aα and Aβ in

the cover of X , so the condition on triple intersections Aα∩Aβ∩Aγ is superfluous and

one obtains an isomorphism π1(X) ≈
(
π1(Aα) ∗ π1(Aβ)

)
/N , under the assumption

that Aα ∩ Aβ is path-connected. The proof in this special case is virtually identical

with the proof in the general case, however.

One can see that the intersections Aα ∩ Aβ need to be path-connected by con-

sidering the example of S1 decomposed as the union of two open arcs. In this case

Φ is not surjective. For an example showing that triple intersections Aα ∩ Aβ ∩ Aγ
need to be path-connected, let X be the suspension of three points a , b , c , and let

Aα, Aβ , and Aγ be the complements of these three points. The theo-

rem does apply to the covering {Aα, Aβ} , so there are isomorphisms

π1(X) ≈ π1(Aα) ∗ π1(Aβ) ≈ Z ∗ Z since Aα ∩ Aβ is contractible.

If we tried to use the covering {Aα, Aβ, Aγ} , which has each of the

twofold intersections path-connected but not the triple intersection, then we would

get π1(X) ≈ Z ∗ Z ∗ Z , but this is not isomorphic to Z ∗ Z since it has a different

abelianization.

Proof of van Kampen’s theorem: We have already proved the first part of the theorem

concerning surjectivity of Φ in Lemma 1.15. To prove the harder part of the theorem,

that the kernel of Φ is N , we first introduce some terminology. By a factorization of

an element [f ] ∈ π1(X) we shall mean a formal product [f1] ··· [fk] where:

Each fi is a loop in some Aα at the basepoint x0 , and [fi] ∈ π1(Aα) is the

homotopy class of fi .

The loop f is homotopic to f1 ··· fk in X .

A factorization of [f ] is thus a word in ∗απ1(Aα) , possibly unreduced, that is

mapped to [f ] by Φ . Surjectivity of Φ is equivalent to saying that every [f ] ∈ π1(X)

has a factorization.

We will be concerned with the uniqueness of factorizations. Call two factoriza-

tions of [f ] equivalent if they are related by a sequence of the following two sorts of

moves or their inverses:

Combine adjacent terms [fi][fi+1] into a single term [fi fi+1] if [fi] and [fi+1]

lie in the same group π1(Aα) .

Regard the term [fi] ∈ π1(Aα) as lying in the group π1(Aβ) rather than π1(Aα)

if fi is a loop in Aα ∩Aβ .
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The first move does not change the element of ∗απ1(Aα) defined by the factorization.

The second move does not change the image of this element in the quotient group

Q = ∗απ1(Aα)/N , by the definition of N . So equivalent factorizations give the same

element of Q .

If we can show that any two factorizations of [f ] are equivalent, this will say that

the map Q→π1(X) induced by Φ is injective, hence the kernel of Φ is exactly N , and

the proof will be complete.

Let [f1] ··· [fk] and [f ′1] ··· [f
′
ℓ] be two factorizations of [f ] . The composed

paths f1 ··· fk and f ′1 ··· f ′ℓ are then homotopic, so let F : I×I→X be a homo-

topy from f1 ··· fk to f ′1 ··· f ′ℓ . There exist partitions 0 = s0 < s1 < ··· < sm = 1

and 0 = t0 < t1 < ··· < tn = 1 such that each rectangle Rij = [si−1, si]×[tj−1, tj]

is mapped by F into a single Aα , which we label Aij . These partitions may be ob-

tained by covering I×I by finitely many rectangles [a, b]×[c, d] each mapping to a

single Aα , using a compactness argument, then partitioning I×I by the union of all

the horizontal and vertical lines containing edges of these rectangles. We may assume

the s partition subdivides the partitions giving the products

f1 ··· fk and f ′1 ··· f ′ℓ . Since F maps a neighborhood

of Rij to Aij , we may perturb the vertical sides of the rect-

angles Rij so that each point of I×I lies in at most three

Rij ’s. We may assume there are at least three rows of rect-

angles, so we can do this perturbation just on the rectangles

in the intermediate rows, leaving the top and bottom rows unchanged. Let us relabel

the new rectangles R1, R2, ··· , Rmn , ordering them as in the figure.

If γ is a path in I×I from the left edge to the right edge, then the restriction F ||γ

is a loop at the basepoint x0 since F maps both the left and right edges of I×I to x0 .

Let γr be the path separating the first r rectangles R1, ··· , Rr from the remaining

rectangles. Thus γ0 is the bottom edge of I×I and γmn is the top edge. We pass

from γr to γr+1 by pushing across the rectangle Rr+1 .

Let us call the corners of the Rr ’s vertices. For each vertex v with F(v) ≠ x0

we can choose a path gv from x0 to F(v) that lies in the intersection of the two

or three Aij ’s corresponding to the Rr ’s containing v , since we assume the inter-

section of any two or three Aij ’s is path-connected. Then we obtain a factorization

of [F ||γr ] by inserting the appropriate paths gvgv into F ||γr at successive vertices,

as in the proof of surjectivity of Φ in Lemma 1.15. This factorization depends on

certain choices, since the loop corresponding to a segment between two successive

vertices can lie in two different Aij ’s when there are two different rectangles Rij con-

taining this edge. Different choices of these Aij ’s change the factorization of [F ||γr ]

to an equivalent factorization, however. Furthermore, the factorizations associated

to successive paths γr and γr+1 are equivalent since pushing γr across Rr+1 to γr+1

changes F ||γr to F ||γr+1 by a homotopy within the Aij corresponding to Rr+1 , and
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we can choose this Aij for all the segments of γr and γr+1 in Rr+1 .

We can arrange that the factorization associated to γ0 is equivalent to the factor-

ization [f1] ··· [fk] by choosing the path gv for each vertex v along the lower edge

of I×I to lie not just in the two Aij ’s corresponding to the Rs ’s containing v , but also

to lie in the Aα for the fi containing v in its domain. In case v is the common end-

point of the domains of two consecutive fi ’s we have F(v) = x0 , so there is no need

to choose a gv for such v ’s. In similar fashion we may assume that the factorization

associated to the final γmn is equivalent to [f ′1] ··· [f
′
ℓ] . Since the factorizations as-

sociated to all the γr ’s are equivalent, we conclude that the factorizations [f1] ··· [fk]

and [f ′1] ··· [f
′
ℓ] are equivalent. ⊔⊓

Example 1.23: Linking of Circles. We can apply van Kampen’s theorem to calculate

the fundamental groups of three spaces discussed in the introduction to this chapter,

the complements in R3 of a single circle, two unlinked circles, and two linked circles.

The complement R3
−A of a single circle A

deformation retracts onto a wedge sum S1
∨S2

embedded in R3
−A as shown in the first of the

two figures at the right. It may be easier to see

that R3
−A deformation retracts onto the union

of S2 with a diameter, as in the second figure,

where points outside S2 deformation retract onto S2 , and points inside S2 and not in

A can be pushed away from A toward S2 or the diameter. Having this deformation

retraction in mind, one can then see how it must be modified if the two endpoints

of the diameter are gradually moved toward each other along the equator until they

coincide, forming the S1 summand of S1
∨S2 . Another way of seeing the deformation

retraction of R3
− A onto S1

∨ S2 is to note first that an open ε neighborhood of

S1
∨ S2 obviously deformation retracts onto S1

∨ S2 if ε is sufficiently small. Then

observe that this neighborhood is homeomorphic to R
3
− A by a homeomorphism

that is the identity on S1
∨ S2 . In fact, the neighborhood can be gradually enlarged

by homeomorphisms until it becomes all of R3
−A .

In any event, once we see that R3
− A deformation retracts to S1

∨ S2 , then we

immediately obtain isomorphisms π1(R
3
−A) ≈ π1(S

1
∨ S2) ≈ Z since π1(S

2) = 0.

In similar fashion, the complement R3
− (A ∪ B)

of two unlinked circles A and B deformation retracts

onto S1
∨S1

∨S2
∨S2 , as in the figure to the right. From

this we get π1

(
R

3
− (A ∪ B)

)
≈

Z ∗ Z . On the other hand, if A

and B are linked, then R
3
− (A ∪ B) deformation retracts onto

the wedge sum of S2 and a torus S1
×S1 separating A and B ,

as shown in the figure to the left, hence π1

(
R

3
− (A ∪ B)

)
≈

π1(S
1
×S1) ≈ Z×Z .
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Example 1.24: Torus Knots. For relatively prime positive integers m and n , the

torus knot K = Km,n ⊂ R
3 is the image of the embedding f :S1→S1

×S1
⊂ R

3 ,

f(z) = (zm, zn) , where the torus S1
×S1 is embedded in R

3 in the standard way.

The knot K winds around the torus a total of m

times in the longitudinal direction and n times in

the meridional direction, as shown in the figure for

the cases (m,n) = (2,3) and (3,4) . One needs to

assume that m and n are relatively prime in order

for the map f to be injective. Without this assumption f would be d–to–1 where

d is the greatest common divisor of m and n , and the image of f would be the

knot Km/d,n/d . One could also allow negative values for m or n , but this would only

change K to a mirror-image knot.

Let us compute π1(R
3
−K) . It is slightly easier to do the calculation with R3 re-

placed by its one-point compactification S3 . An application of van Kampen’s theorem

shows that this does not affect π1 . Namely, write S3
−K as the union of R3

−K and

an open ball B formed by the compactification point together with the complement of

a large closed ball in R3 containing K . Both B and B∩(R3
−K) are simply-connected,

the latter space being homeomorphic to S2
×R . Hence van Kampen’s theorem implies

that the inclusion R3
−K֓ S3

−K induces an isomorphism on π1 .

We compute π1(S
3
−K) by showing that it deformation retracts onto a 2 dimen-

sional complex X = Xm,n homeomorphic to the quotient space of a cylinder S1
×I

under the identifications (z,0) ∼ (e2πi/mz,0) and (z,1) ∼ (e2πi/nz,1) . If we let Xm
and Xn be the two halves of X formed by the quotients of S1

×[0, 1/2] and S1
×[1/2,1],

then Xm and Xn are the mapping cylinders of z֏zm and z֏zn . The intersection

Xm ∩ Xn is the circle S1
×{1/2}, the domain end of each mapping cylinder.

To obtain an embedding of X in S3
− K as a deformation retract we will use the

standard decomposition of S3 into two solid tori S1
×D2 and D2

×S1 , the result of

regarding S3 as ∂D4
= ∂(D2

×D2) = ∂D2
×D2

∪ D2
×∂D2 . Geometrically, the first

solid torus S1
×D2 can be identified with the compact region in R

3 bounded by the

standard torus S1
×S1 containing K , and the second solid torus D2

×S1 is then the

closure of the complement of the first solid torus, together with the compactification

point at infinity. Notice that meridional circles in S1
×S1 bound disks in the first solid

torus, while it is longitudinal circles that bound disks in the second solid torus.

In the first solid torus, K intersects each of the meridian

circles {x}×∂D2 in m equally spaced points, as indicated in

the figure at the right, which shows a meridian disk {x}×D2 .

These m points can be separated by a union of m radial line

segments. Letting x vary, these radial segments then trace out

a copy of the mapping cylinder Xm in the first solid torus. Sym-

metrically, there is a copy of the other mapping cylinder Xn in the second solid torus.
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The complement of K in the first solid torus deformation retracts onto Xm by flowing

within each meridian disk as shown. In similar fashion the complement of K in the

second solid torus deformation retracts onto Xn . These two deformation retractions

do not agree on their common domain of definition S1
×S1

− K , but this is easy to

correct by distorting the flows in the two solid tori so that in S1
×S1

− K both flows

are orthogonal to K . After this modification we now have a well-defined deformation

retraction of S3
− K onto X . Another way of describing the situation would be to

say that for an open ε neighborhood N of K bounded by a torus T , the complement

S3
−N is the mapping cylinder of a map T→X .

To compute π1(X) we apply van Kampen’s theorem to the decomposition of X

as the union of Xm and Xn , or more properly, open neighborhoods of these two

sets that deformation retract onto them. Both Xm and Xn are mapping cylinders

that deformation retract onto circles, and Xm ∩ Xn is a circle, so all three of these

spaces have fundamental group Z . A loop in Xm ∩ Xn representing a generator of

π1(Xm∩Xn) is homotopic in Xm to a loop representing m times a generator, and in

Xn to a loop representing n times a generator. Van Kampen’s theorem then says that

π1(X) is the quotient of the free group on generators a and b obtained by factoring

out the normal subgroup generated by the element amb−n .

Let us denote by Gm,n this group π1(Xm,n) defined by two generators a and

b and one relation am = bn . If m or n is 1, then Gm,n is infinite cyclic since in

these cases the relation just expresses one generator as a power of the other. To

describe the structure of Gm,n when m,n > 1 let us first compute the center of

Gm,n , the subgroup consisting of elements that commute with all elements of Gm,n .

The element am = bn commutes with a and b , so the cyclic subgroup C generated

by this element lies in the center. In particular, C is a normal subgroup, so we can

pass to the quotient group Gm,n/C , which is the free product Zm ∗ Zn . According

to Exercise 1 at the end of this section, a free product of nontrivial groups has trivial

center. From this it follows that C is exactly the center of Gm,n . As we will see in

Example 1.44, the elements a and b have infinite order in Gm,n , so C is infinite cyclic,

but we will not need this fact here.

We will show now that the integers m and n are uniquely determined by the

group Zm ∗ Zn , hence also by Gm,n . The abelianization of Zm ∗ Zn is Zm×Zn , of

order mn , so the product mn is uniquely determined by Zm ∗ Zn . To determine m

and n individually, we use another assertion from Exercise 1 at the end of the section,

that all torsion elements of Zm∗Zn are conjugate to elements of one of the subgroups

Zm and Zn , hence have order dividing m or n . Thus the maximum order of torsion

elements of Zm ∗ Zn is the larger of m and n . The larger of these two numbers is

therefore uniquely determined by the group Zm∗Zn , hence also the smaller since the

product is uniquely determined.

The preceding analysis of π1(Xm,n) did not need the assumption that m and n
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are relatively prime, which was used only to relate Xm,n to torus knots. An interesting

fact is that Xm,n can be embedded in R
3 only when m and n are relatively prime.

This is shown in the remarks following Corollary 3.46. For example, X2,2 is the Klein

bottle since it is the union of two copies of the Möbius band X2 with their boundary

circles identified, so this nonembeddability statement generalizes the fact that the

Klein bottle cannot be embedded in R3 .

An algorithm for computing a presentation for π1(R
3
−K) for an arbitrary smooth

or piecewise linear knot K is described in the exercises, but the problem of determin-

ing when two of these fundamental groups are isomorphic is generally much more

difficult than in the special case of torus knots.

Example 1.25: The Shrinking Wedge of Circles. Consider the sub-

space X ⊂ R2 that is the union of the circles Cn of radius 1/n and

center (1/n,0) for n = 1,2, ··· . At first glance one might confuse

X with the wedge sum of an infinite sequence of circles, but we will

show that X has a much larger fundamental group than the wedge

sum. Consider the retractions rn :X→Cn collapsing all Ci ’s except Cn to the origin.

Each rn induces a surjection ρn :π1(X)→π1(Cn) ≈ Z , where we take the origin as

the basepoint. The product of the ρn ’s is a homomorphism ρ :π1(X)→
∏
∞Z to the

direct product (not the direct sum) of infinitely many copies of Z , and ρ is surjective

since for every sequence of integers kn we can construct a loop f : I→X that wraps

kn times around Cn in the time interval [1− 1/n,1−
1/n+1]. This infinite composition

of loops is certainly continuous at each time less than 1, and it is continuous at time

1 since every neighborhood of the basepoint in X contains all but finitely many of the

circles Cn . Since π1(X) maps onto the uncountable group
∏
∞Z , it is uncountable.

On the other hand, the fundamental group of a wedge sum of countably many circles

is countably generated, hence countable.

The group π1(X) is actually far more complicated than
∏
∞Z . For one thing,

it is nonabelian, since the retraction X→C1 ∪ ··· ∪ Cn that collapses all the circles

smaller than Cn to the basepoint induces a surjection from π1(X) to a free group on

n generators. For a complete description of π1(X) see [Cannon & Conner 2000].

It is a theorem of [Shelah 1988] that for a path-connected, locally path-connected

compact metric space X , π1(X) is either finitely generated or uncountable.

Applications to Cell Complexes

For the remainder of this section we shall be interested in cell complexes, and in

particular in how the fundamental group is affected by attaching 2 cells.

Suppose we attach a collection of 2 cells e2
α to a path-connected space X via maps

ϕα :S1→X , producing a space Y . If s0 is a basepoint of S1 then ϕα determines a loop

at ϕα(s0) that we shall call ϕα , even though technically loops are maps I→X rather

than S1→X . For different α ’s the basepoints ϕα(s0) of these loops ϕα may not all
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coincide. To remedy this, choose a basepoint x0 ∈ X and a path γα in X from x0 to

ϕα(s0) for each α . Then γαϕαγα is a loop at x0 . This loop may not be nullhomotopic

in X , but it will certainly be nullhomotopic after the cell e2
α is attached. Thus the

normal subgroup N ⊂ π1(X,x0) generated by all the loops γαϕαγα for varying α

lies in the kernel of the map π1(X,x0)→π1(Y ,x0) induced by the inclusion X֓ Y .

Proposition 1.26. (a) If Y is obtained from X by attaching 2 cells as described

above, then the inclusion X֓ Y induces a surjection π1(X,x0)→π1(Y ,x0) whose

kernel is N . Thus π1(Y ) ≈ π1(X)/N .

(b) If Y is obtained from X by attaching n cells for a fixed n > 2 , then the inclusion

X֓ Y induces an isomorphism π1(X,x0) ≈ π1(Y ,x0) .

(c) For a path-connected cell complex X the inclusion of the 2 skeleton X2֓ X in-

duces an isomorphism π1(X
2, x0) ≈ π1(X,x0) .

It follows from (a) that N is independent of the choice of the paths γα , but

this can also be seen directly: If we replace γα by another path ηα having the same

endpoints, then γαϕαγα changes to ηαϕαηα = (ηαγα)γαϕαγα(γαηα) , so γαϕαγα
and ηαϕαηα define conjugate elements of π1(X,x0) .

Proof: (a) Let us expand Y to a slightly larger space Z that deformation retracts

onto Y and is more convenient for applying van Kampen’s theorem. The space Z

is obtained from Y by attaching rectangular strips Sα = I×I , with the lower edge

I×{0} attached along γα , the right edge

{1}×I attached along an arc that starts

at ϕα(s0) and goes radially into e2
α , and

all the left edges {0}×I of the differ-

ent strips identified together. The top

edges of the strips are not attached to

anything, and this allows us to deformation retract Z onto Y .

In each cell e2
α choose a point yα not in the arc along which Sα is attached. Let

A = Z −
⋃
α{yα} and let B = Z − X . Then A deformation retracts onto X , and B is

contractible. Since π1(B) = 0, van Kampen’s theorem applied to the cover {A,B} says

that π1(Z) is isomorphic to the quotient of π1(A) by the normal subgroup generated

by the image of the map π1(A ∩ B)→π1(A) . More specifically, choose a basepoint

z0 ∈ A ∩ B near x0 on the segment where all the strips Sα intersect, and choose

loops δα in A∩B based at z0 representing the elements of π1(A, z0) corresponding

to [γαϕαγα] ∈ π1(A,x0) under the basepoint-change isomorphism βh for h the line

segment connecting z0 to x0 in the intersection of the Sα ’s. To finish the proof of

part (a) we just need to check that π1(A ∩ B, z0) is generated by the loops δα . This

can be done by another application of van Kampen’s theorem, this time to the cover

of A∩B by the open sets Aα = A∩B −
⋃
β≠α e

2
β . Since Aα deformation retracts onto

a circle in e2
α − {yα} , we have π1(Aα, z0) ≈ Z generated by δα .
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The proof of (b) follows the same plan with cells enα instead of e2
α . The only

difference is that Aα deformation retracts onto a sphere Sn−1 so π1(Aa) = 0 if n > 2

by Proposition 1.14. Hence π1(A∩ B) = 0 and the result follows.

Part (c) follows from (b) by induction when X is finite-dimensional, so X = Xn

for some n . When X is not finite-dimensional we argue as follows. Let f : I→X be

a loop at the basepoint x0 ∈ X
2 . This has compact image, which must lie in Xn for

some n by Proposition A.1 in the Appendix. Part (b) then implies that f is homotopic

to a loop in X2 . Thus π1(X
2, x0)→π1(X,x0) is surjective. To see that it is also

injective, suppose that f is a loop in X2 which is nullhomotopic in X via a homotopy

F : I×I→X . This has compact image lying in some Xn , and we can assume n > 2.

Since π1(X
2, x0)→π1(X

n, x0) is injective by (b), we conclude that f is nullhomotopic

in X2 . ⊔⊓

As a first application we compute the fundamental group of the orientable surface

Mg of genus g . This has a cell structure with one 0 cell, 2g 1 cells, and one 2 cell, as

we saw in Chapter 0. The 1 skeleton is a wedge sum of 2g circles, with fundamental

group free on 2g generators. The 2 cell is attached along the loop given by the

product of the commutators of these generators, say [a1, b1] ··· [ag, bg] . Therefore

π1(Mg) ≈
〈
a1, b1, ··· , ag, bg |||| [a1, b1] ··· [ag, bg]

〉

where
〈
gα |||| rβ

〉
denotes the group with generators gα and relators rβ , in other

words, the free group on the generators gα modulo the normal subgroup generated

by the words rβ in these generators.

Corollary 1.27. The surface Mg is not homeomorphic, or even homotopy equivalent,

to Mh if g ≠ h .

Proof: The abelianization of π1(Mg) is the direct sum of 2g copies of Z . So if

Mg ≃ Mh then π1(Mg) ≈ π1(Mh) , hence the abelianizations of these groups are iso-

morphic, which implies g = h . ⊔⊓

Nonorientable surfaces can be treated in the same way. If we attach a 2 cell to the

wedge sum of g circles by the word a2
1 ···a

2
g we obtain a nonorientable surface Ng .

For example, N1 is the projective plane RP2 , the quotient of D2 with antipodal points

of ∂D2 identified, and N2 is the Klein bottle, though the more usual representation

of the Klein bottle is as a square with opposite sides identified via the word aba−1b .
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If one cuts the square along a diagonal and reassembles the resulting two triangles

as shown in the figure, one obtains the other representation as a square with sides

identified via the word a2c2 . By the proposition, π1(Ng) ≈
〈
a1, ··· , ag |||| a

2
1 ···a

2
g

〉
.

This abelianizes to the direct sum of Z2 with g − 1 copies of Z since in the abelian-

ization we can rechoose the generators to be a1, ··· , ag−1 and a1 + ··· + ag , with

2(a1 + ··· + ag) = 0. Hence Ng is not homotopy equivalent to Nh if g ≠ h , nor is

Ng homotopy equivalent to any orientable surface Mh .

Here is another application of the preceding proposition:

Corollary 1.28. For every group G there is a 2 dimensional cell complex XG with

π1(XG) ≈ G .

Proof: Choose a presentation G =
〈
gα |||| rβ

〉
. This exists since every group is a

quotient of a free group, so the gα ’s can be taken to be the generators of this free

group with the rβ ’s generators of the kernel of the map from the free group to G .

Now construct XG from
∨
αS

1
α by attaching 2 cells e2

β by the loops specified by the

words rβ . ⊔⊓

Example 1.29. If G =
〈
a |||| a

n 〉
= Zn then XG is S1 with a cell e2 attached by the map

z֏ zn , thinking of S1 as the unit circle in C . When n = 2 we get XG = RP2 , but for

n > 2 the space XG is not a surface since there are n ‘sheets’ of e2 attached at each

point of the circle S1
⊂ XG . For example, when n = 3 one can construct a neighbor-

hood N of S1 in XG by taking the product of the

graph with the interval I , and then identifying

the two ends of this product via a one-third twist as

shown in the figure. The boundary of N consists

of a single circle, formed by the three endpoints of

each cross section of N . To complete the construction of XG from N one attaches

a disk along the boundary circle of N . This cannot be done in R
3 , though it can in

R
4 . For n = 4 one would use the graph instead of , with a one-quarter twist

instead of a one-third twist. For larger n one would use an n pointed ‘asterisk’ and

a 1/n twist.

Exercises

1. Show that the free product G∗H of nontrivial groups G and H has trivial center,

and that the only elements of G∗H of finite order are the conjugates of finite-order

elements of G and H .

2. Let X ⊂ Rm be the union of convex open sets X1, ··· , Xn such that Xi∩Xj∩Xk ≠∅

for all i, j, k . Show that X is simply-connected.
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3. Show that the complement of a finite set of points in R
n is simply-connected if

n ≥ 3.

4. Let X ⊂ R3 be the union of n lines through the origin. Compute π1(R
3
− X) .

5. Let X ⊂ R2 be a connected graph that is the union of a finite number of straight

line segments. Show that π1(X) is free with a basis consisting of loops formed by

the boundaries of the bounded complementary regions of X , joined to a basepoint by

suitably chosen paths in X . [Assume the Jordan curve theorem for polygonal simple

closed curves, which is equivalent to the case that X is homeomorphic to S1 .]

6. Use Proposition 1.26 to show that the complement of a closed discrete subspace

of Rn is simply-connected if n ≥ 3.

7. Let X be the quotient space of S2 obtained by identifying the north and south

poles to a single point. Put a cell complex structure on X and use this to compute

π1(X) .

8. Compute the fundamental group of the space obtained from two tori S1
×S1 by

identifying a circle S1
×{x0} in one torus with the corresponding circle S1

×{x0} in

the other torus.

9. In the surface Mg of genus g , let

C be a circle that separates Mg into

two compact subsurfaces M′h and M′k
obtained from the closed surfaces Mh
and Mk by deleting an open disk from

each. Show that M′h does not retract onto its boundary circle C , and hence Mg does

not retract onto C . [Hint: abelianize π1 .] But show that Mg does retract onto the

nonseparating circle C′ in the figure.

10. Consider two arcs α and β embedded in D2
×I as

shown in the figure. The loop γ is obviously nullhomotopic

in D2
×I , but show that there is no nullhomotopy of γ in

the complement of α∪ β .

11. The mapping torus Tf of a map f :X→X is the quotient of X×I obtained

by identifying each point (x,0) with (f (x),1) . In the case X = S1
∨ S1 with f

basepoint-preserving, compute a presentation for π1(Tf ) in terms of the induced

map f∗ :π1(X)→π1(X) . Do the same when X = S1
×S1 . [One way to do this is to

regard Tf as built from X ∨ S1 by attaching cells.]

12. The Klein bottle is usually pictured as a sub-

space of R3 like the subspace X ⊂ R
3 shown in

the first figure at the right. If one wanted a model

that could actually function as a bottle, one would

delete the open disk bounded by the circle of self-

intersection of X , producing a subspace Y ⊂ X . Show that π1(X) ≈ Z ∗ Z and that
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π1(Y ) has the presentation
〈
a,b, c |||| aba

−1b−1cbεc−1 〉 for ε = ±1. (Changing the

sign of ε gives an isomorphic group, as it happens.) Show also that π1(Y ) is isomor-

phic to π1(R
3
−Z) for Z the graph shown in the figure. The groups π1(X) and π1(Y )

are not isomorphic, but this is not easy to prove; see the discussion in Example 1B.13.

13. The space Y in the preceding exercise can be obtained from a disk with two holes

by identifying its three boundary circles. There are only two essentially different ways

of identifying the three boundary circles. Show that the other way yields a space Z

with π1(Z) not isomorphic to π1(Y ) . [Abelianize the fundamental groups to show

they are not isomorphic.]

14. Consider the quotient space of a cube I3 obtained by identifying each square

face with the opposite square face via the right-handed screw motion consisting of

a translation by one unit in the direction perpendicular to the face combined with a

one-quarter twist of the face about its center point. Show this quotient space X is a

cell complex with two 0 cells, four 1 cells, three 2 cells, and one 3 cell. Using this

structure, show that π1(X) is the quaternion group {±1,±i,±j,±k} , of order eight.

15. Given a space X with basepoint x0 ∈ X , we may construct a CW complex L(X)

having a single 0 cell, a 1 cell e1
γ for each loop γ in X based at x0 , and a 2 cell e2

τ

for each map τ of a standard triangle PQR into X taking the three vertices P , Q ,

and R of the triangle to x0 . The 2 cell e2
τ is attached to the three 1 cells that are the

loops obtained by restricting τ to the three oriented edges PQ , PR , and QR . Show

that the natural map L(X)→X induces an isomorphism π1

(
L(X)

)
≈ π1(X,x0) .

16. Show that the fundamental group of the surface of infinite genus shown below is

free on an infinite number of generators.

17. Show that π1(R
2
−Q

2) is uncountable.

18. In this problem we use the notions of suspension, reduced suspension, cone, and

mapping cone defined in Chapter 0. Let X be the subspace of R consisting of the

sequence 1, 1/2,
1/3,

1/4, ··· together with its limit point 0.

(a) For the suspension SX , show that π1(SX) is free on a countably infinite set of

generators, and deduce that π1(SX) is countable. In contrast to this, the reduced

suspension ΣX , obtained from SX by collapsing the segment {0}×I to a point, is

the shrinking wedge of circles in Example 1.25, with an uncountable fundamental

group.

(b) Let C be the mapping cone of the quotient map SX→ΣX . Show that π1(C) is un-

countable by constructing a homomorphism from π1(C) onto
∏
∞Z/

⊕
∞Z . Note
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that C is the reduced suspension of the cone CX . Thus the reduced suspension

of a contractible space need not be contractible, unlike the unreduced suspension.

19. Show that the subspace of R3 that is the union of the spheres of radius 1/n and

center (1/n,0,0) for n = 1,2, ··· is simply-connected.

20. Let X be the subspace of R2 that is the union of the circles Cn of radius n and

center (n,0) for n = 1,2, ··· . Show that π1(X) is the free group ∗nπ1(Cn) , the same

as for the infinite wedge sum
∨
∞S

1 . Show that X and
∨
∞S

1 are in fact homotopy

equivalent, but not homeomorphic.

21. Show that the join X ∗ Y of two nonempty spaces X and Y is simply-connected

if X is path-connected.

22. In this exercise we describe an algorithm for computing a presentation of the

fundamental group of the complement of a smooth or piecewise linear knot K in R3 ,

called the Wirtinger presentation. To begin, we position the knot to lie almost flat on

a table, so that K consists of finitely many disjoint arcs αi where it intersects the

table top together with finitely many disjoint arcs βℓ where K crosses over itself.

The configuration at such a crossing is shown in the first figure below. We build a

2 dimensional complex X that is a deformation retract of R3
− K by the following

three steps. First, start with the rectangle T formed by the table top. Next, just above

each arc αi place a long, thin rectangular strip Ri , curved to run parallel to αi along

the full length of αi and arched so that the two long edges of Ri are identified with

points of T , as in the second figure. Any arcs βℓ that cross over αi are positioned

to lie in Ri . Finally, over each arc βℓ put a square Sℓ , bent downward along its four

edges so that these edges are identified with points of three strips Ri , Rj , and Rk as

in the third figure; namely, two opposite edges of Sℓ are identified with short edges

of Rj and Rk and the other two opposite edges of Sℓ are identified with two arcs

crossing the interior of Ri . The knot K is now a subspace of X , but after we lift K up

slightly into the complement of X , it becomes evident that X is a deformation retract

of R3
−K .

(a) Assuming this bit of geometry, show that π1(R
3
−K) has a presentation with one

generator xi for each strip Ri and one relation of the form xixjx
−1
i = xk for

each square Sℓ , where the indices are as in the figures above. [To get the correct

signs it is helpful to use an orientation of K .]

(b) Use this presentation to show that the abelianization of π1(R
3
− K) is Z .
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We come now to the second main topic of this chapter, covering spaces. We

have already encountered these briefly in our calculation of π1(S
1) which used the

example of the projection R→S1 of a helix onto a circle. As we will see, covering

spaces can be used to calculate fundamental groups of other spaces as well. But the

connection between the fundamental group and covering spaces runs much deeper

than this, and in many ways they can be regarded as two viewpoints toward the same

thing. Algebraic aspects of the fundamental group can often be translated into the

geometric language of covering spaces. This is exemplified in one of the main results

in this section, an exact correspondence between connected covering spaces of a given

space X and subgroups of π1(X) . This is strikingly reminiscent of Galois theory, with

its correspondence between field extensions and subgroups of the Galois group.

Let us recall the definition. A covering space of a space X is a space X̃ together

with a map p : X̃→X satisfying the following condition: Each point x ∈ X has an

open neighborhood U in X such that p−1(U) is a union of disjoint open sets in X̃ ,

each of which is mapped homeomorphically onto U by p . Such a U is called evenly

covered and the disjoint open sets in X̃ that project homeomorphically to U by p

are called sheets of X̃ over U . If U is connected these sheets are the connected

components of p−1(U) so in this case they are uniquely determined by U , but when

U is not connected the decomposition of p−1(U) into sheets may not be unique. We

allow p−1(U) to be empty, the union of an empty collection of sheets over U , so p

need not be surjective. The number of sheets over U is the cardinality of p−1(x) for

x ∈ U . As x varies over X this number is locally constant, so it is constant if X is

connected.

An example related to the helix example is the helicoid surface S ⊂ R3 consisting

of points of the form (s cos 2πt, s sin 2πt, t) for (s, t) ∈ (0,∞)×R . This projects

onto R2
− {0} via the map (x,y, z)֏ (x,y) , and this projection defines a covering

space p :S→R
2
−{0} since each point of R2

−{0} is contained in an open disk U in

R
2
−{0} with p−1(U) consisting of countably many disjoint open disks in S projecting

homeomorphically onto U .

Another example is the map p :S1→S1 , p(z) = zn where we

view z as a complex number with |z| = 1 and n is any positive

integer. The closest one can come to realizing this covering space

as a linear projection in 3 space analogous to the projection of the

helix is to draw a circle wrapping around a cylinder n times and

intersecting itself in n − 1 points that one has to imagine are not

really intersections. For an alternative picture without this defect,

embed S1 in the boundary torus of a solid torus S1
×D2 so that it winds n times
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monotonically around the S1 factor without self-intersections, then restrict the pro-

jection S1
×D2→S1

×{0} to this embedded circle. The figure for Example 1.29 in the

preceding section illustrates the case n = 3.

These n sheeted covering spaces S1→S1 for n ≥ 1 together with the infinite-

sheeted helix example exhaust all the connected coverings spaces of S1 , as our general

theory will show. There are many other disconnected covering spaces of S1 , such as

n disjoint circles each mapped homeomorphically onto S1 , but these disconnected

covering spaces are just disjoint unions of connected ones. We will usually restrict

our attention to connected covering spaces as these contain most of the interesting

features of covering spaces.

The covering spaces of S1
∨S1 form a remarkably rich family illustrating most of

the general theory very concretely, so let us look at a few of these covering spaces to

get an idea of what is going on. To abbreviate notation, set X = S1
∨ S1 . We view this

as a graph with one vertex and two edges. We label the edges

a and b and we choose orientations for a and b . Now let X̃

be any other graph with four ends of edges at each vertex, as

in X , and suppose each edge of X̃ has been assigned a label a or b and an orientation

in such a way that the local picture near each vertex is the same as in X , so there is an

a edge end oriented toward the vertex, an a edge end oriented away from the vertex,

a b edge end oriented toward the vertex, and a b edge end oriented away from the

vertex. To give a name to this structure, let us call X̃ a 2 oriented graph.

The table on the next page shows just a small sample of the infinite variety of

possible examples.

Given a 2 oriented graph X̃ we can construct a map p : X̃→X sending all vertices

of X̃ to the vertex of X and sending each edge of X̃ to the edge of X with the same

label by a map that is a homeomorphism on the interior of the edge and preserves

orientation. It is clear that the covering space condition is satisfied for p . Conversely,

every covering space of X is a graph that inherits a 2 orientation from X .

As the reader will discover by experimentation, it seems that every graph having

four edge ends at each vertex can be 2 oriented. This can be proved for finite graphs as

follows. A very classical and easily shown fact is that every finite connected graph with

an even number of edge ends at each vertex has an Eulerian circuit, a loop traversing

each edge exactly once. If there are four edge ends at each vertex, then labeling the

edges of an Eulerian circuit alternately a and b produces a labeling with two a edge

ends and two b edge ends at each vertex. The union of the a edges is then a collection

of disjoint circles, as is the union of the b edges. Choosing orientations for all these

circles gives a 2 orientation. It is a theorem in graph theory that infinite graphs with

four edge ends at each vertex can also be 2 oriented; see Chapter 13 of [König 1990]

for a proof. There is also a generalization to n oriented graphs, which are covering

spaces of the wedge sum of n circles.
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A simply-connected covering space of X = S1
∨ S1 can be constructed in the

following way. Start with the open intervals (−1,1) in

the coordinate axes of R2 . Next, for a fixed number

λ , 0 < λ < 1/2, for example λ = 1/3, adjoin four open

segments of length 2λ , at distance λ from the ends of

the previous segments and perpendicular to them, the

new shorter segments being bisected by the older ones.

For the third stage, add perpendicular open segments of

length 2λ2 at distance λ2 from the endpoints of all the

previous segments and bisected by them. The process

is now repeated indefinitely, at the nth stage adding open segments of length 2λn−1 at

distance λn−1 from all the previous endpoints. The union of all these open segments

is a graph, with vertices the intersection points of horizontal and vertical segments,

and edges the subsegments between adjacent vertices. We label all the horizontal

edges a , oriented to the right, and all the vertical edges b , oriented upward.

This covering space is called the universal cover of X because, as our general

theory will show, it is a covering space of every other connected covering space of X .

The covering spaces (1)–(14) in the table are all nonsimply-connected. Their fun-

damental groups are free with bases represented by the loops specified by the listed

words in a and b , starting at the basepoint x̃0 indicated by the heavily shaded ver-

tex. This can be proved in each case by applying van Kampen’s theorem. One can

also interpret the list of words as generators of the image subgroup p∗
(
π1(X̃, x̃0)

)

in π1(X,x0) =
〈
a,b

〉
. A general fact we shall prove about covering spaces is that

the induced map p∗ :π1(X̃, x̃0)→π1(X,x0) is always injective. Thus we have the at-

first-glance paradoxical fact that the free group on two generators can contain as a

subgroup a free group on any finite number of generators, or even on a countably

infinite set of generators as in examples (10) and (11).

Changing the basepoint vertex changes the subgroup p∗
(
π1(X̃, x̃0)

)
to a conju-

gate subgroup in π1(X,x0) . The conjugating element of π1(X,x0) is represented by

any loop that is the projection of a path in X̃ joining one basepoint to the other. For

example, the covering spaces (3) and (4) differ only in the choice of basepoints, and

the corresponding subgroups of π1(X,x0) differ by conjugation by b .

The main classification theorem for covering spaces says that by associating the

subgroup p∗
(
π1(X̃, x̃0)

)
to the covering space p : X̃→X , we obtain a one-to-one

correspondence between all the different connected covering spaces of X and the

conjugacy classes of subgroups of π1(X,x0) . If one keeps track of the basepoint

vertex x̃0 ∈ X̃ , then this is a one-to-one correspondence between covering spaces

p : (X̃, x̃0)→(X,x0) and actual subgroups of π1(X,x0) , not just conjugacy classes.

Of course, for these statements to make sense one has to have a precise notion of

when two covering spaces are the same, or ‘isomorphic’. In the case at hand, an iso-
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morphism between covering spaces of X is just a graph isomorphism that preserves

the labeling and orientations of edges. Thus the covering spaces in (3) and (4) are

isomorphic, but not by an isomorphism preserving basepoints, so the two subgroups

of π1(X,x0) corresponding to these covering spaces are distinct but conjugate. On

the other hand, the two covering spaces in (5) and (6) are not isomorphic, though the

graphs are homeomorphic, so the corresponding subgroups of π1(X,x0) are isomor-

phic but not conjugate.

Some of the covering spaces (1)–(14) are more symmetric than others, where by

a ‘symmetry’ we mean an automorphism of the graph preserving the labeling and

orientations. The most symmetric covering spaces are those having symmetries taking

any one vertex onto any other. The examples (1), (2), (5)–(8), and (11) are the ones with

this property. We shall see that a covering space of X has maximal symmetry exactly

when the corresponding subgroup of π1(X,x0) is a normal subgroup, and in this case

the symmetries form a group isomorphic to the quotient group of π1(X,x0) by the

normal subgroup. Since every group generated by two elements is a quotient group

of Z∗ Z , this implies that every two-generator group is the symmetry group of some

covering space of X .

Lifting Properties

Covering spaces are defined in fairly geometric terms, as maps p : X̃→X that are

local homeomorphisms in a rather strong sense. But from the viewpoint of algebraic

topology, the distinctive feature of covering spaces is their behavior with respect to

lifting of maps. Recall the terminology from the proof of Theorem 1.7: A lift of a map

f :Y→X is a map f̃ :Y→X̃ such that pf̃ = f . We will describe three special lifting

properties of covering spaces and derive a few applications of these.

First we have the homotopy lifting property, also known as the covering homo-

topy property:

Proposition 1.30. Given a covering space p : X̃→X , a homotopy ft :Y→X , and a

map f̃0 :Y→X̃ lifting f0 , then there exists a unique homotopy f̃t :Y→X̃ of f̃0 that

lifts ft .

Proof: This was proved as property (c) in the proof of Theorem 1.7. ⊔⊓

Taking Y to be a point gives the path lifting property for a covering space

p : X̃→X , which says that for each path f : I→X and each lift x̃0 of the starting

point f(0) = x0 there is a unique path f̃ : I→X̃ lifting f starting at x̃0 . In particular,

the uniqueness of lifts implies that every lift of a constant path is constant, but this

could be deduced more simply from the fact that p−1(x0) has the discrete topology,

by the definition of a covering space.
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Taking Y to be I , we see that every homotopy ft of a path f0 in X lifts to a

homotopy f̃t of each lift f̃0 of f0 . The lifted homotopy f̃t is a homotopy of paths,

fixing the endpoints, since as t varies each endpoint of f̃t traces out a path lifting a

constant path, which must therefore be constant.

Here is a simple application:

Proposition 1.31. The map p∗ :π1(X̃, x̃0)→π1(X,x0) induced by a covering space

p : (X̃, x̃0)→(X,x0) is injective. The image subgroup p∗
(
π1(X̃, x̃0)

)
in π1(X,x0)

consists of the homotopy classes of loops in X based at x0 whose lifts to X̃ starting

at x̃0 are loops.

Proof: An element of the kernel of p∗ is represented by a loop f̃0 : I→X̃ with a

homotopy ft : I→X of f0 = pf̃0 to the trivial loop f1 . By the remarks preceding the

proposition, there is a lifted homotopy of loops f̃t starting with f̃0 and ending with

a constant loop. Hence [f̃0] = 0 in π1(X̃, x̃0) and p∗ is injective.

For the second statement of the proposition, loops at x0 lifting to loops at x̃0

certainly represent elements of the image of p∗ :π1(X̃, x̃0)→π1(X,x0) . Conversely,

a loop representing an element of the image of p∗ is homotopic to a loop having such

a lift, so by homotopy lifting, the loop itself must have such a lift. ⊔⊓

Proposition 1.32. The number of sheets of a covering space p : (X̃, x̃0)→(X,x0)

with X and X̃ path-connected equals the index of p∗
(
π1(X̃, x̃0)

)
in π1(X,x0) .

Proof: For a loop g in X based at x0 , let g̃ be its lift to X̃ starting at x̃0 . A product

h g with [h] ∈ H = p∗
(
π1(X̃, x̃0)

)
has the lift h̃ g̃ ending at the same point as g̃

since h̃ is a loop. Thus we may define a function Φ from cosets H[g] to p−1(x0)

by sending H[g] to g̃(1) . The path-connectedness of X̃ implies that Φ is surjective

since x̃0 can be joined to any point in p−1(x0) by a path g̃ projecting to a loop g at

x0 . To see that Φ is injective, observe that Φ(H[g1]) = Φ(H[g2]) implies that g1 g2

lifts to a loop in X̃ based at x̃0 , so [g1][g2]
−1
∈ H and hence H[g1] = H[g2] . ⊔⊓

It is important also to know about the existence and uniqueness of lifts of general

maps, not just lifts of homotopies. For the existence question an answer is provided

by the following lifting criterion:

Proposition 1.33. Suppose given a covering space p : (X̃, x̃0)→(X,x0) and a map

f : (Y ,y0)→(X,x0) with Y path-connected and locally path-connected. Then a lift

f̃ : (Y ,y0)→(X̃, x̃0) of f exists iff f∗
(
π1(Y ,y0)

)
⊂ p∗

(
π1(X̃, x̃0)

)
.

When we say a space has a certain property locally, such as being locally path-

connected, we usually mean that each point has arbitrarily small open neighborhoods

with this property. Thus for Y to be locally path-connected means that for each point
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y ∈ Y and each neighborhood U of y there is an open neighborhood V ⊂ U of y

that is path-connected.

Proof: The ‘only if’ statement is obvious since f∗ = p∗f̃∗ . For the converse, let

y ∈ Y and let γ be a path in Y from y0 to y . The path fγ in X starting at x0

has a unique lift f̃ γ starting at x̃0 . Define f̃ (y) = f̃ γ(1) . To show this is well-

defined, independent of the choice of γ , let γ′ be another path from y0 to y . Then

(fγ′) (fγ) is a loop h0 at x0 with [h0] ∈ f∗
(
π1(Y ,y0)

)
⊂ p∗

(
π1(X̃, x̃0)

)
. This

means there is a homotopy ht of h0 to a loop h1 that lifts to a

loop h̃1 in X̃ based at x̃0 . Apply the covering homotopy

property to ht to get a lifting h̃t . Since h̃1 is a loop at

x̃0 , so is h̃0 . By the uniqueness of lifted paths,

the first half of h̃0 is f̃ γ′ and the second

half is f̃ γ traversed backwards, with

the common midpoint f̃ γ(1) =

f̃ γ′(1) . This shows that f̃ is

well-defined.

To see that f̃ is continuous, let U ⊂ X be an open neighborhood of f(y) having

a lift Ũ ⊂ X̃ containing f̃ (y) such that p : Ũ→U is a homeomorphism. Choose a

path-connected open neighborhood V of y with f(V) ⊂ U . For paths from y0 to

points y ′ ∈ V we can take a fixed path γ from y0 to y followed by paths η in

V from y to the points y ′ . Then the paths (fγ) (fη) in X have lifts (f̃γ) (f̃η)

where f̃ η = p−1fη and p−1 :U→Ũ is the inverse of p : Ũ→U . Thus f̃ (V) ⊂ Ũ and

f̃ |V = p−1f , hence f̃ is continuous at y . ⊔⊓

Without the local path-connectedness assumption on Y the lifting criterion in the

preceding proposition can fail, as shown by an example in Exercise 7 at the end of this

section.

Next we have the unique lifting property:

Proposition 1.34. Given a covering space p : X̃→X and a map f :Y→X , if two lifts

f̃1, f̃2 :Y→X̃ of f agree at one point of Y and Y is connected, then f̃1 and f̃2 agree

on all of Y .

Proof: For a point y ∈ Y , let U be an evenly covered open neighborhood of f(y)

in X , so p−1(U) is decomposed into disjoint sheets each mapped homeomorphically

onto U by p . Let Ũ1 and Ũ2 be the sheets containing f̃1(y) and f̃2(y) , respectively.

By continuity of f̃1 and f̃2 there is a neighborhood N of y mapped into Ũ1 by f̃1

and into Ũ2 by f̃2 . If f̃1(y) ≠ f̃2(y) then Ũ1 ≠ Ũ2 , hence Ũ1 and Ũ2 are disjoint and

f̃1 ≠ f̃2 throughout the neighborhood N . On the other hand, if f̃1(y) = f̃2(y) then

Ũ1 = Ũ2 so f̃1 = f̃2 on N since pf̃1 = pf̃2 and p is injective on Ũ1 = Ũ2 . Thus the

set of points where f̃1 and f̃2 agree is both open and closed in Y . ⊔⊓
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The Classification of Covering Spaces

We consider next the problem of classifying all the different covering spaces of

a fixed space X . Since the whole chapter is about paths, it should not be surprising

that we will restrict attention to spaces X that are at least locally path-connected.

Path-components of X are then the same as components, and for the purpose of clas-

sifying the covering spaces of X there is no loss in assuming that X is connected,

or equivalently, path-connected. Local path-connectedness is inherited by covering

spaces, so connected covering spaces of X are the same as path-connected covering

spaces. The main thrust of the classification will be a correspondence between con-

nected covering spaces of X and subgroups of π1(X) . This is often called the Galois

correspondence because of its surprising similarity to another basic correspondence

in the purely algebraic subject of Galois theory. We will also describe a different

method of classification that includes disconnected covering spaces as well.

The Galois correspondence arises from the function that assigns to each covering

space p : (X̃, x̃0)→(X,x0) the subgroup p∗
(
π1(X̃, x̃0)

)
of π1(X,x0) . First we con-

sider whether this function is surjective. That is, we ask whether every subgroup of

π1(X,x0) is realized as p∗
(
π1(X̃, x̃0)

)
for some covering space p : (X̃, x̃0)→(X,x0) .

In particular we can ask whether the trivial subgroup is realized. Since p∗ is always

injective, this amounts to asking whether X has a simply-connected covering space.

Answering this will take some work.

A necessary condition for X to have a simply-connected covering space is the

following: Each point x ∈ X has a neighborhood U such that the inclusion-induced

map π1(U,x)→π1(X,x) is trivial; one says X is semilocally simply-connected if

this holds. To see the necessity of this condition, suppose p : X̃→X is a covering

space with X̃ simply-connected. Every point x ∈ X has a neighborhood U having a

lift Ũ ⊂ X̃ projecting homeomorphically to U by p . Each loop in U lifts to a loop

in Ũ , and the lifted loop is nullhomotopic in X̃ since π1(X̃) = 0. So, composing this

nullhomotopy with p , the original loop in U is nullhomotopic in X .

A locally simply-connected space is certainly semilocally simply-connected. For

example, CW complexes have the much stronger property of being locally contractible,

as we show in the Appendix. An example of a space that is not semilocally simply-

connected is the shrinking wedge of circles, the subspace X ⊂ R2 consisting of the

circles of radius 1/n centered at the point (1/n,0) for n = 1,2, ··· , introduced in Exam-

ple 1.25. On the other hand, if we take the cone CX = (X×I)/(X×{0}) on the shrink-

ing wedge of circles, this is semilocally simply-connected since it is contractible, but

it is not locally simply-connected.

We shall now show how to construct a simply-connected covering space of X if

X is path-connected, locally path-connected, and semilocally simply-connected. To

motivate the construction, suppose p : (X̃, x̃0)→(X,x0) is a simply-connected cover-

ing space. Each point x̃ ∈ X̃ can then be joined to x̃0 by a unique homotopy class of
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paths, by Proposition 1.6, so we can view points of X̃ as homotopy classes of paths

starting at x̃0 . The advantage of this is that, by the homotopy lifting property, homo-

topy classes of paths in X̃ starting at x̃0 are the same as homotopy classes of paths

in X starting at x0 . This gives a way of describing X̃ purely in terms of X .

Given a path-connected, locally path-connected, semilocally simply-connected

space X with a basepoint x0 ∈ X , we are therefore led to define

X̃ =
{
[γ] |||| γ is a path in X starting at x0

}

where, as usual, [γ] denotes the homotopy class of γ with respect to homotopies

that fix the endpoints γ(0) and γ(1) . The function p : X̃→X sending [γ] to γ(1) is

then well-defined. Since X is path-connected, the endpoint γ(1) can be any point of

X , so p is surjective.

Before we define a topology on X̃ we make a few preliminary observations. Let

U be the collection of path-connected open sets U ⊂ X such that π1(U)→π1(X) is

trivial. Note that if the map π1(U)→π1(X) is trivial for one choice of basepoint in U ,

it is trivial for all choices of basepoint since U is path-connected. A path-connected

open subset V ⊂ U ∈ U is also in U since the composition π1(V)→π1(U)→π1(X)

will also be trivial. It follows that U is a basis for the topology on X if X is locally

path-connected and semilocally simply-connected.

Given a set U ∈ U and a path γ in X from x0 to a point in U , let

U[γ] =
{
[γ η] |||| η is a path in U with η(0) = γ(1)

}

As the notation indicates, U[γ] depends only on the homotopy class [γ] . Observe

that p :U[γ]→U is surjective since U is path-connected and injective since differ-

ent choices of η joining γ(1) to a fixed x ∈ U are all homotopic in X , the map

π1(U)→π1(X) being trivial. Another property is

(∗)

U[γ] = U[γ′] if [γ′] ∈ U[γ] . For if γ′ = γ η then elements of U[γ′] have the

form [γ η µ] and hence lie in U[γ] , while elements of U[γ] have the form

[γ µ] = [γ η η µ] = [γ′ η µ] and hence lie in U[γ′] .

This can be used to show that the sets U[γ] form a basis for a topology on X̃ . For if

we are given two such sets U[γ] , V[γ′] and an element [γ′′] ∈ U[γ] ∩ V[γ′] , we have

U[γ] = U[γ′′] and V[γ′] = V[γ′′] by (∗) . So if W ∈ U is contained in U∩V and contains

γ′′(1) then W[γ′′] ⊂ U[γ′′] ∩ V[γ′′] and [γ′′] ∈ W[γ′′] .

The bijection p :U[γ]→U is a homeomorphism since it gives a bijection between

the subsets V[γ′] ⊂ U[γ] and the sets V ∈ U contained in U . Namely, in one direction

we have p(V[γ′]) = V and in the other direction we have p−1(V) ∩ U[γ] = V[γ′] for

any [γ′] ∈ U[γ] with endpoint in V , since V[γ′] ⊂ U[γ′] = U[γ] and V[γ′] maps onto V

by the bijection p .

The preceding paragraph implies that p : X̃→X is continuous. We can also de-

duce that this is a covering space since for fixed U ∈ U , the sets U[γ] for varying [γ]

partition p−1(U) because if [γ′′] ∈ U[γ] ∩U[γ′] then U[γ] = U[γ′′] = U[γ′] by (∗) .
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It remains only to show that X̃ is simply-connected. For a point [γ] ∈ X̃ let γt
be the path in X that equals γ on [0, t] and is stationary at γ(t) on [t,1] . Then the

function t֏ [γt] is a path in X̃ lifting γ that starts at [x0] , the homotopy class of

the constant path at x0 , and ends at [γ] . Since [γ] was an arbitrary point in X̃ , this

shows that X̃ is path-connected. To show that π1(X̃, [x0]) = 0 it suffices to show

that the image of this group under p∗ is trivial since p∗ is injective. Elements in the

image of p∗ are represented by loops γ at x0 that lift to loops in X̃ at [x0] . We have

observed that the path t֏ [γt] lifts γ starting at [x0] , and for this lifted path to

be a loop means that [γ1] = [x0] . Since γ1 = γ , this says that [γ] = [x0] , so γ is

nullhomotopic and the image of p∗ is trivial.

This completes the construction of a simply-connected covering space X̃→X .

In concrete cases one usually constructs a simply-connected covering space by

more direct methods. For example, suppose X is the union of subspaces A and B for

which simply-connected covering spaces Ã→A and B̃→B are already known. Then

one can attempt to build a simply-connected covering space X̃→X by assembling

copies of Ã and B̃ . For example, for X = S1
∨ S1 , if we take A and B to be the two

circles, then Ã and B̃ are each R , and we can build the simply-connected cover X̃

described earlier in this section by glueing together infinitely many copies of Ã and

B̃ , the horizontal and vertical lines in X̃ . Here is another illustration of this method:

Example 1.35. For integers m,n ≥ 2, let Xm,n be the quotient space of a cylinder

S1
×I under the identifications (z,0) ∼ (e2πi/mz,0) and (z,1) ∼ (e2πi/nz,1) . Let

A ⊂ X and B ⊂ X be the quotients of S1
×[0, 1/2] and S1

×[1/2,1], so A and B are

the mapping cylinders of z֏ zm and z֏ zn , with A∩ B = S1 . The simplest case

is m = n = 2, when A and B are Möbius bands and X2,2 is the Klein bottle. We

encountered the complexes Xm,n previously in analyzing torus knot complements in

Example 1.24.

The figure for Example 1.29 at the end of the preceding section

shows what A looks like in the typical case m = 3. We have π1(A) ≈ Z ,

and the universal cover Ã is homeomorphic to a product Cm×R where

Cm is the graph that is a cone on m points, as shown in the figure to

the right. The situation for B is similar, and B̃ is homeomorphic to

Cn×R . Now we attempt to build the universal cover X̃m,n from copies

of Ã and B̃ . Start with a copy of Ã . Its boundary, the outer edges of

its fins, consists of m copies of R . Along each of these m boundary

lines we attach a copy of B̃ . Each of these copies of B̃ has one of its boundary lines

attached to the initial copy of Ã , leaving n− 1 boundary lines free, and we attach a

new copy of Ã to each of these free boundary lines. Thus we now have m(n− 1)+ 1

copies of Ã . Each of the newly attached copies of Ã has m − 1 free boundary lines,

and to each of these lines we attach a new copy of B̃ . The process is now repeated ad
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infinitum in the evident way. Let X̃m,n be the resulting space.

The product structures Ã = Cm×R and B̃ = Cn×R

give X̃m,n the structure of a product Tm,n×R where Tm,n
is an infinite graph constructed by an inductive scheme

just like the construction of X̃m,n . Thus Tm,n is the union

of a sequence of finite subgraphs, each obtained from the

preceding by attaching new copies of Cm or Cn . Each

of these finite subgraphs deformation retracts onto the

preceding one. The infinite concatenation of these defor-

mation retractions, with the kth graph deformation retracting to the previous one

during the time interval [1/2k,1/2k−1] , gives a deformation retraction of Tm,n onto

the initial stage Cm . Since Cm is contractible, this means Tm,n is contractible, hence

also X̃m,n , which is the product Tm,n×R . In particular, X̃m,n is simply-connected.

The map that projects each copy of Ã in X̃m,n to A and

each copy of B̃ to B is a covering space. To define this map

precisely, choose a point x0 ∈ S
1 , and then the image of the

line segment {x0}× I in Xm,n meets A in a line segment whose

preimage in Ã consists of an infinite number of line segments,

appearing in the earlier figure as the horizontal segments spi-

raling around the central vertical axis. The picture in B̃ is

similar, and when we glue together all the copies of Ã and B̃

to form X̃m,n , we do so in such a way that these horizontal segments always line up

exactly. This decomposes X̃m,n into infinitely many rectangles, each formed from a

rectangle in an Ã and a rectangle in a B̃ . The covering projection X̃m,n→Xm,n is the

quotient map that identifies all these rectangles.

Now we return to the general theory. The hypotheses for constructing a simply-

connected covering space of X in fact suffice for constructing covering spaces realiz-

ing arbitrary subgroups of π1(X) :

Proposition 1.36. Suppose X is path-connected, locally path-connected, and semilo-

cally simply-connected. Then for every subgroup H ⊂ π1(X,x0) there is a covering

space p :XH→X such that p∗
(
π1(XH , x̃0)

)
= H for a suitably chosen basepoint

x̃0 ∈ XH .

Proof: For points [γ] , [γ′] in the simply-connected covering space X̃ constructed

above, define [γ] ∼ [γ′] to mean γ(1) = γ′(1) and [γ γ′] ∈ H . It is easy to see that

this is an equivalence relation since H is a subgroup: it is reflexive since H contains

the identity element, symmetric since H is closed under inverses, and transitive since

H is closed under multiplication. Let XH be the quotient space of X̃ obtained by

identifying [γ] with [γ′] if [γ] ∼ [γ′] . Note that if γ(1) = γ′(1) , then [γ] ∼ [γ′]

iff [γ η] ∼ [γ′ η] . This means that if any two points in basic neighborhoods U[γ]
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and U[γ′] are identified in XH then the whole neighborhoods are identified. Hence

the natural projection XH→X induced by [γ]֏ γ(1) is a covering space.

If we choose for the basepoint x̃0 ∈ XH the equivalence class of the constant path

c at x0 , then the image of p∗ :π1(XH , x̃0)→π1(X,x0) is exactly H . This is because

for a loop γ in X based at x0 , its lift to X̃ starting at [c] ends at [γ] , so the image

of this lifted path in XH is a loop iff [γ] ∼ [c] , or equivalently, [γ] ∈ H . ⊔⊓

Having taken care of the existence of covering spaces of X corresponding to all

subgroups of π1(X) , we turn now to the question of uniqueness. More specifically,

we are interested in uniqueness up to isomorphism, where an isomorphism between

covering spaces p1 : X̃1→X and p2 : X̃2→X is a homeomorphism f : X̃1→X̃2 such

that p1 = p2f . This condition means exactly that f preserves the covering space

structures, taking p−1
1 (x) to p−1

2 (x) for each x ∈ X . The inverse f−1 is then also an

isomorphism, and the composition of two isomorphisms is an isomorphism, so we

have an equivalence relation.

Proposition 1.37. If X is path-connected and locally path-connected, then two path-

connected covering spaces p1 : X̃1→X and p2 : X̃2→X are isomorphic via an isomor-

phism f : X̃1→X̃2 taking a basepoint x̃1 ∈ p
−1
1 (x0) to a basepoint x̃2 ∈ p

−1
2 (x0) iff

p1∗

(
π1(X̃1, x̃1)

)
= p2∗

(
π1(X̃2, x̃2)

)
.

Proof: If there is an isomorphism f : (X̃1, x̃1)→(X̃2, x̃2) , then from the two relations

p1 = p2f and p2 = p1f
−1 it follows that p1∗

(
π1(X̃1, x̃1)

)
= p2∗

(
π1(X̃2, x̃2)

)
. Con-

versely, suppose that p1∗

(
π1(X̃1, x̃1)

)
= p2∗

(
π1(X̃2, x̃2)

)
. By the lifting criterion,

we may lift p1 to a map p̃1 : (X̃1, x̃1)→(X̃2, x̃2) with p2p̃1 = p1 . Symmetrically, we

obtain p̃2 : (X̃2, x̃2)→(X̃1, x̃1) with p1p̃2 = p2 . Then by the unique lifting property,

p̃1p̃2 = 11 and p̃2p̃1 = 11 since these composed lifts fix the basepoints. Thus p̃1 and

p̃2 are inverse isomorphisms. ⊔⊓

We have proved the first half of the following classification theorem:

Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally

simply-connected. Then there is a bijection between the set of basepoint-preserving

isomorphism classes of path-connected covering spaces p : (X̃, x̃0)→(X,x0) and the

set of subgroups of π1(X,x0) , obtained by associating the subgroup p∗
(
π1(X̃, x̃0)

)

to the covering space (X̃, x̃0) . If basepoints are ignored, this correspondence gives a

bijection between isomorphism classes of path-connected covering spaces p : X̃→X
and conjugacy classes of subgroups of π1(X,x0) .

Proof: It remains only to prove the last statement. We show that for a covering space

p : (X̃, x̃0)→(X,x0) , changing the basepoint x̃0 within p−1(x0) corresponds exactly

to changing p∗
(
π1(X̃, x̃0)

)
to a conjugate subgroup of π1(X,x0) . Suppose that x̃1

is another basepoint in p−1(x0) , and let γ̃ be a path from x̃0 to x̃1 . Then γ̃ projects
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to a loop γ in X representing some element g ∈ π1(X,x0) . Set Hi = p∗
(
π1(X̃, x̃i)

)

for i = 0,1. We have an inclusion g−1H0g ⊂ H1 since for f̃ a loop at x̃0 , γ̃ f̃ γ̃ is

a loop at x̃1 . Similarly we have gH1g
−1
⊂ H0 . Conjugating the latter relation by g−1

gives H1 ⊂ g
−1H0g , so g−1H0g = H1 . Thus, changing the basepoint from x̃0 to x̃1

changes H0 to the conjugate subgroup H1 = g
−1H0g .

Conversely, to change H0 to a conjugate subgroup H1 = g
−1H0g , choose a loop

γ representing g , lift this to a path γ̃ starting at x̃0 , and let x̃1 = γ̃(1) . The preceding

argument then shows that we have the desired relation H1 = g
−1H0g . ⊔⊓

A consequence of the lifting criterion is that a simply-connected covering space of

a path-connected, locally path-connected space X is a covering space of every other

path-connected covering space of X . A simply-connected covering space of X is

therefore called a universal cover. It is unique up to isomorphism, so one is justified

in calling it the universal cover.

More generally, there is a partial ordering on the various path-connected covering

spaces of X , according to which ones cover which others. This corresponds to the

partial ordering by inclusion of the corresponding subgroups of π1(X) , or conjugacy

classes of subgroups if basepoints are ignored.

Representing Covering Spaces by Permutations

We wish to describe now another way of classifying the different covering spaces

of a connected, locally path-connected, semilocally simply-connected space X , with-

out restricting just to connected covering spaces. To give the idea, con-

sider the 3 sheeted covering spaces of S1 . There are three of these,

X̃1 , X̃2 , and X̃3 , with the subscript indicating the number of compo-

nents. For each of these covering spaces p : X̃i→S
1 the three different

lifts of a loop in S1 generating π1(S
1, x0) determine a permutation of

p−1(x0) sending the starting point of the lift to the ending point of the

lift. For X̃1 this is a cyclic permutation, for X̃2 it is a transposition of

two points fixing the third point, and for X̃3 it is the identity permu-

tation. These permutations obviously determine the covering spaces

uniquely, up to isomorphism. The same would be true for n sheeted

covering spaces of S1 for arbitrary n , even for n infinite.

The covering spaces of S1
∨ S1 can be encoded using the same idea. Referring

back to the large table of examples near the beginning of this section, we see in the

covering space (1) that the loop a lifts to the identity permutation of the two vertices

and b lifts to the permutation that transposes the two vertices. In (2), both a and b

lift to transpositions of the two vertices. In (3) and (4), a and b lift to transpositions of

different pairs of the three vertices, while in (5) and (6) they lift to cyclic permutations

of the vertices. In (11) the vertices can be labeled by Z , with a lifting to the identity

permutation and b lifting to the shift n֏ n + 1. Indeed, one can see from these
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examples that a covering space of S1
∨ S1 is nothing more than an efficient graphical

representation of a pair of permutations of a given set.

This idea of lifting loops to permutations generalizes to arbitrary covering spaces.

For a covering space p : X̃→X , a path γ in X has a unique lift γ̃ starting at a given

point of p−1(γ(0)) , so we obtain a well-defined map Lγ :p−1(γ(0))→p−1(γ(1)) by

sending the starting point γ̃(0) of each lift γ̃ to its ending point γ̃(1) . It is evident

that Lγ is a bijection since Lγ is its inverse. For a composition of paths γ η we have

Lγ·η = LηLγ , rather than LγLη , since composition of paths is written from left to

right while composition of functions is written from right to left. To compensate for

this, let us modify the definition by replacing Lγ by its inverse. Thus the new Lγ is

a bijection p−1(γ(1))→p−1(γ(0)) , and Lγ·η = LγLη . Since Lγ depends only on the

homotopy class of γ , this means that if we restrict attention to loops at a basepoint

x0 ∈ X , then the association γ֏ Lγ gives a homomorphism from π1(X,x0) to the

group of permutations of p−1(x0) . This is called the action of π1(X,x0) on the fiber

p−1(x0) .

Let us see how the covering space p : X̃→X can be reconstructed from the associ-

ated action of π1(X,x0) on the fiber F = p−1(x0) , assuming that X is path-connected,

locally path-connected, and semilocally simply-connected, so it has a universal cover

X̃0→X . We can take the points of X̃0 to be homotopy classes of paths in X starting

at x0 , as in the general construction of a universal cover. Define a map h : X̃0×F→X̃
sending a pair ([γ], x̃0) to γ̃(1) where γ̃ is the lift of γ to X̃ starting at x̃0 . Then h

is continuous, and in fact a local homeomorphism, since a neighborhood of ([γ], x̃0)

in X̃0×F consists of the pairs ([γ η], x̃0) with η a path in a suitable neighborhood

of γ(1) . It is obvious that h is surjective since X is path-connected. If h were injec-

tive as well, it would be a homeomorphism, which is unlikely since X̃ is probably not

homeomorphic to X̃0×F . Even if h is not injective, it will induce a homeomorphism

from some quotient space of X̃0×F onto X̃ . To see what this quotient space is,

suppose h([γ], x̃0) = h([γ
′], x̃′0) . Then γ and γ′ are both

paths from x0 to the same endpoint, and from the figure

we see that x̃′0 = Lγ′·γ(x̃0) . Letting λ be the loop γ′ γ , this

means that h([γ], x̃0) = h([λ γ], Lλ(x̃0)) . Conversely, for

any loop λ we have h([γ], x̃0) = h([λ γ], Lλ(x̃0)) . Thus h

induces a well-defined map to X̃ from the quotient space of

X̃0×F obtained by identifying ([γ], x̃0) with ([λ γ], Lλ(x̃0))

for each [λ] ∈ π1(X,x0) . Let this quotient space be denoted X̃ρ where ρ is the ho-

momorphism from π1(X,x0) to the permutation group of F specified by the action.

Notice that the definition of X̃ρ makes sense whenever we are given an action ρ

of π1(X,x0) on a set F regarded as a space with the discrete topology. There is a

natural projection X̃ρ→X sending ([γ], x̃0) to γ(1) , and this is a covering space since

if U ⊂ X is an open set over which the universal cover X̃0 is a product U×π1(X,x0) ,
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then the identifications defining X̃ρ simply collapse U×π1(X,x0)×F to U×F .

Returning to our given covering space X̃→X with associated action ρ , the map

X̃ρ→X̃ induced by h is a bijection and therefore a homeomorphism since h was a

local homeomorphism. Since this homeomorphism X̃ρ→X̃ takes each fiber of X̃ρ to

the corresponding fiber of X̃ , it is an isomorphism of covering spaces.

If two covering spaces p1 : X̃1→X and p2 : X̃2→X are isomorphic, one may ask

how the corresponding actions of π1(X,x0) on the fibers F1 and F2 over x0 are

related. An isomorphism h : X̃1→X̃2 restricts to a bijection F1→F2 , and evidently

Lγ(h(x̃0)) = h(Lγ(x̃0)) . Using the less cumbersome notation γx̃0 for Lγ(x̃0) , this

relation can be written more concisely as γh(x̃0) = h(γx̃0) . A bijection F1→F2 with

this property is what one would naturally call an isomorphism of sets with π1(X,x0)

action. Thus isomorphic covering spaces have isomorphic actions on fibers. The

converse is also true, and easy to prove. One just observes that for isomorphic actions

ρ1 and ρ2 , an isomorphism h :F1→F2 induces a map X̃ρ1→X̃ρ2
and h−1 induces a

similar map in the opposite direction, such that the compositions of these two maps,

in either order, are the identity.

This shows that n sheeted covering spaces of X are classified by equivalence

classes of homomorphisms π1(X,x0)→Σn , where Σn is the symmetric group on n

symbols and the equivalence relation identifies a homomorphism ρ with each of its

conjugates h−1ρh by elements h ∈ Σn . The study of the various homomorphisms

from a given group to Σn is a very classical topic in group theory, so we see that this

algebraic question has a nice geometric interpretation.

Deck Transformations and Group Actions

For a covering space p : X̃→X the isomorphisms X̃→X̃ are called deck transfor-

mations or covering transformations. These form a group G(X̃) under composition.

For example, for the covering space p :R→S1 projecting a vertical helix onto a circle,

the deck transformations are the vertical translations taking the helix onto itself, so

G(X̃) ≈ Z in this case. For the n sheeted covering space S1→S1 , z֏ zn , the deck

transformations are the rotations of S1 through angles that are multiples of 2π/n ,

so G(X̃) = Zn .

By the unique lifting property, a deck transformation is completely determined

by where it sends a single point, assuming X̃ is path-connected. In particular, only

the identity deck transformation can fix a point of X̃ .

A covering space p : X̃→X is called normal if for each x ∈ X and each pair of lifts

x̃, x̃′ of x there is a deck transformation taking x̃ to x̃′. For example, the covering

space R→S1 and the n sheeted covering spaces S1→S1 are normal. Intuitively, a

normal covering space is one with maximal symmetry. This can be seen in the covering

spaces of S1
∨S1 shown in the table earlier in this section, where the normal covering
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spaces are (1), (2), (5)–(8), and (11). Note that in (7) the group of deck transformations

is Z4 while in (8) it is Z2×Z2 .

Sometimes normal covering spaces are called regular covering spaces. The term

‘normal’ is motivated by the following result.

Proposition 1.39. Let p : (X̃, x̃0)→(X,x0) be a path-connected covering space of

the path-connected, locally path-connected space X , and let H be the subgroup

p∗
(
π1(X̃, x̃0)

)
⊂ π1(X,x0) . Then :

(a) This covering space is normal iff H is a normal subgroup of π1(X,x0) .

(b) G(X̃) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of

H in π1(X,x0) .

In particular, G(X̃) is isomorphic to π1(X,x0)/H if X̃ is a normal covering. Hence

for the universal cover X̃→X we have G(X̃) ≈ π1(X) .

Proof: We observed earlier in the proof of the classification theorem that changing

the basepoint x̃0 ∈ p
−1(x0) to x̃1 ∈ p

−1(x0) corresponds precisely to conjugating

H by an element [γ] ∈ π1(X,x0) where γ lifts to a path γ̃ from x̃0 to x̃1 . Thus [γ]

is in the normalizer N(H) iff p∗
(
π1(X̃, x̃0)

)
= p∗

(
π1(X̃, x̃1)

)
, which by the lifting

criterion is equivalent to the existence of a deck transformation taking x̃0 to x̃1 .

Hence the covering space is normal iff N(H) = π1(X,x0) , that is, iff H is a normal

subgroup of π1(X,x0) .

Define ϕ :N(H)→G(X̃) sending [γ] to the deck transformation τ taking x̃0 to

x̃1 , in the notation above. Then ϕ is a homomorphism, for if γ′ is another loop corre-

sponding to the deck transformation τ′ taking x̃0 to x̃′1 then γ γ′ lifts to γ̃ (τ(γ̃′)) ,

a path from x̃0 to τ(x̃′1) = ττ
′(x̃0) , so ττ′ is the deck transformation corresponding

to [γ][γ′] . By the preceding paragraph ϕ is surjective. Its kernel consists of classes

[γ] lifting to loops in X̃ . These are exactly the elements of p∗
(
π1(X̃, x̃0)

)
= H . ⊔⊓

The group of deck transformations is a special case of the general notion of

‘groups acting on spaces’. Given a group G and a space Y , then an action of G

on Y is a homomorphism ρ from G to the group Homeo(Y ) of all homeomorphisms

from Y to itself. Thus to each g ∈ G is associated a homeomorphism ρ(g) :Y→Y ,

which for notational simplicity we write simply as g :Y→Y . For ρ to be a homo-

morphism amounts to requiring that g1(g2(y)) = (g1g2)(y) for all g1, g2 ∈ G and

y ∈ Y . If ρ is injective then it identifies G with a subgroup of Homeo(Y ) , and in

practice not much is lost in assuming ρ is an inclusion G֓Homeo(Y ) since in any

case the subgroup ρ(G) ⊂ Homeo(Y ) contains all the topological information about

the action.
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We shall be interested in actions satisfying the following condition:

(∗)
Each y ∈ Y has a neighborhood U such that all the images g(U) for varying

g ∈ G are disjoint. In other words, g1(U)∩ g2(U) ≠∅ implies g1 = g2 .

The action of the deck transformation group G(X̃) on X̃ satisfies (∗) . To see this,

let Ũ ⊂ X̃ project homeomorphically to U ⊂ X . If g1(Ũ) ∩ g2(Ũ) ≠ ∅ for some

g1, g2 ∈ G(X̃) , then g1(x̃1) = g2(x̃2) for some x̃1, x̃2 ∈ Ũ . Since x̃1 and x̃2 must lie

in the same set p−1(x) , which intersects Ũ in only one point, we must have x̃1 = x̃2 .

Then g−1
1 g2 fixes this point, so g−1

1 g2 = 11 and g1 = g2 .

Note that in (∗) it suffices to take g1 to be the identity since g1(U)∩g2(U) ≠∅

is equivalent to U ∩ g−1
1 g2(U) ≠ ∅ . Thus we have the equivalent condition that

U ∩ g(U) ≠∅ only when g is the identity.

Given an action of a group G on a space Y , we can form a space Y/G , the quotient

space of Y in which each point y is identified with all its images g(y) as g ranges

over G . The points of Y/G are thus the orbits Gy = {g(y) | g ∈ G } in Y , and

Y/G is called the orbit space of the action. For example, for a normal covering space

X̃→X , the orbit space X̃/G(X̃) is just X .

Proposition 1.40. If an action of a group G on a space Y satisfies (∗) , then :

(a) The quotient map p :Y→Y/G , p(y) = Gy , is a normal covering space.

(b) G is the group of deck transformations of this covering space Y→Y/G if Y is

path-connected.

(c) G is isomorphic to π1(Y/G)/p∗
(
π1(Y )

)
if Y is path-connected and locally path-

connected.

Proof: Given an open set U ⊂ Y as in condition (∗) , the quotient map p simply

identifies all the disjoint homeomorphic sets {g(U) | g ∈ G } to a single open set

p(U) in Y/G . By the definition of the quotient topology on Y/G , p restricts to

a homeomorphism from g(U) onto p(U) for each g ∈ G so we have a covering

space. Each element of G acts as a deck transformation, and the covering space is

normal since g2g
−1
1 takes g1(U) to g2(U) . The deck transformation group contains

G as a subgroup, and equals this subgroup if Y is path-connected, since if f is any

deck transformation, then for an arbitrarily chosen point y ∈ Y , y and f(y) are

in the same orbit and there is a g ∈ G with g(y) = f(y) , hence f = g since deck

transformations of a path-connected covering space are uniquely determined by where

they send a point. The final statement of the proposition is immediate from part (b)

of Proposition 1.39. ⊔⊓

In view of the preceding proposition, we shall call an action satisfying (∗) a

covering space action. This is not standard terminology, but there does not seem to

be a universally accepted name for actions satisfying (∗) . Sometimes these are called

‘properly discontinuous’ actions, but more often this rather unattractive term means
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something weaker: Every point x ∈ X has a neighborhood U such that U ∩ g(U)

is nonempty for only finitely many g ∈ G . Many symmetry groups have this proper

discontinuity property without satisfying (∗) , for example the group of symmetries

of the familiar tiling of R2 by regular hexagons. The reason why the action of this

group on R
2 fails to satisfy (∗) is that there are fixed points: points y for which

there is a nontrivial element g ∈ G with g(y) = y . For example, the vertices of the

hexagons are fixed by the 120 degree rotations about these points, and the midpoints

of edges are fixed by 180 degree rotations. An action without fixed points is called a

free action. Thus for a free action of G on Y , only the identity element of G fixes any

point of Y . This is equivalent to requiring that all the images g(y) of each y ∈ Y are

distinct, or in other words g1(y) = g2(y) only when g1 = g2 , since g1(y) = g2(y)

is equivalent to g−1
1 g2(y) = y . Though condition (∗) implies freeness, the converse

is not always true. An example is the action of Z on S1 in which a generator of Z acts

by rotation through an angle α that is an irrational multiple of 2π . In this case each

orbit Zy is dense in S1 , so condition (∗) cannot hold since it implies that orbits are

discrete subspaces. An exercise at the end of the section is to show that for actions

on Hausdorff spaces, freeness plus proper discontinuity implies condition (∗) . Note

that proper discontinuity is automatic for actions by a finite group.

Example 1.41. Let Y be the closed orientable surface of genus 11, an ‘11 hole torus’ as

shown in the figure. This has a 5 fold rotational symme-

try, generated by a rotation of angle 2π/5. Thus we have

the cyclic group Z5 acting on Y , and the condition (∗) is

obviously satisfied. The quotient space Y/Z5 is a surface

of genus 3, obtained from one of the five subsurfaces of

Y cut off by the circles C1, ··· , C5 by identifying its two

boundary circles Ci and Ci+1 to form the circle C as

shown. Thus we have a covering space M11→M3 where

Mg denotes the closed orientable surface of genus g .

In particular, we see that π1(M3) contains the ‘larger’

group π1(M11) as a normal subgroup of index 5, with

quotient Z5 . This example obviously generalizes by re-

placing the two holes in each ‘arm’ of M11 by m holes and the 5 fold symmetry by

n fold symmetry. This gives a covering space Mmn+1→Mm+1 . An exercise in §2.2 is

to show by an Euler characteristic argument that if there is a covering space Mg→Mh
then g =mn+ 1 and h =m+ 1 for some m and n .

As a special case of the final statement of the preceding proposition we see that

for a covering space action of a group G on a simply-connected locally path-connected

space Y , the orbit space Y/G has fundamental group isomorphic to G . Under this

isomorphism an element g ∈ G corresponds to a loop in Y/G that is the projection of
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a path in Y from a chosen basepoint y0 to g(y0) . Any two such paths are homotopic

since Y is simply-connected, so we get a well-defined element of π1(Y/G) associated

to g .

This method for computing fundamental groups via group actions on simply-

connected spaces is essentially how we computed π1(S
1) in §1.1, via the covering

space R→S1 arising from the action of Z on R by translations. This is a useful gen-

eral technique for computing fundamental groups, in fact. Here are some examples

illustrating this idea.

Example 1.42. Consider the grid in R
2 formed by the horizontal and vertical lines

through points in Z2 . Let us decorate this grid with arrows in either of the two ways

shown in the figure, the difference between the two

cases being that in the second case the horizontal

arrows in adjacent lines point in opposite direc-

tions. The group G consisting of all symmetries

of the first decorated grid is isomorphic to Z×Z

since it consists of all translations (x,y)֏ (x +m,y + n) for m,n ∈ Z . For the

second grid the symmetry group G contains a subgroup of translations of the form

(x,y)֏ (x +m,y + 2n) for m,n ∈ Z , but there are also glide-reflection symme-

tries consisting of vertical translation by an odd integer distance followed by reflection

across a vertical line, either a vertical line of the grid or a vertical line halfway between

two adjacent grid lines. For both decorated grids there are elements of G taking any

square to any other, but only the identity element of G takes a square to itself. The

minimum distance any point is moved by a nontrivial element of G is 1, which easily

implies the covering space condition (∗) . The orbit space R2/G is the quotient space

of a square in the grid with opposite edges identified according to the arrows. Thus

we see that the fundamental groups of the torus and the Klein bottle are the symme-

try groups G in the two cases. In the second case the subgroup of G formed by the

translations has index two, and the orbit space for this subgroup is a torus forming a

two-sheeted covering space of the Klein bottle.

Example 1.43: RPn . The antipodal map of Sn , x֏ −x , generates an action of Z2

on Sn with orbit space RPn , real projective n space, as defined in Example 0.4. The

action is a covering space action since each open hemisphere in Sn is disjoint from

its antipodal image. As we saw in Proposition 1.14, Sn is simply-connected if n ≥ 2,

so from the covering space Sn→RPn we deduce that π1(RPn) ≈ Z2 for n ≥ 2. A

generator for π1(RPn) is any loop obtained by projecting a path in Sn connecting two

antipodal points. One can see explicitly that such a loop γ has order two in π1(RPn)

if n ≥ 2 since the composition γ γ lifts to a loop in Sn , and this can be homotoped to

the trivial loop since π1(S
n) = 0, so the projection of this homotopy into RPn gives

a nullhomotopy of γ γ .
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One may ask whether there are other finite groups that act freely on Sn , defining

covering spaces Sn→Sn/G . We will show in Proposition 2.29 that Z2 is the only

possibility when n is even, but for odd n the question is much more difficult. It is

easy to construct a free action of any cyclic group Zm on S2k−1 , the action generated

by the rotation v֏e2πi/mv of the unit sphere S2k−1 in Ck = R2k . This action is free

since an equation v = e2πiℓ/mv with 0 < ℓ < m implies v = 0, but 0 is not a point

of S2k−1 . The orbit space S2k−1/Zm is one of a family of spaces called lens spaces

defined in Example 2.43.

There are also noncyclic finite groups that act freely as rotations of Sn for odd

n > 1. These actions are classified quite explicitly in [Wolf 1984]. Examples in the

simplest case n = 3 can be produced as follows. View R
4 as the quaternion algebra H .

Multiplication of quaternions satisfies |ab| = |a||b| where |a| denotes the usual

Euclidean length of a vector a ∈ R4 . Thus if a and b are unit vectors, so is ab , and

hence quaternion multiplication defines a map S3
×S3→S3 . This in fact makes S3

into a group, though associativity is all we need now since associativity implies that

any subgroup G of S3 acts on S3 by left-multiplication, g(x) = gx . This action is

free since an equation x = gx in the division algebra H implies g = 1 or x = 0. As

a concrete example, G could be the familiar quaternion group Q8 = {±1,±i,±j,±k}

from group theory. More generally, for a positive integer m , let Q4m be the subgroup

of S3 generated by the two quaternions a = eπi/m and b = j . Thus a has order

2m and b has order 4. The easily verified relations am = b2
= −1 and bab−1

=

a−1 imply that the subgroup Z2m generated by a is normal and of index 2 in Q4m .

Hence Q4m is a group of order 4m , called the generalized quaternion group. Another

common name for this group is the binary dihedral group D∗4m since its quotient by

the subgroup {±1} is the ordinary dihedral group D2m of order 2m .

Besides the groups Q4m = D
∗
4m there are just three other noncyclic finite sub-

groups of S3 : the binary tetrahedral, octahedral, and icosahedral groups T∗24 , O∗48,

and I∗120, of orders indicated by the subscripts. These project two-to-one onto the

groups of rotational symmetries of a regular tetrahedron, octahedron (or cube), and

icosahedron (or dodecahedron). In fact, it is not hard to see that the homomorphism

S3→SO(3) sending u ∈ S3
⊂ H to the isometry v→u−1vu of R3 , viewing R3 as the

‘pure imaginary’ quaternions v = ai+ bj + ck , is surjective with kernel {±1} . Then

the groups D∗4m , T∗24 , O∗48 , I∗120 are the preimages in S3 of the groups of rotational

symmetries of a regular polygon or polyhedron in R3 .

There are two conditions that a finite group G acting freely on Sn must satisfy:

(a) Every abelian subgroup of G is cyclic. This is equivalent to saying that G contains

no subgroup Zp×Zp with p prime.

(b) G contains at most one element of order 2.

A proof of (a) is sketched in an exercise for §4.2. For a proof of (b) the original

source [Milnor 1957] is recommended reading. The groups satisfying (a) have been
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completely classified; see [Brown 1982], section VI.9, for details. An example of a

group satisfying (a) but not (b) is the dihedral group D2m for odd m > 1.

There is also a much more difficult converse: A finite group satisfying (a) and (b)

acts freely on Sn for some n . References for this are [Madsen, Thomas, & Wall 1976]

and [Davis & Milgram 1985]. There is also almost complete information about which

n ’s are possible for a given group.

Example 1.44. In Example 1.35 we constructed a contractible 2 complex X̃m,n =

Tm,n×R as the universal cover of a finite 2 complex Xm,n that was the union of

the mapping cylinders of the two maps S1→S1 , z֏ zm and z֏ zn . The group

of deck transformations of this covering space is therefore the fundamental group

π1(Xm,n) . From van Kampen’s theorem applied to the decomposition of Xm,n into

the two mapping cylinders we have the presentation
〈
a,b |||| a

mb−n
〉

for this group

Gm,n = π1(Xm,n) . It is interesting to look at the action of Gm,n on X̃m,n more closely.

We described a decomposition of X̃m,n into rectangles, with Xm,n the quotient of

one rectangle. These rectangles in fact define a cell structure on X̃m,n lifting a cell

structure on Xm,n with two vertices, three edges, and one 2 cell. The group Gm,n is

thus a group of symmetries of this cell structure on X̃m,n . If we orient the three edges

of Xm,n and lift these orientations to the edges of X̃m,n , then Gm,n is the group of all

symmetries of X̃m,n preserving the orientations of edges. For example, the element a

acts as a ‘screw motion’ about an axis that is a vertical line {va}×R with va a vertex

of Tm,n , and b acts similarly for a vertex vb .

Since the action of Gm,n on X̃m,n preserves the cell structure, it also preserves

the product structure Tm,n×R . This means that there are actions of Gm,n on Tm,n
and R such that the action on the product Xm,n = Tm,n×R is the diagonal action

g(x,y) =
(
g(x), g(y)

)
for g ∈ Gm,n . If we make the rectangles of unit height in the

R coordinate, then the element am = bn acts on R as unit translation, while a acts

by 1/m translation and b by 1/n translation. The translation actions of a and b on R

generate a group of translations of R that is infinite cyclic, generated by translation

by the reciprocal of the least common multiple of m and n .

The action of Gm,n on Tm,n has kernel consisting of the powers of the element

am = bn . This infinite cyclic subgroup is precisely the center of Gm,n , as we saw in

Example 1.24. There is an induced action of the quotient group Zm ∗ Zn on Tm,n ,

but this is not a free action since the elements a and b and all their conjugates fix

vertices of Tm,n . On the other hand, if we restrict the action of Gm,n on Tm,n to

the kernel K of the map Gm,n→Z given by the action of Gm,n on the R factor of

Xm,n , then we do obtain a free action of K on Tm,n . Since this action takes vertices

to vertices and edges to edges, it is a covering space action, so K is a free group, the

fundamental group of the graph Tm,n/K . An exercise at the end of the section is to

determine Tm,n/K explicitly and compute the number of generators of K .
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Cayley Complexes

Covering spaces can be used to describe a very classical method for viewing

groups geometrically as graphs. Recall from Corollary 1.28 how we associated to each

group presentation G =
〈
gα |||| rβ

〉
a 2 dimensional cell complex XG with π1(XG) ≈ G

by taking a wedge-sum of circles, one for each generator gα , and then attaching a

2 cell for each relator rβ . We can construct a cell complex X̃G with a covering space

action of G such that X̃G/G = XG in the following way. Let the vertices of X̃G be

the elements of G themselves. Then, at each vertex g ∈ G , insert an edge joining

g to ggα for each of the chosen generators gα . The resulting graph is known as

the Cayley graph of G with respect to the generators gα . This graph is connected

since every element of G is a product of gα ’s, so there is a path in the graph joining

each vertex to the identity vertex e . Each relation rβ determines a loop in the graph,

starting at any vertex g , and we attach a 2 cell for each such loop. The resulting cell

complex X̃G is the Cayley complex of G . The group G acts on X̃G by multiplication

on the left. Thus, an element g ∈ G sends a vertex g′ ∈ G to the vertex gg′ , and the

edge from g′ to g′gα is sent to the edge from gg′ to gg′gα . The action extends to

2 cells in the obvious way. This is clearly a covering space action, and the orbit space

is just XG .

In fact X̃G is the universal cover of XG since it is simply-connected. This can be

seen by considering the homomorphism ϕ :π1(XG)→G defined in the proof of Propo-

sition 1.39. For an edge eα in XG corresponding to a generator gα of G , it is clear

from the definition of ϕ that ϕ([eα]) = gα , so ϕ is an isomorphism. In particular

the kernel of ϕ , p∗
(
π1(X̃G)

)
, is zero, hence also π1(X̃G) since p∗ is injective.

Let us look at some examples of Cayley complexes.

Example 1.45. When G is the free group on

two generators a and b , XG is S1
∨ S1 and

X̃G is the Cayley graph of Z∗ Z pictured at

the right. The action of a on this graph is a

rightward shift along the central horizontal

axis, while b acts by an upward shift along

the central vertical axis. The composition

ab of these two shifts then takes the vertex

e to the vertex ab . Similarly, the action of

any w ∈ Z∗ Z takes e to the vertex w .

Example 1.46. The group G = Z×Z with presentation
〈
x,y |||| xyx

−1y−1 〉 has XG
the torus S1

×S1 , and X̃G is R2 with vertices the integer lattice Z2
⊂ R

2 and edges

the horizontal and vertical segments between these lattice points. The action of G is

by translations (x,y)֏ (x +m,y +n) .
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Example 1.47. For G = Z2 =
〈
x |||| x

2 〉 , XG is RP2 and X̃G = S
2 . More generally, for

Zn =
〈
x |||| x

n 〉 , XG is S1 with a disk attached by the map z֏zn and X̃G consists of

n disks D1, ··· ,Dn with their boundary circles identified. A generator of Zn acts on

this union of disks by sending Di to Di+1 via a 2π/n rotation, the subscript i being

taken mod n . The common boundary circle of the disks is rotated by 2π/n .

Example 1.48. If G = Z2 ∗ Z2 =
〈
a,b |||| a

2, b2 〉 then the Cayley graph is a union of

an infinite sequence of circles each tangent to its two neighbors.

We obtain X̃G from this graph by making each circle the equator of a 2 sphere, yield-

ing an infinite sequence of tangent 2 spheres. Elements of the index-two normal

subgroup Z ⊂ Z2 ∗ Z2 generated by ab act on X̃G as translations by an even number

of units, while each of the remaining elements of Z2∗Z2 acts as the antipodal map on

one of the spheres and flips the whole chain of spheres end-for-end about this sphere.

The orbit space XG is RP2
∨RP2 .

It is not hard to see the generalization of this example to Zm ∗ Zn with the pre-

sentation
〈
a,b |||| a

m, bn
〉

, so that X̃G consists of an infinite union of copies of the

Cayley complexes for Zm and Zn constructed in Example 1.47, arranged in a tree-like

pattern. The case of Z2 ∗ Z3 is pictured below.
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Exercises

1. For a covering space p : X̃→X and a subspace A ⊂ X , let Ã = p−1(A) . Show that

the restriction p : Ã→A is a covering space.

2. Show that if p1 : X̃1→X1 and p2 : X̃2→X2 are covering spaces, so is their product

p1×p2 : X̃1×X̃2→X1×X2 .

3. Let p : X̃→X be a covering space with p−1(x) finite and nonempty for all x ∈ X .

Show that X̃ is compact Hausdorff iff X is compact Hausdorff.

4. Construct a simply-connected covering space of the space X ⊂ R3 that is the union

of a sphere and a diameter. Do the same when X is the union of a sphere and a circle

intersecting it in two points.

5. Let X be the subspace of R2 consisting of the four sides of the square [0,1]×[0,1]

together with the segments of the vertical lines x = 1/2,
1/3,

1/4, ··· inside the square.

Show that for every covering space X̃→X there is some neighborhood of the left

edge of X that lifts homeomorphically to X̃ . Deduce that X has no simply-connected

covering space.

6. Let X be the shrinking wedge of circles in Example 1.25, and let X̃ be its covering

space shown in the figure below.

Construct a two-sheeted covering space Y→X̃ such that the composition Y→X̃→X
of the two covering spaces is not a covering space. Note that a composition of two

covering spaces does have the unique path lifting property, however.

7. Let Y be the quasi-circle shown in the figure, a closed subspace

of R2 consisting of a portion of the graph of y = sin(1/x) , the

segment [−1,1] in the y axis, and an arc connecting these two

pieces. Collapsing the segment of Y in the y axis to a point

gives a quotient map f :Y→S1 . Show that f does not lift to

the covering space R→S1 , even though π1(Y ) = 0. Thus local

path-connectedness of Y is a necessary hypothesis in the lifting criterion.

8. Let X̃ and Ỹ be simply-connected covering spaces of the path-connected, locally

path-connected spaces X and Y . Show that if X ≃ Y then X̃ ≃ Ỹ . [Exercise 11 in

Chapter 0 may be helpful.]

9. Show that if a path-connected, locally path-connected space X has π1(X) finite,

then every map X→S1 is nullhomotopic. [Use the covering space R→S1 .]

10. Find all the connected 2 sheeted and 3 sheeted covering spaces of S1
∨S1 , up to

isomorphism of covering spaces without basepoints.
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11. Construct finite graphs X1 and X2 having a common finite-sheeted covering space

X̃1 = X̃2 , but such that there is no space having both X1 and X2 as covering spaces.

12. Let a and b be the generators of π1(S
1
∨ S1) corresponding to the two S1

summands. Draw a picture of the covering space of S1
∨ S1 corresponding to the

normal subgroup generated by a2 , b2 , and (ab)4 , and prove that this covering space

is indeed the correct one.

13. Determine the covering space of S1
∨ S1 corresponding to the subgroup of

π1(S
1
∨ S1) generated by the cubes of all elements. The covering space is 27 sheeted

and can be drawn on a torus so that the complementary regions are nine triangles

with edges labeled aaa , nine triangles with edges labeled bbb , and nine hexagons

with edges labeled ababab . [For the analogous problem with sixth powers instead

of cubes, the resulting covering space would have 228325 sheets! And for kth powers

with k sufficiently large, the covering space would have infinitely many sheets. The

underlying group theory question here, whether the quotient of Z ∗ Z obtained by

factoring out all kth powers is finite, is known as Burnside’s problem. It can also be

asked for a free group on n generators.]

14. Find all the connected covering spaces of RP2
∨RP2 .

15. Let p : X̃→X be a simply-connected covering space of X and let A ⊂ X be a

path-connected, locally path-connected subspace, with Ã ⊂ X̃ a path-component of

p−1(A) . Show that p : Ã→A is the covering space corresponding to the kernel of the

map π1(A)→π1(X) .

16. Given maps X→Y→Z such that both Y→Z and the composition X→Z are

covering spaces, show that X→Y is a covering space if Z is locally path-connected,

and show that this covering space is normal if X→Z is a normal covering space.

17. Given a group G and a normal subgroup N , show that there exists a normal

covering space X̃→X with π1(X) ≈ G , π1(X̃) ≈ N , and deck transformation group

G(X̃) ≈ G/N .

18. For a path-connected, locally path-connected, and semilocally simply-connected

space X , call a path-connected covering space X̃→X abelian if it is normal and has

abelian deck transformation group. Show that X has an abelian covering space that is

a covering space of every other abelian covering space of X , and that such a ‘universal’

abelian covering space is unique up to isomorphism. Describe this covering space

explicitly for X = S1
∨ S1 and X = S1

∨ S1
∨ S1 .

19. Use the preceding problem to show that a closed orientable surface Mg of genus

g has a connected normal covering space with deck transformation group isomorphic

to Zn (the product of n copies of Z ) iff n ≤ 2g . For n = 3 and g ≥ 3, describe such

a covering space explicitly as a subspace of R3 with translations of R3 as deck trans-

formations. Show that such a covering space in R
3 exists iff there is an embedding
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of Mg in the 3 torus T 3
= S1

×S1
×S1 such that the induced map π1(Mg)→π1(T

3)

is surjective.

20. Construct nonnormal covering spaces of the Klein bottle by a Klein bottle and by

a torus.

21. Let X be the space obtained from a torus S1
×S1 by attaching a Möbius band via a

homeomorphism from the boundary circle of the Möbius band to the circle S1
×{x0}

in the torus. Compute π1(X) , describe the universal cover of X , and describe the

action of π1(X) on the universal cover. Do the same for the space Y obtained by

attaching a Möbius band to RP2 via a homeomorphism from its boundary circle to

the circle in RP2 formed by the 1 skeleton of the usual CW structure on RP2 .

22. Given covering space actions of groups G1 on X1 and G2 on X2 , show that the ac-

tion of G1×G2 on X1×X2 defined by (g1, g2)(x1, x2) = (g1(x1), g2(x2)) is a covering

space action, and that (X1×X2)/(G1×G2) is homeomorphic to X1/G1×X2/G2 .

23. Show that if a group G acts freely and properly discontinuously on a Hausdorff

space X , then the action is a covering space action. (Here ‘properly discontinuously’

means that each x ∈ X has a neighborhood U such that {g ∈ G | U ∩ g(U) ≠∅} is

finite.) In particular, a free action of a finite group on a Hausdorff space is a covering

space action.

24. Given a covering space action of a group G on a path-connected, locally path-

connected space X , then each subgroup H ⊂ G determines a composition of covering

spaces X→X/H→X/G . Show:

(a) Every path-connected covering space between X and X/G is isomorphic to X/H

for some subgroup H ⊂ G .

(b) Two such covering spaces X/H1 and X/H2 of X/G are isomorphic iff H1 and H2

are conjugate subgroups of G .

(c) The covering space X/H→X/G is normal iff H is a normal subgroup of G , in

which case the group of deck transformations of this cover is G/H .

25. Let ϕ :R2→R
2 be the linear transformation ϕ(x,y) = (2x,y/2) . This generates

an action of Z on X = R
2
− {0} . Show this action is a covering space action and

compute π1(X/Z) . Show the orbit space X/Z is non-Hausdorff, and describe how it is

a union of four subspaces homeomorphic to S1
×R , coming from the complementary

components of the x axis and the y axis.

26. For a covering space p : X̃→X with X connected, locally path-connected, and

semilocally simply-connected, show:

(a) The components of X̃ are in one-to-one correspondence with the orbits of the

action of π1(X,x0) on the fiber p−1(x0) .

(b) Under the Galois correspondence between connected covering spaces of X and

subgroups of π1(X,x0) , the subgroup corresponding to the component of X̃
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containing a given lift x̃0 of x0 is the stabilizer of x̃0 , the subgroup consisting

of elements whose action on the fiber leaves x̃0 fixed.

27. For a universal cover p : X̃→X there are two actions of π1(X,x0) on the fiber

p−1(x0) . The first is the action defined on page 69 in which the element of π1(X,x0)

determined by a loop γ sends γ̃(1) to γ̃(0) for each lift γ̃ of γ to X̃ , and the second is

the action given by restricting deck transformations to the fiber (see Proposition 1.39).

Show that these two actions are different when X = S1
∨ S1 and when X = S1

×S1

and determine when the two actions are the same. [This is a revised version of the

original form of this exercise.]

28. Show that for a covering space action of a group G on a simply-connected space Y ,

π1(Y/G) is isomorphic to G . [If Y is locally path-connected, this is a special case of

part (c) of Proposition 1.40.]

29. Let Y be path-connected, locally path-connected, and simply-connected, and let

G1 and G2 be subgroups of Homeo(Y ) defining covering space actions on Y . Show

that the orbit spaces Y/G1 and Y/G2 are homeomorphic iff G1 and G2 are conjugate

subgroups of Homeo(Y ) .

30. Draw the Cayley graph of the group Z∗ Z2 =
〈
a,b |||| b

2 〉 .

31. Show that the normal covering spaces of S1
∨ S1 are precisely the graphs that

are Cayley graphs of groups with two generators. More generally, the normal cov-

ering spaces of the wedge sum of n circles are the Cayley graphs of groups with n

generators.

32. Consider covering spaces p : X̃→X with X̃ and X connected CW complexes,

the cells of X̃ projecting homeomorphically onto cells of X . Restricting p to the

1 skeleton then gives a covering space X̃1→X1 over the 1 skeleton of X . Show:

(a) Two such covering spaces X̃1→X and X̃2→X are isomorphic iff the restrictions

X̃1
1→X

1 and X̃1
2→X

1 are isomorphic.

(b) X̃→X is a normal covering space iff X̃1→X1 is normal.

(c) The groups of deck transformations of the coverings X̃→X and X̃1→X1 are

isomorphic, via the restriction map.

33. In Example 1.44 let d be the greatest common divisor of m and n , and let

m′
= m/d and n′ = n/d . Show that the graph Tm,n/K consists of m′ vertices

labeled a , n′ vertices labeled b , together with d edges joining each a vertex to

each b vertex. Deduce that the subgroup K ⊂ Gm,n is free on dm′n′ −m′
− n′ + 1

generators.
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Since all groups can be realized as fundamental groups of spaces, this opens the

way for using topology to study algebraic properties of groups. The topics in this

section and the next give some illustrations of this principle, mainly using covering

space theory.

We remind the reader that the Additional Topics which form the remainder of

this chapter are not to be regarded as an essential part of the basic core of the book.

Readers who are eager to move on to new topics should feel free to skip ahead.

By definition, a graph is a 1 dimensional CW complex, in other words, a space

X obtained from a discrete set X0 by attaching a collection of 1 cells eα . Thus X

is obtained from the disjoint union of X0 with closed intervals Iα by identifying the

two endpoints of each Iα with points of X0 . The points of X0 are the vertices and

the 1 cells the edges of X . Note that with this definition an edge does not include its

endpoints, so an edge is an open subset of X . The two endpoints of an edge can be

the same vertex, so the closure eα of an edge eα is homeomorphic either to I or S1 .

Since X has the quotient topology from the disjoint union X0
∐
α Iα , a subset of X

is open (or closed) iff it intersects the closure eα of each edge eα in an open (or closed)

set in eα . One says that X has the weak topology with respect to the subspaces eα .

In this topology a sequence of points in the interiors of distinct edges forms a closed

subset, hence never converges. This is true in particular if the edges containing the

sequence all have a common vertex and one tries to choose the sequence so that it

gets ‘closer and closer’ to the vertex. Thus if there is a vertex that is the endpoint

of infinitely many edges, then the weak topology cannot be a metric topology. An

exercise at the end of this section is to show the converse, that the weak topology is

a metric topology if each vertex is an endpoint of only finitely many edges.

A basis for the topology of X consists of the open intervals in the edges together

with the path-connected neighborhoods of the vertices. A neighborhood of the latter

sort about a vertex v is the union of connected open neighborhoods Uα of v in eα
for all eα containing v . In particular, we see that X is locally path-connected. Hence

a graph is connected iff it is path-connected.

If X has only finitely many vertices and edges, then X is compact, being the

continuous image of the compact space X0
∐
α Iα . The converse is also true, and more

generally, a compact subset C of a graph X can meet only finitely many vertices and

edges of X . To see this, let the subspace D ⊂ C consist of the vertices in C together

with one point in each edge that C meets. Then D is a closed subset of X since it
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meets each eα in a closed set. For the same reason, any subset of D is closed, so D

has the discrete topology. But D is compact, being a closed subset of the compact

space C , so D must be finite. By the definition of D this means that C can meet only

finitely many vertices and edges.

A subgraph of a graph X is a subspace Y ⊂ X that is a union of vertices and

edges of X , such that eα ⊂ Y implies eα ⊂ Y . The latter condition just says that

Y is a closed subspace of X . A tree is a contractible graph. By a tree in a graph X

we mean a subgraph that is a tree. We call a tree in X maximal if it contains all the

vertices of X . This is equivalent to the more obvious meaning of maximality, as we

will see below.

Proposition 1A.1. Every connected graph contains a maximal tree, and in fact any

tree in the graph is contained in a maximal tree.

Proof: Let X be a connected graph. We will describe a construction that embeds

an arbitrary subgraph X0 ⊂ X as a deformation retract of a subgraph Y ⊂ X that

contains all the vertices of X . By choosing X0 to be any subtree of X , for example a

single vertex, this will prove the proposition.

As a preliminary step, we construct a sequence of subgraphs X0 ⊂ X1 ⊂ X2 ⊂ ··· ,

letting Xi+1 be obtained from Xi by adjoining the closures eα of all edges eα ⊂ X−Xi
having at least one endpoint in Xi . The union

⋃
iXi is open in X since a neighborhood

of a point in Xi is contained in Xi+1 . Furthermore,
⋃
iXi is closed since it is a union

of closed edges and X has the weak topology. So X =
⋃
iXi since X is connected.

Now to construct Y we begin by setting Y0 = X0 . Then inductively, assuming

that Yi ⊂ Xi has been constructed so as to contain all the vertices of Xi , let Yi+1 be

obtained from Yi by adjoining one edge connecting each vertex of Xi+1−Xi to Yi , and

let Y =
⋃
i Yi . It is evident that Yi+1 deformation retracts to Yi , and we may obtain

a deformation retraction of Y to Y0 = X0 by performing the deformation retraction

of Yi+1 to Yi during the time interval [1/2i+1,1/2i] . Thus a point x ∈ Yi+1 − Yi is

stationary until this interval, when it moves into Yi and thereafter continues mov-

ing until it reaches Y0 . The resulting homotopy ht :Y→Y is continuous since it is

continuous on the closure of each edge and Y has the weak topology. ⊔⊓

Given a maximal tree T ⊂ X and a base vertex x0 ∈ T , then each edge eα of

X − T determines a loop fα in X that goes first from x0 to one endpoint of eα by

a path in T , then across eα , then back to x0 by a path in T . Strictly speaking, we

should first orient the edge eα in order to specify which direction to cross it. Note

that the homotopy class of fα is independent of the choice of the paths in T since T

is simply-connected.

Proposition 1A.2. For a connected graph X with maximal tree T , π1(X) is a free

group with basis the classes [fα] corresponding to the edges eα of X − T .
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In particular this implies that a maximal tree is maximal in the sense of not being

contained in any larger tree, since adjoining any edge to a maximal tree produces a

graph with nontrivial fundamental group. Another consequence is that a graph is a

tree iff it is simply-connected.

Proof: The quotient map X→X/T is a homotopy equivalence by Proposition 0.17.

The quotient X/T is a graph with only one vertex, hence is a wedge sum of circles,

whose fundamental group we showed in Example 1.21 to be free with basis the loops

given by the edges of X/T , which are the images of the loops fα in X . ⊔⊓

Here is a very useful fact about graphs:

Lemma 1A.3. Every covering space of a graph is also a graph, with vertices and

edges the lifts of the vertices and edges in the base graph.

Proof: Let p : X̃→X be the covering space. For the vertices of X̃ we take the discrete

set X̃0
= p−1(X0) . Writing X as a quotient space of X0

∐
α Iα as in the definition

of a graph and applying the path lifting property to the resulting maps Iα→X , we

get a unique lift Iα→X̃ passing through each point in p−1(x) , for x ∈ eα . These

lifts define the edges of a graph structure on X̃ . The resulting topology on X̃ is the

same as its original topology since both topologies have the same basic open sets, the

covering projection X̃→X being a local homeomorphism. ⊔⊓

We can now apply what we have proved about graphs and their fundamental

groups to prove a basic fact of group theory:

Theorem 1A.4. Every subgroup of a free group is free.

Proof: Given a free group F , choose a graph X with π1(X) ≈ F , for example a wedge

of circles corresponding to a basis for F . For each subgroup G of F there is by

Proposition 1.36 a covering space p : X̃→X with p∗
(
π1(X̃)

)
= G , hence π1(X̃) ≈ G

since p∗ is injective by Proposition 1.31. Since X̃ is a graph by the preceding lemma,

the group G ≈ π1(X̃) is free by Proposition 1A.2. ⊔⊓

The structure of trees can be elucidated by looking more closely at the construc-

tions in the proof of Proposition 1A.1. If X is a tree and v0 is any vertex of X , then the

construction of a maximal tree Y ⊂ X starting with Y0 = {v0}

yields an increasing sequence of subtrees Yn ⊂ X whose union is

all of X since a tree has only one maximal subtree, namely itself.

We can think of the vertices in Yn − Yn−1 as being at ‘height’ n ,

with the edges of Yn−Yn−1 connecting these vertices to vertices

of height n− 1. In this way we get a ‘height function’ h :X→R

assigning to each vertex its height, and monotone on edges.
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For each vertex v of X there is exactly one edge leading downward from v , so

by following these downward edges we obtain a path from v to the base vertex v0 .

This is an example of an edgepath, which is a composition of finitely many paths each

consisting of a single edge traversed monotonically. For any edgepath joining v to v0

other than the downward edgepath, the height function would not be monotone and

hence would have local maxima, occurring when the edgepath backtracked, retracing

some edge it had just crossed. Thus in a tree there is a unique nonbacktracking

edgepath joining any two points. All the vertices and edges along this edgepath are

distinct.

A tree can contain no subgraph homeomorphic to a circle, since two vertices

in such a subgraph could be joined by more than one nonbacktracking edgepath.

Conversely, if a connected graph X contains no circle subgraph, then it must be a

tree. For if T is a maximal tree in X that is not equal to X , then the union of an edge

of X−T with the nonbacktracking edgepath in T joining the endpoints of this edge is

a circle subgraph of X . So if there are no circle subgraphs of X , we must have X = T ,

a tree.

For an arbitrary connected graph X and a pair of vertices v0 and v1 in X there is

a unique nonbacktracking edgepath in each homotopy class of paths from v0 to v1 .

This can be seen by lifting to the universal cover X̃ , which is a tree since it is simply-

connected. Choosing a lift ṽ0 of v0 , a homotopy class of paths from v0 to v1 lifts to

a homotopy class of paths starting at ṽ0 and ending at a unique lift ṽ1 of v1 . Then

the unique nonbacktracking edgepath in X̃ from ṽ0 to ṽ1 projects to the desired

nonbacktracking edgepath in X .

Exercises

1. Let X be a graph in which each vertex is an endpoint of only finitely many edges.

Show that the weak topology on X is a metric topology.

2. Show that a connected graph retracts onto any connected subgraph.

3. For a finite graph X define the Euler characteristic χ(X) to be the number of

vertices minus the number of edges. Show that χ(X) = 1 if X is a tree, and that the

rank (number of elements in a basis) of π1(X) is 1− χ(X) if X is connected.

4. If X is a finite graph and Y is a subgraph homeomorphic to S1 and containing the

basepoint x0 , show that π1(X,x0) has a basis in which one element is represented

by the loop Y .

5. Construct a connected graph X and maps f , g :X→X such that fg = 11 but f

and g do not induce isomorphisms on π1 . [Note that f∗g∗ = 11 implies that f∗ is

surjective and g∗ is injective.]

6. Let F be the free group on two generators and let F ′ be its commutator subgroup.

Find a set of free generators for F ′ by considering the covering space of the graph

S1
∨ S1 corresponding to F ′ .
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7. If F is a finitely generated free group and N is a nontrivial normal subgroup of

infinite index, show, using covering spaces, that N is not finitely generated.

8. Show that a finitely generated group has only a finite number of subgroups of a

given finite index. [First do the case of free groups, using covering spaces of graphs.

The general case then follows since every group is a quotient group of a free group.]

9. Using covering spaces, show that an index n subgroup H of a group G has at most

n conjugate subgroups gHg−1 in G . Apply this to show that there exists a normal

subgroup K ⊂ G of finite index with K ⊂ H . [For the latter statement, consider

the intersection of all the conjugate subgroups gHg−1 . This is the maximal normal

subgroup of G contained in H .]

10. Let X be the wedge sum of n circles, with its natural graph structure, and let

X̃→X be a covering space with Y ⊂ X̃ a finite connected subgraph. Show there is

a finite graph Z ⊃ Y having the same vertices as Y , such that the projection Y→X
extends to a covering space Z→X .

11. Apply the two preceding problems to show that if F is a finitely generated free

group and x ∈ F is not the identity element, then there is a normal subgroup H ⊂ F

of finite index such that x ∉ H . Hence x has nontrivial image in a finite quotient

group of F . In this situation one says F is residually finite.

12. Let F be a finitely generated free group, H ⊂ F a finitely generated subgroup, and

x ∈ F − H . Show there is a subgroup K of finite index in F such that K ⊃ H and

x ∉ K . [Apply Exercise 10.]

13. Let x be a nontrivial element of a finitely generated free group F . Show there is

a finite-index subgroup H ⊂ F in which x is one element of a basis. [Exercises 4 and

10 may be helpful.]

14. Show that the existence of maximal trees is equivalent to the Axiom of Choice.

In this section we introduce a class of spaces whose homotopy type depends only

on their fundamental group. These spaces arise many places in topology, especially

in its interactions with group theory.

A path-connected space whose fundamental group is isomorphic to a given group

G and which has a contractible universal covering space is called a K(G,1) space. The

‘1’ here refers to π1 . More general K(G,n) spaces are studied in §4.2. All these spaces

are called Eilenberg–MacLane spaces, though in the case n = 1 they were studied by
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Hurewicz before Eilenberg and MacLane took up the general case. Here are some

examples:

Example 1B.1. S1 is a K(Z,1) . More generally, a connected graph is a K(G,1) with

G a free group, since by the results of §1.A its universal cover is a tree, hence con-

tractible.

Example 1B.2. Closed surfaces with infinite π1 , in other words, closed surfaces other

than S2 and RP2 , are K(G,1) ’s. This will be shown in Example 1B.14 below. It also

follows from the theorem in surface theory that the only simply-connected surfaces

without boundary are S2 and R
2 , so the universal cover of a closed surface with

infinite fundamental group must be R2 since it is noncompact. Nonclosed surfaces

deformation retract onto graphs, so such surfaces are K(G,1) ’s with G free.

Example 1B.3. The infinite-dimensional projective space RP∞ is a K(Z2,1) since its

universal cover is S∞ , which is contractible. To show the latter fact, a homotopy from

the identity map of S∞ to a constant map can be constructed in two stages as follows.

First, define ft :R∞→R
∞ by ft(x1, x2, ···) = (1 − t)(x1, x2, ···) + t(0, x1, x2, ···) .

This takes nonzero vectors to nonzero vectors for all t ∈ [0,1] , so ft/|ft| gives a ho-

motopy from the identity map of S∞ to the map (x1, x2, ···)֏(0, x1, x2, ···) . Then a

homotopy from this map to a constant map is given by gt/|gt| where gt(x1, x2, ···) =

(1− t)(0, x1, x2, ···)+ t(1,0,0, ···) .

Example 1B.4. Generalizing the preceding example, we can construct a K(Zm,1) as

an infinite-dimensional lens space S∞/Zm , where Zm acts on S∞ , regarded as the

unit sphere in C∞ , by scalar multiplication by mth roots of unity, a generator of this

action being the map (z1, z2, ···)֏ e2πi/m(z1, z2, ···) . It is not hard to check that

this is a covering space action.

Example 1B.5. A product K(G,1)×K(H,1) is a K(G×H,1) since its universal cover

is the product of the universal covers of K(G,1) and K(H,1) . By taking products of

circles and infinite-dimensional lens spaces we therefore get K(G,1) ’s for arbitrary

finitely generated abelian groups G . For example the n dimensional torus Tn , the

product of n circles, is a K(Zn,1) .

Example 1B.6. For a closed connected subspace K of S3 that is nonempty, the com-

plement S3
−K is a K(G,1) . This is a theorem in 3 manifold theory, but in the special

case that K is a torus knot the result follows from our study of torus knot comple-

ments in Examples 1.24 and 1.35. Namely, we showed that for K the torus knot Km,n
there is a deformation retraction of S3

− K onto a certain 2 dimensional complex

Xm,n having contractible universal cover. The homotopy lifting property then implies

that the universal cover of S3
− K is homotopy equivalent to the universal cover of

Xm,n , hence is also contractible.
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Example 1B.7. It is not hard to construct a K(G,1) for an arbitrary group G , us-

ing the notion of a ∆ complex defined in §2.1. Let EG be the ∆ complex whose

n simplices are the ordered (n + 1) tuples [g0, ··· , gn] of elements of G . Such an

n simplex attaches to the (n− 1) simplices [g0, ··· , ĝi, ··· , gn] in the obvious way,

just as a standard simplex attaches to its faces. (The notation ĝi means that this

vertex is deleted.) The complex EG is contractible by the homotopy ht that slides

each point x ∈ [g0, ··· , gn] along the line segment in [e, g0, ··· , gn] from x to the

vertex [e] , where e is the identity element of G . This is well-defined in EG since

when we restrict to a face [g0, ··· , ĝi, ··· , gn] we have the linear deformation to [e]

in [e, g0, ··· , ĝi, ··· , gn] . Note that ht carries [e] around the loop [e, e] , so ht is not

actually a deformation retraction of EG onto [e] .

The group G acts on EG by left multiplication, an element g ∈ G taking the

simplex [g0, ··· , gn] linearly onto the simplex [gg0, ··· , ggn] . Only the identity e

takes any simplex to itself, so by an exercise at the end of this section, the action

of G on EG is a covering space action. Hence the quotient map EG→EG/G is the

universal cover of the orbit space BG = EG/G , and BG is a K(G,1) .

Since G acts on EG by freely permuting simplices, BG inherits a ∆ complex

structure from EG . The action of G on EG identifies all the vertices of EG , so BG

has just one vertex. To describe the ∆ complex structure on BG explicitly, note first

that every n simplex of EG can be written uniquely in the form

[g0, g0g1, g0g1g2, ··· , g0g1 ···gn] = g0[e, g1, g1g2, ··· , g1 ···gn]

The image of this simplex in BG may be denoted unambiguously by the symbol

[g1|g2| ··· |gn] . In this ‘bar’ notation the gi ’s and their ordered products can be

used to label edges, viewing an

edge label as the ratio between

the two labels on the vertices

at the endpoints of the edge,

as indicated in the figure. With

this notation, the boundary of

a simplex [g1| ··· |gn] of BG

consists of the simplices [g2| ··· |gn] , [g1| ··· |gn−1] , and [g1| ··· |gigi+1| ··· |gn]

for i = 1, ··· , n− 1.

This construction of a K(G,1) produces a rather large space, since BG is al-

ways infinite-dimensional, and if G is infinite, BG has an infinite number of cells in

each positive dimension. For example, BZ is much bigger than S1 , the most efficient

K(Z,1) . On the other hand, BG has the virtue of being functorial: A homomorphism

f :G→H induces a map Bf :BG→BH sending a simplex [g1| ··· |gn] to the simplex

[f (g1)| ··· |f(gn)] . A different construction of a K(G,1) is given in §4.2. Here one

starts with any 2 dimensional complex having fundamental group G , for example
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the complex XG associated to a presentation of G , and then one attaches cells of di-

mension 3 and higher to make the universal cover contractible without affecting π1 .

In general, it is hard to get any control on the number of higher-dimensional cells

needed in this construction, so it too can be rather inefficient. Indeed, finding an

efficient K(G,1) for a given group G is often a difficult problem.

It is a curious and almost paradoxical fact that if G contains any elements of finite

order, then every K(G,1) CW complex must be infinite-dimensional. This is shown

in Proposition 2.45. In particular the infinite-dimensional lens space K(Zm,1) ’s in

Example 1B.4 cannot be replaced by any finite-dimensional complex.

In spite of the great latitude possible in the construction of K(G,1) ’s, there is a

very nice homotopical uniqueness property that accounts for much of the interest in

K(G,1) ’s:

Theorem 1B.8. The homotopy type of a CW complex K(G,1) is uniquely determined

by G .

Having a unique homotopy type of K(G,1) ’s associated to each group G means

that algebraic invariants of spaces that depend only on homotopy type, such as ho-

mology and cohomology groups, become invariants of groups. This has proved to be a

quite fruitful idea, and has been much studied both from the algebraic and topological

viewpoints. The discussion following Proposition 2.45 gives a few references.

The preceding theorem will follow easily from:

Proposition 1B.9. Let X be a connected CW complex and let Y be a K(G,1) . Then

every homomorphism π1(X,x0)→π1(Y ,y0) is induced by a map (X,x0)→(Y ,y0)

that is unique up to homotopy fixing x0 .

To deduce the theorem from this, let X and Y be CW complex K(G,1) ’s with iso-

morphic fundamental groups. The proposition gives maps f : (X,x0)→(Y ,y0) and

g : (Y ,y0)→(X,x0) inducing inverse isomorphisms π1(X,x0) ≈ π1(Y ,y0) . Then fg

and gf induce the identity on π1 and hence are homotopic to the identity maps.

Proof of 1B.9: Let us first consider the case that X has a single 0 cell, the base-

point x0 . Given a homomorphism ϕ :π1(X,x0)→π1(Y ,y0) , we begin the construc-

tion of a map f : (X,x0)→(Y ,y0) with f∗ = ϕ by setting f(x0) = y0 . Each 1 cell

e1
α of X has closure a circle determining an element

[e1
α] ∈ π1(X,x0) , and we let f on the closure of e1

α

be a map representing ϕ([e1
α]) . If i :X1֓X denotes

the inclusion, then ϕi∗ = f∗ since π1(X
1, x0) is gen-

erated by the elements [e1
α] .

To extend f over a cell e2
β with attaching map ψβ :S1→X1 , all we need is for the

composition fψβ to be nullhomotopic. Choosing a basepoint s0 ∈ S
1 and a path in X1

from ψβ(s0) to x0 , ψβ determines an element [ψβ] ∈ π1(X
1, x0) , and the existence
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of a nullhomotopy of fψβ is equivalent to f∗([ψβ]) being zero in π1(Y ,y0) . We

have i∗([ψβ]) = 0 since the cell e2
β provides a nullhomotopy of ψβ in X . Hence

f∗([ψβ]) = ϕi∗([ψβ]) = 0, and so f can be extended over e2
β .

Extending f inductively over cells enγ with n > 2 is possible since the attaching

maps ψγ :Sn−1→Xn−1 have nullhomotopic compositions fψγ :Sn−1→Y . This is

because fψγ lifts to the universal cover of Y if n > 2, and this cover is contractible

by hypothesis, so the lift of fψγ is nullhomotopic, hence also fψγ itself.

Turning to the uniqueness statement, if two maps f0, f1 : (X,x0)→(Y ,y0) in-

duce the same homomorphism on π1 , then we see immediately that their restrictions

to X1 are homotopic, fixing x0 . To extend the resulting map X1
×I ∪ X×∂I→Y

over the remaining cells en×(0,1) of X×I we can proceed just as in the preceding

paragraph since these cells have dimension n + 1 > 2. Thus we obtain a homotopy

ft : (X,x0)→(Y ,y0) , finishing the proof in the case that X has a single 0 cell.

The case that X has more than one 0 cell can be treated by a small elaboration

on this argument. Choose a maximal tree T ⊂ X . To construct a map f realizing a

given ϕ , begin by setting f(T) = y0 . Then each edge e1
α in X − T determines an

element [e1
α] ∈ π1(X,x0) , and we let f on the closure of e1

α be a map representing

ϕ([e1
α]) . Extending f over higher-dimensional cells then proceeds just as before.

Constructing a homotopy ft joining two given maps f0 and f1 with f0∗ = f1∗ also

has an extra step. Let ht :X1→X1 be a homotopy starting with h0 = 11 and restricting

to a deformation retraction of T onto x0 . (It is easy to extend such a deformation

retraction to a homotopy defined on all of X1 .) We can construct a homotopy from

f0|X
1 to f1|X

1 by first deforming f0|X
1 and f1|X

1 to take T to y0 by composing with

ht , then applying the earlier argument to obtain a homotopy between the modified

f0|X
1 and f1|X

1 . Having a homotopy f0|X
1
≃ f1|X

1 we extend this over all of X in

the same way as before. ⊔⊓

The first part of the preceding proof also works for the 2 dimensional complexes

XG associated to presentations of groups. Thus every homomorphism G→H is re-

alized as the induced homomorphism of some map XG→XH . However, there is no

uniqueness statement for this map, and it can easily happen that different presenta-

tions of a group G give XG ’s that are not homotopy equivalent.

Graphs of Groups

As an illustration of how K(G,1) spaces can be useful in group theory, we shall

describe a procedure for assembling a collection of K(G,1) ’s together into a K(G,1)

for a larger group G . Group-theoretically, this gives a method for assembling smaller

groups together to form a larger group, generalizing the notion of free products.

Let Γ be a graph that is connected and oriented, that is, its edges are viewed as

arrows, each edge having a specified direction. Suppose that at each vertex v of Γ we
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place a group Gv and along each edge e of Γ we put a homomorphism ϕe from the

group at the tail of the edge to the group at the head of the edge. We call this data a

graph of groups. Now build a space BΓ by putting the space BGv from Example 1B.7

at each vertex v of Γ and then filling in a mapping cylinder of the map Bϕe along

each edge e of Γ , identifying the two ends of the mapping cylinder with the two BGv ’s

at the ends of e . The resulting space BΓ is then a CW complex since the maps Bϕe
take n cells homeomorphically onto n cells. In fact, the cell structure on BΓ can be

canonically subdivided into a ∆ complex structure using the prism construction from

the proof of Theorem 2.10, but we will not need to do this here.

More generally, instead of BGv one could take any CW complex K(Gv ,1) at the

vertex v , and then along edges put mapping cylinders of maps realizing the homo-

morphisms ϕe . We leave it for the reader to check that the resulting space K Γ is

homotopy equivalent to the BΓ constructed above.

Example 1B.10. Suppose Γ consists of one central vertex with a number of edges

radiating out from it, and the group Gv at this central vertex is trivial, hence also all

the edge homomorphisms. Then van Kampen’s theorem implies that π1(K Γ ) is the

free product of the groups at all the outer vertices.

In view of this example, we shall call π1(K Γ ) for a general graph of groups Γ the

graph product of the vertex groups Gv with respect to the edge homomorphisms ϕe .

The name for π1(K Γ ) that is generally used in the literature is the rather awkward

phrase, ‘the fundamental group of the graph of groups’.

Here is the main result we shall prove about graphs of groups:

Theorem 1B.11. If all the edge homomorphisms ϕe are injective, then K Γ is a

K(G,1) and the inclusions K(Gv ,1)֓K Γ induce injective maps on π1 .

Before giving the proof, let us look at some interesting special cases:

Example 1B.12: Free Products with Amalgamation. Suppose the graph of groups is

A←C→B , with the two maps monomorphisms. One can regard this data as speci-

fying embeddings of C as subgroups of A and B . Applying van Kampen’s theorem

to the decomposition of K Γ into its two mapping cylinders, we see that π1(K Γ ) is

the quotient of A∗B obtained by identifying the subgroup C ⊂ A with the subgroup

C ⊂ B . The standard notation for this group is A ∗C B , the free product of A and

B amalgamated along the subgroup C . According to the theorem, A ∗C B contains

both A and B as subgroups.

For example, a free product with amalgamation Z ∗Z Z can be realized by map-

ping cylinders of the maps S1←S1→S1 that are m sheeted and n sheeted covering

spaces, respectively. We studied this case in Examples 1.24 and 1.35 where we showed

that the complex K Γ is a deformation retract of the complement of a torus knot in

S3 if m and n are relatively prime. It is a basic result in 3 manifold theory that the
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complement of every smooth knot in S3 can be built up by iterated graph of groups

constructions with injective edge homomorphisms, starting with free groups, so the

theorem implies that these knot complements are K(G,1) ’s. Their universal covers

are all R3 , in fact.

Example 1B.13: HNN Extensions. Consider a graph of groups with ϕ

and ψ both monomorphisms. This is analogous to the previous case A←C→B ,

but with the two groups A and B coalesced to a single group. The group π1(K Γ ) ,
which was denoted A ∗C B in the previous case, is now denoted A∗C . To see what

this group looks like, let us regard K Γ as being obtained from K(A,1) by attaching

K(C,1)×I along the two ends K(C,1)×∂I via maps realizing the monomorphisms

ϕ and ψ . Using a K(C,1) with a single 0 cell, we see that K Γ can be obtained from

K(A,1)∨S1 by attaching cells of dimension two and greater, so π1(K Γ ) is a quotient

of A∗Z , and it is not hard to figure out that the relations defining this quotient are of

the form tϕ(c)t−1
= ψ(c) where t is a generator of the Z factor and c ranges over

C , or a set of generators for C . We leave the verification of this for the Exercises.

As a very special case, taking ϕ = ψ = 11 gives A∗A = A×Z since we can take

K Γ = K(A,1)×S1 in this case. More generally, taking ϕ = 11 with ψ an arbitrary

automorphism of A , we realize any semidirect product of A and Z as A∗A . For

example, the Klein bottle occurs this way, with ϕ realized by the identity map of S1

and ψ by a reflection. In these cases when ϕ = 11 we could realize the same group

π1(K Γ ) using a slightly simpler graph of groups, with a single vertex, labeled A , and

a single edge, labeled ψ .

Here is another special case. Suppose we take a torus, delete a small open disk,

then identify the resulting boundary circle with a longitudinal circle of the torus. This

produces a space X that happens to be homeomorphic to a subspace of the stan-

dard picture of a Klein bottle in R3 ; see Exercise 12 of §1.2. The fundamental group

π1(X) has the form (Z ∗ Z) ∗Z Z with the defining relation tb±1t−1
= aba−1b−1

where a is a meridional loop and b is a longitudinal loop on the torus. The sign

of the exponent in the term b±1 is immaterial since the two ways of glueing the

boundary circle to the longitude produce homeomorphic spaces. The group π1(X) =〈
a,b, t |||| tbt

−1aba−1b−1 〉 abelianizes to Z×Z , but to show that π1(X) is not iso-

morphic to Z∗ Z takes some work. There is a surjection π1(X)→Z∗ Z obtained by

setting b = 1. This has nontrivial kernel since b is nontrivial in π1(X) by the pre-

ceding theorem. If π1(X) were isomorphic to Z∗ Z we would then have a surjective

homomorphism Z∗Z→Z∗Z that was not an isomorphism. However, it is a theorem

in group theory that a free group F is hopfian — every surjective homomorphism

F→F must be injective. Hence π1(X) is not free.

Example 1B.14: Closed Surfaces. A closed orientable surface M of genus two or

greater can be cut along a circle into two compact surfaces M1 and M2 such that the
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closed surfaces obtained from M1 and M2 by filling in their boundary circle with a

disk have smaller genus than M . Each of M1 and M2 is the mapping cylinder of a

map from S1 to a finite graph. Namely, view Mi as obtained from a closed surface

by deleting an open disk in the interior of the 2 cell in the standard CW structure

described in Chapter 0, so that Mi becomes the mapping cylinder of the attaching

map of the 2 cell. This attaching map is not nullhomotopic, so it induces an injection

on π1 since free groups are torsionfree. Thus we have realized the original surface

M as K Γ for Γ a graph of groups of the form F1←------ Z -→F2 with F1 and F2 free and

the two maps injective. The theorem then says that M is a K(G,1) .

A similar argument works for closed nonorientable surfaces other than RP2 . For

example, the Klein bottle is obtained from two Möbius bands by identifying their

boundary circles, and a Möbius band is the mapping cylinder of the 2 sheeted covering

space S1→S1 .

Proof of 1B.11: We shall construct a covering space K̃→K Γ by gluing together copies

of the universal covering spaces of the various mapping cylinders in K Γ in such a way

that K̃ will be contractible. Hence K̃ will be the universal cover of K Γ , which will

therefore be a K(G,1) .

A preliminary observation: Given a universal covering space p : X̃→X and a con-

nected, locally path-connected subspace A ⊂ X such that the inclusion A֓ X in-

duces an injection on π1 , then each component Ã of p−1(A) is a universal cover

of A . To see this, note that p : Ã→A is a covering space, so we have injective

maps π1(Ã)→π1(A)→π1(X) whose composition factors through π1(X̃) = 0, hence

π1(Ã) = 0. For example, if X is the torus S1
×S1 and A is the circle S1

×{x0} , then

p−1(A) consists of infinitely many parallel lines in R2 , each a universal cover of A .

For a map f :A→B between connected CW complexes, let p : M̃f→Mf be the

universal cover of the mapping cylinder Mf . Then M̃f is itself the mapping cylinder

of a map f̃ :p−1(A)→p−1(B) since the line segments in the mapping cylinder struc-

ture on Mf lift to line segments in M̃f defining a mapping cylinder structure. Since

M̃f is a mapping cylinder, it deformation retracts onto p−1(B) , so p−1(B) is also

simply-connected, hence is the universal cover of B . If f induces an injection on π1 ,

then the remarks in the preceding paragraph apply, and the components of p−1(A)

are universal covers of A . If we assume further that A and B are K(G,1) ’s, then M̃f
and the components of p−1(A) are contractible, and we claim that M̃f deformation

retracts onto each component Ã of p−1(A) . Namely, the inclusion Ã֓M̃f is a homo-

topy equivalence since both spaces are contractible, and then Corollary 0.20 implies

that M̃f deformation retracts onto Ã since the pair (M̃f , Ã) satisfies the homotopy

extension property, as shown in Example 0.15.

Now we can describe the construction of the covering space K̃ of K Γ . It will be

the union of an increasing sequence of spaces K̃1 ⊂ K̃2 ⊂ ··· . For the first stage,

let K̃1 be the universal cover of one of the mapping cylinders Mf of K Γ . By the
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preceding remarks, this contains various disjoint copies of universal covers of the

two K(Gv ,1) ’s at the ends of Mf . We build K̃2 from K̃1 by attaching to each of these

universal covers of K(Gv ,1) ’s a copy of the universal cover of each mapping cylinder

Mg of K Γ meeting Mf at the end of Mf in question. Now repeat the process to

construct K̃3 by attaching universal covers of mapping cylinders at all the universal

covers of K(Gv ,1) ’s created in the previous step. In the same way, we construct K̃n+1

from K̃n for all n , and then we set K̃ =
⋃
n K̃n .

Note that K̃n+1 deformation retracts onto K̃n since it is formed by attaching

pieces to K̃n that deformation retract onto the subspaces along which they attach,

by our earlier remarks. It follows that K̃ is contractible since we can deformation

retract K̃n+1 onto K̃n during the time interval [1/2n+1,1/2n] , and then finish with a

contraction of K̃1 to a point during the time interval [1/2,1].

The natural projection K̃→K Γ is clearly a covering space, so this finishes the

proof that K Γ is a K(G,1) .

The remaining statement that each inclusion K(Gv ,1)֓K Γ induces an injection

on π1 can easily be deduced from the preceding constructions. For suppose a loop

γ :S1→K(Gv ,1) is nullhomotopic in K Γ . By the lifting criterion for covering spaces,

there is a lift γ̃ :S1→K̃ . This has image contained in one of the copies of the universal

cover of K(Gv ,1) , so γ̃ is nullhomotopic in this universal cover, and hence γ is

nullhomotopic in K(Gv ,1) . ⊔⊓

The various mapping cylinders that make up the universal cover of K Γ are ar-

ranged in a treelike pattern. The tree in question, call it T Γ , has one vertex for each

copy of a universal cover of a K(Gv ,1) in K̃ , and two vertices are joined by an edge

whenever the two universal covers of K(Gv ,1) ’s corresponding to these vertices are

connected by a line segment lifting a line segment in the mapping cylinder structure of

a mapping cylinder of K Γ . The inductive construction of K̃ is reflected in an inductive

construction of T Γ as a union of an increasing sequence of subtrees T1 ⊂ T2 ⊂ ··· .

Corresponding to K̃1 is a subtree T1 ⊂ T Γ consisting of a central vertex with a number

of edges radiating out from it, an ‘asterisk’ with possibly an infinite number of edges.

When we enlarge K̃1 to K̃2 , T1 is correspondingly enlarged to a tree T2 by attaching

a similar asterisk at the end of each outer vertex of T1 , and each subsequent enlarge-

ment is handled in the same way. The action of π1(K Γ ) on K̃ as deck transformations

induces an action on T Γ , permuting its vertices and edges, and the orbit space of T Γ
under this action is just the original graph Γ . The action on T Γ will not generally

be a free action since the elements of a subgroup Gv ⊂ π1(K Γ ) fix the vertex of T Γ
corresponding to one of the universal covers of K(Gv ,1) .

There is in fact an exact correspondence between graphs of groups and groups

acting on trees. See [Scott & Wall 1979] for an exposition of this rather nice theory.

From the viewpoint of groups acting on trees, the definition of a graph of groups is
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usually taken to be slightly more restrictive than the one we have given here, namely,

one considers only oriented graphs obtained from an unoriented graph by subdividing

each edge by adding a vertex at its midpoint, then orienting the two resulting edges

outward, away from the new vertex.

Exercises

1. Suppose a group G acts simplicially on a ∆ complex X , where ‘simplicially’ means

that each element of G takes each simplex of X onto another simplex by a linear

homeomorphism. If the action is free, show it is a covering space action.

2. Let X be a connected CW complex and G a group such that every homomorphism

π1(X)→G is trivial. Show that every map X→K(G,1) is nullhomotopic.

3. Show that every graph product of trivial groups is free.

4. Use van Kampen’s theorem to compute A∗C as a quotient of A ∗ Z , as stated in

the text.

5. Consider the graph of groups Γ having one vertex, Z , and one edge, the map Z→Z

that is multiplication by 2, realized by the 2 sheeted covering space S1→S1 . Show

that π1(K Γ ) has presentation
〈
a,b |||| bab

−1a−2 〉 and describe the universal cover

of K Γ explicitly as a product T×R with T a tree. [The group π1(K Γ ) is the first in

a family of groups called Baumslag-Solitar groups, having presentations of the form〈
a,b |||| ba

mb−1a−n
〉

. These are HNN extensions Z∗Z .]

6. Show that for a graph of groups all of whose edge homomorphisms are injective

maps Z→Z , we can choose K Γ to have universal cover a product T×R with T a

tree. Work out in detail the case that the graph of groups is the infinite sequence

Z
2
-----→ Z

3
-----→ Z

4
-----→ Z -→ ··· where the map Z

n
-----→ Z is multiplication by n . Show

that π1(K Γ ) is isomorphic to Q in this case. How would one modify this example

to get π1(K Γ ) isomorphic to the subgroup of Q consisting of rational numbers with

denominator a power of 2?

7. Show that every graph product of groups can be realized by a graph whose vertices

are partitioned into two subsets, with every oriented edge going from a vertex in the

first subset to a vertex in the second subset.

8. Show that a finite graph product of finitely generated groups is finitely generated,

and similarly for finitely presented groups.

9. If Γ is a finite graph of finite groups with injective edge homomorphisms, show that

the graph product of the groups has a free subgroup of finite index by constructing

a suitable finite-sheeted covering space of K Γ from universal covers of the mapping

cylinders in K Γ . [The converse is also true: A finitely generated group having a free

subgroup of finite index is isomorphic to such a graph product. For a proof of this

see [Scott & Wall 1979], Theorem 7.3.]


