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There are many situations in algebraic topology where the relationship between

certain homotopy, homology, or cohomology groups is expressed perfectly by an exact

sequence. In other cases, however, the relationship may be more complicated and

a more powerful algebraic tool is needed. In a wide variety of situations spectral

sequences provide such a tool. For example, instead of considering just a pair (X,A)

and the associated long exact sequences of homology and cohomology groups, one

could consider an arbitrary increasing sequence of subspaces X0 ⊂ X1 ⊂ ··· ⊂ X

with X =
⋃
iXi , and then there are associated homology and cohomology spectral

sequences. Similarly, the Mayer-Vietoris sequence for a decomposition X = A ∪ B

generalizes to a spectral sequence associated to a cover of X by any number of sets.

With this great increase in generality comes, not surprisingly, a corresponding

increase in complexity. This can be a serious obstacle to understanding spectral se-

quences on first exposure. But once the initial hurdle of ‘believing in’ spectral se-

quences is surmounted, one cannot help but be amazed at their power.

The first spectral sequence that appeared in algebraic topology, and still the most

important one, is the Serre spectral sequence which relates the homology or cohomol-

ogy groups of the fiber, base, and total space of a fibration. The homotopy groups of

these three spaces fit into a long exact sequence, but for homology or cohomology the

relationship is much more complicated, as expressed in the spectral sequence. This

increase in complexity can be seen already for a product fibration, where the homo-

topy groups of the product are just the products of the homotopy groups of the two

factors, whereas for homology one has the more complicated Künneth formula.

The first section of this chapter is devoted to the Serre spectral sequence and

some of its main applications both to general theory and specific calculations. After

this we give a brief introduction to the Adams spectral sequence and its application

to computing stable homotopy groups of spheres.
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One can think of a spectral sequence as a book consisting of a sequence of pages,

each of which is a two-dimensional array of abelian groups. On each page there are

maps between the groups, and these maps form chain complexes. The homology

groups of these chain complexes are precisely the groups which appear on the next

page. For example, in the Serre spectral sequence for homology the first few pages

have the form shown in the figure below, where each dot represents a group.

Only the first quadrant of each page is shown because outside the first quadrant all

the groups are zero. The maps forming chain complexes on each page are known as

differentials. On the first page they go one unit to the left, on the second page two

units to the left and one unit up, on the third page three units to the left and two units

up, and in general on the r th page they go r units to the left and r − 1 units up.

If one focuses on the group at the (p, q) lattice point in each page, for fixed p

and q , then as one keeps turning to successive pages, the differentials entering and

leaving this (p, q) group will eventually be zero since they will either come from or go

to groups outside the first quadrant. Hence, passing to the next page by computing

homology at the (p, q) spot with respect to these differentials will not change the

(p, q) group. Since each (p, q) group eventually stabilizes in this way, there is a

well-defined limiting page for the spectral sequence. It is traditional to denote the

(p, q) group of the r th page as Erp,q , and the limiting groups are denoted E∞p,q . In the

diagram above there are already a few stable groups on pages 2 and 3, the dots in the

lower left corner not joined by arrows to other dots. On each successive page there

will be more such dots.

The Serre spectral sequence is defined for fibrations F→X→B and relates the

homology of F , X , and B , under an added technical hypothesis which is satisfied

if B is simply-connected, for example. As it happens, the first page of the spectral

sequence can be ignored, like the preface of many books, and the important action

begins with the second page. The entries E2
p,q on the second page are given in terms

of the homology of F and B by the strange-looking formula E2
p,q = Hp

(
B;Hq(F ;G)

)

where G is a given coefficient group. (One can begin to feel comfortable with spectral
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sequences when this formula no longer looks bizarre.) After the E2 page the spectral

sequence runs its mysterious course and eventually stabilizes to the E∞ page, and this

is closely related to the homology of the total space X of the fibration. For example,

if the coefficient group G is a field then Hn(X;G) is the direct sum
⊕
pE

∞
p,n−p of the

terms along the nth diagonal of the E∞ page. For a nonfield G such as Z one can

only say this is true ‘modulo extensions’ — the fact that in a short exact sequence

of abelian groups 0→A→B→C→0 the group B need not be the direct sum of the

subgroup A and the quotient group C , as it would be for vector spaces.

As an example, suppose Hi(F ;Z) and Hi(B;Z) are zero for odd i and free abelian

for even i . The entries E2
p,q of the E2 page are then zero unless p and q are even.

Since the differentials in this page go up one row, they must all be zero, so the E3

page is the same as the E2 page. The differentials in the E3 page go three units to

the left so they must all be zero, and the E4 page equals the E3 page. The same

reasoning applies to all subsequent pages, as all differentials go an odd number of

units upward or leftward, so in fact we have E2 = E∞ . Since all the groups E∞p,n−p
are free abelian there can be no extension problems, and we deduce that Hn(X;Z)

is the direct sum
⊕
pHp

(
B;Hn−p(F ;Z)

)
. By the universal coefficient theorem this is

isomorphic to
⊕
pHp(B;Z)⊗Hn−p(F ;Z) , the same answer we would get if X were

simply the product F×B , by the Künneth formula.

The main difficulty with computing H∗(X;G) from H∗(F ;G) and H∗(B;G) in

general is that the various differentials can be nonzero, and in fact often are. There

is no general technique for computing these differentials, unfortunately. One either

has to make a deep study of the fibration in question and really understand the in-

ner workings of the spectral sequence, or one has to hope for lucky accidents that

yield purely formal calculation of differentials. The situation is somewhat better for

the cohomology version of the Serre spectral sequence. This is quite similar to the

homology spectral sequence except that differentials go in the opposite direction, as

one might guess, but there is in addition a cup product structure which in favorable

cases allows many more differentials to be computed purely formally.

It is also possible sometimes to run the Serre spectral sequence backwards, if

one already knows H∗(X;G) and wants to deduce the structure of H∗(B;G) from

H∗(F ;Z) or vice versa. In this reverse mode one does detective work to deduce the

structure of each page of the spectral sequence from the structure of the following

page. It is rather amazing that this method works as often as it does, and we will see

several instances of this.

Exact Couples

Let us begin by considering a fairly general situation, which we will later specialize

to obtain the Serre spectral sequence. Suppose one has a space X expressed as the

union of a sequence of subspaces ··· ⊂ Xp ⊂ Xp+1 ⊂ ··· . Such a sequence is called
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a filtration of X . In practice it is usually the case that Xp = ∅ for p < 0, but

we do not need this hypothesis yet. For example, X could be a CW complex with

Xp its p skeleton, or more generally the Xp ’s could be any increasing sequence of

subcomplexes whose union is X . Given a filtration of a space X , the various long exact

sequences of homology groups for the pairs (Xp, Xp−1) , with some fixed coefficient

group G understood, can be arranged neatly into the following large diagram:

The long exact sequences form ‘staircases’, with each step consisting of two arrows to

the right and one arrow down. Note that each group Hn(Xp) or Hn(Xp, Xp−1) appears

exactly once in the diagram, with absolute and relative groups in alternating columns.

We will call such a diagram of interlocking exact sequences a staircase diagram.

We may write the preceding staircase diagram more concisely as

the triangle at the right, where A is the direct sum of all the absolute

groups Hn(Xp) and E is the direct sum of all the relative groups

Hn(Xp, Xp−1) . The maps i , j , and k are the maps forming the long exact sequences

in the staircase diagram, so the triangle is exact at each of its three corners. Such a

triangle is called an exact couple, where the word ‘couple’ is chosen because there are

only two groups involved, A and E .

For the exact couple arising from the filtration with Xp the p skeleton of a CW

complex X , the map d = jk is just the cellular boundary map. This suggests that

d may be a good thing to study for a general exact couple. For a start, we have

d2 = jkjk = 0 since kj = 0, so we can form the homology group Kerd/ Imd . In

fact, something very nice now happens: There is a derived couple

shown in the diagram at the right, with

— E′ = Kerd/ Imd , the homology of E with respect to d .

— A′ = i(A) ⊂ A .

— i′ = i|A′ .

— j′(ia) = [ja] ∈ E′ . This is well-defined: ja ∈ Kerd since dja = jkja = 0; and

if ia1 = ia2 then a1 − a2 ∈ Ker i = Imk so ja1 − ja2 ∈ Im jk = Imd .

— k′[e] = ke , which lies in A′ = Im i = Ker j since e ∈ Kerd implies jke = de = 0.

Further, k′ is well-defined since [e] = 0 ∈ E′ implies e ∈ Imd ⊂ Im j = Kerk .

Lemma 5.1. The derived couple of an exact couple is exact.
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Proof: This is an exercise in diagram chasing, which we present in condensed form.

— j′i′ = 0: a′ ∈ A′ ⇒ a′ = ia ⇒ j′i′a′ = j′ia′ = [ja′] = [jia] = 0.

— Ker j′ ⊂ Im i′ : j′a′ = 0, a′ = ia ⇒ [ja] = j′a′ = 0 ⇒ ja ∈ Imd ⇒ ja = jke ⇒

a− ke ∈ Ker j = Im i ⇒ a− ke = ib ⇒ i(a− ke) = ia = i2b ⇒ a′ = ia ∈ Im i2 =

Im i′ .

— k′j′ = 0: a′ = ia ⇒ k′j′a′ = k′[ja] = kja = 0.

— Kerk′ ⊂ Im j′ : k′[e] = 0⇒ ke = 0⇒ e = ja ⇒ [e] = [ja] = j′ia = j′a′ .

— i′k′ = 0: i′k′[e] = i′ke = ike = 0.

— Ker i′ ⊂ Imk′ : i′(a′) = 0⇒ i(a′) = 0⇒ a′ = ke = k′[e] . ⊔⊓

The process of forming the derived couple can now be iterated indefinitely. The

maps d = jk are called differentials, and the sequence E, E′, ··· with differentials

d,d′, ··· is called a spectral sequence: a sequence of groups Er and differentials

dr :Er→Er with d2
r = 0 and Er+1 = Kerdr/ Imdr . Note that the pair (Er , dr ) de-

termines Er+1 but not dr+1 . To determine dr+1 one needs additional information.

This information is contained in the original exact couple, but often in a way which is

difficult to extract, so in practice one usually seeks other ways to compute the subse-

quent differentials. In the most favorable cases the computation is purely formal, as

we shall see in some examples with the Serre spectral sequence.

Let us look more closely at the earlier staircase diagram. To simplify notation, set

A1
n,p = Hn(Xp) and E1

n,p = Hn(Xp, Xp−1) . The diagram then has the following form:

A staircase diagram of this form determines an exact couple, so let us see how the

diagram changes when we pass to the derived couple. Each group A1
n,p is replaced by

a subgroup A2
n,p , the image of the term A1

n,p−1 directly above A1
n,p under the vertical

map i1 . The differentials d1 = j1k1 go two units to the right, and we replace the term

E1
n,p by the term E2

n,p = Kerd1/ Imd1 where the two d1 ’s in this formula are the d1 ’s

entering and leaving E1
n,p . The terms in the derived couple form a planar diagram

which has almost the same shape as the preceding diagram:
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The maps j2 now go diagonally upward because of the formula j2(i1a) = [j1a] ,

from the definition of the map j in the derived couple. The maps i2 and k2 still go

vertically and horizontally, as is evident from their definition, i2 being a restriction

of i1 and k2 being induced by k1 .

Now we repeat the process of forming the derived couple, producing the following

diagram in which the maps j3 now go two units upward and one unit to the right.

This pattern of changes from each exact couple to the next obviously continues in-

definitely. Each Arn,p is replaced by a subgroup Ar+1
n,p , and each Ern,p is replaced by a

subquotient Er+1
n,p — a quotient of a subgroup, or equivalently, a subgroup of a quo-

tient. Since a subquotient of a subquotient is a subquotient, we can also regard all the

Ern,p ’s as subquotients of E1
n,p , just as all the Arn,p ’s are subgroups of A1

n,p .

We now make some simplifying assumptions about the algebraic staircase dia-

gram consisting of the groups A1
n,p and E1

n,p . These conditions will be satisfied in the

application to the Serre spectral sequence. Here is the first condition:

(i) All but finitely many of the maps in each A column are isomorphisms. By exact-

ness this is equivalent to saying that only finitely many terms in each E column

are nonzero.

Thus at the top of each A column the groups An,p have a common value A1
n,−∞ and

at the bottom of the A column they have the common value A1
n,∞ . For example, in

the case that A1
n,p = Hn(Xp) , if we assume that Xp = ∅ for p < 0 and the inclusions

Xp֓X induce isomorphisms on Hn for sufficiently large p , then (i) is satisfied, with

A1
n,−∞ = Hn(∅) = 0 and A1

n,∞ = Hn(X) .

Since the differential dr goes upward r −1 rows, condition (i) implies that all the

differentials dr into and out of a given E column must be zero for sufficiently large
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r . In particular, this says that for fixed n and p , the terms Ern,p are independent of

r for sufficiently large r . These stable values are denoted E∞n,p . Our immediate goal

is to relate these groups E∞n,p to the groups A1
n,∞ or A1

n,−∞ under one of the following

two additional hypotheses:

(ii) A1
n,−∞ = 0 for all n .

(iii) A1
n,∞ = 0 for all n .

If we look in the r th derived couple we see the term Ern,p embedded in an exact

sequence

Ern+1,p+r−1
kr-----→Arn,p+r−2

i
-----→Arn,p+r−1

jr
-----→Ern,p

kr-----→Arn−1,p−1
i
-----→Arn−1,p

jr
-----→Ern−1,p−r+1

Fixing n and p and letting r be large, the first and last E terms in this sequence are

zero by condition (i). If we assume condition (ii) holds, the last two A terms in the

sequence are zero by the definition of Ar . So in this case the exact sequence expresses

Ern,p as the quotient Arn,p+r−1/i(A
r
n,p+r−2) , or in other words, ir−1(A1

n,p)/i
r (A1

n,p−1) ,

a quotient of subgroups of A1
n,p+r−1 = A

1
n,∞ . Thus E∞n,p is isomorphic to the quotient

Fpn/F
p−1
n where Fpn denotes the image of the map A1

n,p→A
1
n,∞ . Summarizing, we have

shown the first of the following two statements:

Proposition 5.2. Under the conditions (i) and (ii) the stable group E∞n,p is isomor-

phic to the quotient Fpn/F
p−1
n for the filtration ··· ⊂ Fp−1

n ⊂ Fpn ⊂ ··· of A1
n,∞ by

the subgroups Fpn = Im
(
A1
n,p→A

1
n,∞

)
. Assuming (i) and (iii), E∞n,p is isomorphic to

Fn−1
p /Fn−1

p−1 for the filtration ··· ⊂ Fn−1
p−1 ⊂ F

n−1
p ⊂ ··· of A1

n−1,−∞ by the subgroups

Fn−1
p = Ker

(
A1
n−1,−∞→A

1
n−1,p

)
.

Proof: For the second statement, condition (iii) says that the first two A terms in the

previous displayed exact sequence are zero, so the exact sequence represents Ern,p as

the kernel of the map Arn−1,p−1→A
r
n−1,p . For large r all elements of these two groups

come from A1
n−1,−∞ under iterates of the vertical maps i , so Ern,p is isomorphic to

the quotient of the subgroup of A1
n−1,−∞ mapping to zero in A1

n−1,p by the subgroup

mapping to zero in A1
n−1,p−1 . ⊔⊓

In the topological application where we start with the staircase diagram of ho-

mology groups associated to a filtration of a space X , we have Hn(X) filtered by the

groups Fpn = Im
(
Hn(Xp)→Hn(X)

)
. The group

⊕
p F

p
n/F

p−1
n is called the associated

graded group of the filtered group Hn(X) . The proposition then says that this graded

group is isomorphic to
⊕
pE

∞
n,p . More concisely, one says simply that the spectral se-

quence converges to H∗(X) . We remind the reader that these are homology groups

with coefficients in an arbitrary abelian group G which we have omitted from the

notation, for simplicity.

The analogous situation for cohomology is covered by the condition (iii). Here we

again have a filtration of X by subspaces Xp with Xp = ∅ for p < 0, and we assume
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that the inclusion Xp֓ X induces an isomorphism on Hn for p sufficiently large

with respect to n . The associated staircase diagram has the form

We have isomorphisms at the top of each A column and zeros at the bottom, so the

conditions (i) and (iii) are satisfied. Hence we have a spectral sequence converging

to H∗(X) . If we modify the earlier notation and now write A
n,p
1 = Hn(Xp) and

E
n,p
1 = Hn(Xp, Xp−1) , then after translating from the old notation to the new we

find that Hn(X) is filtered by the subgroups Fnp = Ker
(
Hn(X)→Hn(Xp−1)

)
with

En,p∞ ≈ Fnp /F
n
p+1 .

The Serre Spectral Sequence for Homology

Now we specialize to the situation of a fibration π :X→B with B a path-connected

CW complex and we filter X by the subspaces Xp = π
−1(Bp) , Bp being the p skeleton

of B . Since (B, Bp) is p connected, the homotopy lifting property implies that (X,Xp)

is also p connected, so the inclusion Xp֓X induces an isomorphism on Hn(−;G) if

n < p . This, together with the fact that Xp = ∅ for p < 0, is enough to guarantee that

the spectral sequence for homology with coefficients in G associated to this filtration

of X converges to H∗(X;G) , as we observed a couple pages back.

The E1 term consists of the groups E1
n,p = Hn(Xp, Xp−1;G) . These are nonzero

only for n ≥ p since (Bp, Bp−1) is (p − 1) connected and hence so is (Xp, Xp−1) . In

view of this we make a change of notation by setting n = p + q , and then we use the

parameters p and q instead of n and p . Thus our spectral sequence now has its E1

page consisting of the terms E1
p,q = Hp+q(Xp, Xp−1;G) , and these are nonzero only

when p ≥ 0 and q ≥ 0. In the old notation we had differentials dr :Ern,p→E
r
n−1,p−r ,

so in the new notation we have dr :Erp,q→E
r
p−r ,q+r−1 .

What makes this spectral sequence so useful is the fact that there is a very nice

formula for the entries on the E2 page in terms of the homology groups of the fiber

and the base space. This formula takes its simplest form for fibrations satisfying a

mild additional hypothesis that can be regarded as a sort of orientability condition

on the fibration. To state this, let us recall a basic construction for fibrations. Under

the assumption that B is path-connected, all the fibers Fb = π
−1(b) are homotopy

equivalent to a fixed fiber F since each path γ in B lifts to a homotopy equivalence

Lγ :Fγ(0)→Fγ(1) between the fibers over the endpoints of γ , as shown in the proof of

Proposition 4.61. In particular, restricting γ to loops at a basepoint of B we obtain
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homotopy equivalences Lγ :F→F for F the fiber over the basepoint. Using properties

of the association γ֏ Lγ shown in the proof of 4.61 it follows that when we take

induced homomorphisms on homology, the association γ֏ Lγ∗ defines an action

of π1(B) on H∗(F ;G) . The condition we are interested in is that this action is trivial,

meaning that Lγ∗ is the identity for all loops γ .

Theorem 5.3. Let F→X→B be a fibration with B path-connected. If π1(B) acts

trivially on H∗(F ;G) , then there is a spectral sequence {Erp,q, dr} with :

(a) dr :Erp,q→E
r
p−r ,q+r−1 and Er+1

p,q = Kerdr/ Imdr at Erp,q .

(b) stable terms E∞p,n−p isomorphic to the successive quotients Fpn/F
p−1
n in a filtration

0 ⊂ F0
n ⊂ ··· ⊂ F

n
n = Hn(X;G) of Hn(X;G) .

(c) E2
p,q ≈ Hp(B;Hq(F ;G)) .

It is instructive to look at the special case that X is the product B×F . The Künneth

formula and the universal coefficient theorem then combine to give an isomorphism

Hn(X;G) ≈
⊕
pHp(B;Hn−p(F ;G)) . This is what the spectral sequence yields when all

differentials are zero, which implies that E2 = E∞ , and when all the group extensions

in the filtration of Hn(X;G) are trivial, so that the latter group is the direct sum of the

quotients Fpn/F
p−1
n . Nontrivial differentials mean that E∞ is ‘smaller’ than E2 since in

computing homology with respect to a nontrivial differential one passes to proper sub-

groups and quotient groups. Nontrivial extensions can also result in smaller groups.

For example, the middle Z in the short exact sequence 0→Z→Z→Zn→0 is ‘smaller’

than the product of the outer two groups, Z⊕Zn . Thus we may say that H∗(B×F ;G)

provides an upper bound on the size of H∗(X;G) , and the farther X is from being a

product, the smaller its homology is.

An extreme case is when X is contractible, as for example in a path space fibration

ΩX→PX→X . Let us look at two examples of this type, before getting into the proof

of the theorem.

Example 5.4. Using the fact that S1 is a K(Z,1) , let us compute the homology of

a K(Z,2) without using the fact that CP∞ happens to be a K(Z,2) . We apply the

Serre spectral sequence to the pathspace fibration F→P→B where B is a K(Z,2)

and P is the space of paths in B starting at the basepoint, so P is contractible and

the fiber F is the loopspace of B , a K(Z,1) . Since B is simply-connected, the Serre

spectral sequence can be applied for homology with Z coefficients. Using the fact that

Hi(F ;Z) is Z for i = 0,1 and 0 otherwise, only the first two rows of the E2 page can

be nonzero. These have the following form.
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Since the total space P is contractible, only the Z in the lower left corner survives to

the E∞ page. Since none of the differentials d3, d4, ··· can be nonzero, as they go

upward at least two rows, the E3 page must equal the E∞ page, with just the Z in the

(0,0) position. The key observation is now that in order for the E3 page to have this

form, all the differentials d2 in the E2 page going from the q = 0 row to the q = 1

row must be isomorphisms, except for the one starting at the (0,0) position. This

is because any element in the kernel or cokernel of one of these differentials would

give a nonzero entry in the E3 page. Now we finish the calculation of H∗(B) by an

inductive argument. By what we have just said, the H1(B) entry in the lower row is

isomorphic to the implicit 0 just to the left of the Z in the upper row. Next, the H2(B)

in the lower row is isomorphic to the Z in the upper row. And then for each i > 2,

the Hi(B) in the lower row is isomorphic to the Hi−2(B) in the upper row. Thus we

obtain the result that Hi(K(Z,2);Z) is Z for i even and 0 for i odd.

Example 5.5. In similar fashion we can compute the homology of ΩSn using the

pathspace fibration ΩSn→P→Sn . The case n = 1 is trivial since ΩS1 has con-

tractible components, as one sees by lifting loops to the universal cover of S1 . So we

assume n ≥ 2, which means the base space Sn of the fibration is simply-connected

so we have a Serre spectral sequence for homol-

ogy. Its E2 page is nonzero only in the p = 0

and p = n columns, which each consist of the

homology groups of the fiber ΩSn . As in the

preceding example, the E∞ page must be triv-

ial, with just a Z in the (0,0) position. The only

differential which can be nonzero is dn , so we

have E2 = E3 = ··· = En and En+1 = ··· = E∞ .

The dn differentials from the p = n column to

the p = 0 column must be isomorphisms, apart from the one going to the Z in the

(0,0) position. It follows by induction that Hi(ΩSn;Z) is Z for i a multiple of n− 1

and 0 for all other i .

This calculation could also be made without spectral sequences, using Theo-

rem 4J.1 which says that ΩSn is homotopy equivalent to the James reduced product

JSn−1 , whose cohomology (hence also homology) is computed in §3.2.

Now we give an example with slightly more complicated behavior of the differen-

tials and also nontrivial extensions in the filtration of H∗(X) .

Example 5.6. To each short exact sequence of groups 1→A→B→C→1 there is

associated a fibration K(A,1)→K(B,1)→K(C,1) that can be constructed by realizing

the homomorphism B→C by a map K(B,1)→K(C,1) and then converting this into

a fibration. From the associated long exact sequence of homotopy groups one sees

that the fiber is a K(A,1) . For this fibration the action of the fundamental group
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of the base on the homology of the fiber will generally be nontrivial, but it will be

trivial for the case we wish to consider now, the fibration associated to the sequence

0→Z2→Z4→Z2→0, using homology with Z coefficients, since RP∞ is a K(Z2,1)

and Hn(RP∞;Z) is at most Z2 for n > 0, while for n = 0 the action is trivial since in

general π1(B) acts trivially on H0(F ;G) whenever F is path-connected.

A portion of the E2 page of the spectral sequence is shown at the left.

If we were dealing with the product fibration with total space

K(Z2,1)×K(Z2,1) , the Künneth formula implies that all

the differentials would be zero and the extensions

would be trivial. However, for the fibration

with total space K(Z4,1) we will show

that the only nontrivial differen-

tials are those indicated by

arrows, hence the only

terms that survive to

the E∞ page are the

circled groups. To see this we look along each diagonal line p + q = n . The terms

along this diagonal are the successive quotients for some filtration of Hn(K(Z4,1);Z) ,

which is Z4 for n odd, and 0 for even n > 0. This means that by the time we get to

E∞ all the Z2 ’s in the unshaded diagonals in the diagram must have become 0, and

along each shaded diagonal all but two of the Z2 ’s must have become 0. To see that

the differentials are as drawn we start with the n = 1 diagonal. There is no chance

of nonzero differentials here so both the Z2 ’s in this diagonal survive to E∞ . In the

n = 2 diagonal the Z2 must disappear, and this can only happen if it is hit by the

differential originating at the Z2 in the (3,0) position. Thus both these Z2 ’s disap-

pear in E3 . This leaves two Z2 ’s in the n = 3 diagonal, which must survive to E∞ , so

there can be no nonzero differentials originating in the n = 4 diagonal. The two Z2 ’s

in the n = 4 diagonal must then be hit by differentials from the n = 5 diagonal, and

the only possibility is the two differentials indicated. This leaves just two Z2 ’s in the

n = 5 diagonal, so these must survive to E∞ . The pattern now continues indefinitely.

Proof of Theorem 5.3: We will first give the proof when B is a CW complex and then at

the end give the easy reduction to this special case. When B is a CW complex we have

already proved statements (a) and (b). To prove (c) we will construct an isomorphism

of chain complexes

The lower row is the cellular chain complex for B with coefficients in Hq(F ;G) , so (c)

will follow.
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The isomorphisms Ψ will be constructed via the following commutative diagram:

Let Φα :Dpα→B
p be a characteristic map for the p cell epα of B , so the restriction

of Φα to the boundary sphere Sp−1
α is an attaching map for epα and the restriction

of Φα to Dpα − S
p−1
α is a homeomorphism onto epα . Let D̃pα = Φ∗α(Xp) , the pullback

fibration over Dpα , and let S̃p−1
α be the part of D̃pα over Sp−1

α . We then have a map

Φ̃ :
∐
α (D̃

p
α, S̃

p−1
α ) -→ (Xp, Xp−1) . Since Bp−1 is a deformation retract of a neighbor-

hood N in Bp , the homotopy lifting property implies that the neighborhood π−1(N)

of Xp−1 in Xp deformation retracts onto Xp−1 , where the latter deformation retrac-

tion is in the weak sense that points in the subspace need not be fixed during the

deformation, but this is still sufficient to conclude that the inclusion Xp−1֓π−1(N)

is a homotopy equivalence. Using the excision property of homology, this implies that

Φ̃ induces the isomorphism Φ̃∗ in the diagram. The isomorphism in the lower row of

the diagram comes from the splitting of Hp(B
p, Bp−1;Z) as the direct sum of Z ’s, one

for each p cell of B .

To construct the left-hand vertical isomorphism in the diagram, consider a fibra-

tion D̃p→Dp . We can partition the boundary sphere Sp−1 of Dp into hemispheres

Dp−1
± intersecting in an equatorial Sp−2 . Iterating this decomposition, and letting

tildes denote the subspaces of D̃p lying over these subspaces of Dp , we look at the

following diagram, with coefficients in G implicit:

The first boundary map is an isomorphism from the long exact sequence for the triple

(D̃p, S̃p−1, D̃p−1
− ) using the fact that D̃p deformation retracts to D̃p−1

− , lifting the

corresponding deformation retraction of Dp onto Dp−1
− . The other boundary maps

are isomorphisms for the same reason. The isomorphisms i∗ come from excision.

Combining these isomorphisms we obtain the isomorphisms ε . Taking D̃p to be

D̃pα , the isomorphism εpα in the earlier diagram is then obtained by composing the

isomorphisms ε with isomorphisms Hq(D̃
0
α;G) ≈ Hq(Fα;G) ≈ Hq(F ;G) where Fα =

Φα(D̃0
α) , the first isomorphism being induced by Φα and the second being given by

the hypothesis of trivial action, which guarantees that the isomorphisms Lγ∗ depend

only on the endpoints of γ .

Having identified E1
p,q with Hp(B

p, Bp−1;Z)⊗Hq(F ;G) , we next identify the dif-

ferential d1 with ∂ ⊗11. Recall that the cellular boundary map ∂ is determined by

the degrees of the maps Sp−1
α →S

p−1
β obtained by composing the attaching map ϕα
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for the cell epα with the quotient maps Bp−1→Bp−1/Bp−2→Sp−1
β where the latter map

collapses all (p−1) cells except e
p−1
β to a point, and the resulting sphere is identified

with S
p−1
β using the characteristic map for e

p−1
β .

On the summand Hq(F ;G) of Hp+q(Xp, Xp−1;G) corresponding to the cell epα
the differential d1 is the composition through the lower left corner in the following

commutative diagram:

By commutativity of the left-hand square this composition through the lower left

corner is equivalent to the composition using the middle vertical map. To compute

this composition we are free to deform ϕα by homotopy and lift this to a homotopy

of ϕ̃α . In particular we can homotope ϕα so that it sends a hemisphere Dp−1
α to

Xp−2 , and then the right-hand vertical map in the diagram is defined. To determine

this map we will use another commutative diagram whose left-hand map is equivalent

to the right-hand map in the previous diagram:

To obtain the middle vertical map in this diagram we perform another homotopy of

ϕα so that it restricts to homeomorphisms from the interiors of a finite collection of

disjoint disks D
p−1
i in Dp−1

α onto e
p−1
β and sends the rest of Dp−1

α to the complement

of e
p−1
β in Bp−1 . (This can be done using Lemma 4.10 for example.) Via the isomor-

phisms Ψ we can identify some of the groups in the diagram with Hq(F ;G) . The

map across the top of the diagram then becomes the diagonal map, x֏ (x, ··· , x) .

It therefore suffices to show that the right-hand vertical map, when restricted to the

Hq(F ;G) summand corresponding to Di , is 11 or −11 according to whether the degree

of ϕα on Di is 1 or −1.

The situation we have is a pair of fibrations D̃k→Dk and D̂k→Dk and a map ϕ̃

between them lifting a homeomorphism ϕ :Dk→Dk . If the degree of ϕ is 1, we may

homotope it, as a map of pairs (Dk, Sk−1)→(Dk, Sk−1) , to be the identity map and lift

this to a homotopy of ϕ̃ . Then the evident naturality of εk gives the desired result.

When the degree of ϕ is −1 we may assume it is a reflection, namely the reflection

interchanging D0
+ and D0

− and taking every other Di± to itself. Then naturality gives

a reduction to the case k = 1 with ϕ a reflection of D1 . In this case we can again use

naturality to restate what we want in terms of reparametrizing D1 by the reflection

interchanging its two ends. The long exact sequence for the pair (D̃1, S̃0) breaks up
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into short exact sequences

0 -→Hq+1(D̃
1, S̃0;G)

∂
-----→Hq(S̃

0;G)
i∗-----→Hq(D̃

1;G) -→0

The inclusions D̃0
±֓ D̃1 are homotopy equivalences, inducing isomorphisms on ho-

mology, so we can view Hq(S̃
0;G) as the direct sum of two copies of the same group.

The kernel of i∗ consists of pairs (x,−x) in this direct sum, so switching the roles

of D0
+ and D0

− in the definition of ε has the effect of changing the sign of ε . This

finishes the proof when B is a CW complex.

To obtain the spectral sequence when B is not a CW complex we let B′→B be a

CW approximation to B , with X′→B′ the pullback of the given fibration X→B . There

is a map between the long exact sequences of homotopy groups for these two fibra-

tions, with isomorphisms between homotopy groups of the fibers and bases, hence

also isomorphisms for the total spaces. By the Hurewicz theorem and the universal

coefficient theorem the induced maps on homology are also isomorphisms. The ac-

tion of π1(B
′) on H∗(F ;G) is the pullback of the action of π1(B) , hence is trivial

by assumption. So the spectral sequence for X′→B′ gives a spectral sequence for

X→B . ⊔⊓

Serre Classes

We turn now to an important theoretical application of the Serre spectral se-

quence. Let C be one of the following classes of abelian groups:

(a) FG , finitely generated abelian groups.

(b) TP , torsion abelian groups whose elements have orders divisible only by primes

from a fixed set P of primes.

(c) FP , the finite groups in TP .

In particular, P could be all primes, and then TP would be all torsion abelian groups

and FP all finite abelian groups. A key property for all three classes C in (a), (b), (c) is:

(1) For a short exact sequence of abelian groups 0→A→B→C→0, the group B is

in C iff A and C are both in C .

A class of abelian groups satisfying this condition is often called a Serre class. One

usually assumes the class is a union of isomorphism classes as well, so any group

isomorphic to a group in C is also in C .

For each of the classes C we will show:

Theorem 5.7. If X is simply-connected, then πn(X) ∈ C for all n iff Hn(X) ∈ C for

all n > 0 . This holds also if X is path-connected and abelian, that is, the action of

π1(X) on πn(X) is trivial for all n ≥ 1 .

Here Hn(X) means Hn(X;Z) , and we will use this abridged notation throughout

the proof.
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The theorem says in particular that a simply-connected space has finitely gener-

ated homotopy groups iff it has finitely generated homology groups. For example, this

says that πi(S
n) is finitely generated for all i and n . Prior to this theorem of Serre

it was only known that these homotopy groups were countable, as a consequence of

simplicial approximation.

For nonabelian spaces the theorem can easily fail. As a simple example, the space

S1∨S2 has π2 nonfinitely generated although Hn is finitely generated for all n . And

in §4.A there are more complicated examples of K(π,1) ’s with π finitely generated

but Hn not finitely generated for some n . For the class of finite groups, RP2n provides

an example of a space with finite reduced homology groups but at least one infinite

homotopy group, namely π2n . There are no such examples in the opposite direction,

as finite homotopy groups always implies finite reduced homology groups, as we will

show at the end of this subsection.

The theorem follows easily from a version of the Hurewicz theorem that gives con-

ditions for the Hurewicz homomorphism h :πn(X)→Hn(X) to be an isomorphism

modulo the class C , meaning that the kernel and cokernel of h belong to C .

Theorem 5.8. If a path-connected abelian space X has πi(X) ∈ C for i < n then

the Hurewicz homomorphism h :πn(X)→Hn(X) is an isomorphism mod C .

For the proof we need two lemmas.

Lemma 5.9. Let F→X→B be a fibration of path-connected spaces, with π1(B) act-

ing trivially on H∗(F) . Then if two of F , X , and B have Hn ∈ C for all n > 0 , so

does the third.

Proof: The only fact we will use about the classes C , besides the earlier property (1),

is the following:

(2) If A and B are in C , then A⊗B and Tor(A, B) are in C .

It is not difficult to check that this holds for each of the classes FG , TP . and FP .

There are three cases in the proof of the lemma:

Case 1: Hn(F),Hn(B) ∈ C for all n > 0. In the Serre spectral sequence we then have

E2
p,q = Hp(B;Hq(F)) ≈ Hp(B)⊗Hq(F)

⊕
Tor(Hp−1(B),Hq(F)) ∈ C for (p, q) ≠ (0,0) .

Suppose by induction on r that Erp,q ∈ C for (p, q) ≠ (0,0) . Then the subgroups

Kerdr and Imdr are in C , hence their quotient Er+1
p,q is also in C . Thus E∞p,q ∈ C

for (p, q) ≠ (0,0) . The groups E∞p,n−p are the successive quotients in a filtration

0 ⊂ F0
n ⊂ ··· ⊂ F

n
n = Hn(X) , so it follows by induction on p that the subgroups Fpn

are in C for n > 0, and in particular Hn(X) ∈ C .

Case 2: Hn(F),Hn(X) ∈ C for all n > 0. Since Hn(X) ∈ C , the subgroups filtering

Hn(X) lie in C , hence also their quotients E∞p,n−p . Assume inductively that Hp(B) ∈ C

for 0 < p < k . As in Case 1 this implies E2
p,q ∈ C for p < k , (p, q) ≠ (0,0) , and hence

also Erp,q ∈ C for the same values of p and q .
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Since Er+1
k,0 = Kerdr ⊂ E

r
k,0 , we have a short exact sequence

0 -→Er+1
k,0 -→Erk,0

dr-----→ Imdr -→0

with Imdr ⊂ E
r
k−r ,r−1 , hence Imdr ∈ C since Erk−r ,r−1 ∈ C by the preceding para-

graph. The short exact sequence then says that Er+1
k,0 ∈ C iff Erk,0 ∈ C . By downward

induction on r we conclude that E2
k,0 = Hk(B) ∈ C .

Case 3: Hn(B),Hn(X) ∈ C for all n > 0. This case is quite similar to Case 2 and will

not be used in the proof of the theorem, so we omit the details. ⊔⊓

Lemma 5.10. If π ∈ C then Hk(K(π,n)) ∈ C for all k,n > 0 .

Proof: Using the path fibration K(π,n−1)→P→K(π,n) and the previous lemma it

suffices to do the case n = 1. For the classes FG and FP the group π is a product of

cyclic groups in C , and K(G1,1)×K(G2,1) is a K(G1×G2,1) , so by either the Künneth

formula or the previous lemma applied to product fibrations, which certainly satisfy

the hypothesis of trivial action, it suffices to do the case that π is cyclic. If π = Z we

are in the case C = FG , and S1 is a K(Z,1) , so obviously Hk(S
1) ∈ C . If π = Zm we

know that Hk(K(Zm,1)) is Zm for odd k and 0 for even k > 0, since we can choose

an infinite-dimensional lens space for K(Zm,1) . So Hk(K(Zm,1)) ∈ C for k > 0.

For the class TP we use the construction in §1.B of a K(π,1) CW complex Bπ

with the property that for any subgroup G ⊂ π , BG is a subcomplex of Bπ . An

element x ∈ Hk(Bπ) with k > 0 is represented by a singular chain
∑
iniσi with

compact image contained in some finite subcomplex of Bπ . This finite subcomplex

can involve only finitely many elements of π , hence is contained in a subcomplex BG

for some finitely generated subgroup G ⊂ π . Since G ∈ FP , by the first part of the

proof we know that the element of Hk(BG) represented by
∑
iniσi has finite order

divisible only by primes in P , so the same is true for its image x ∈ Hk(Bπ) . ⊔⊓

Proof of 5.7 and 5.8: We assume first that X is simply-connected. Consider a Post-

nikov tower for X ,

··· -→Xn -→Xn−1 -→··· -→X2 = K(π2(X),2)

where Xn→Xn−1 is a fibration with fiber Fn = K(πn(X),n) . If πi(X) ∈ C for all i ,

then by induction on n the two lemmas imply that Hi(Xn) ∈ C for i > 0. Up to ho-

motopy equivalence, we can build Xn from X by attaching cells of dimension greater

than n+1, so Hi(X) ≈ Hi(Xn) for n ≥ i , and therefore Hi(X) ∈ C for all i > 0. This

proves one half of Theorem 5.7, and we will use this in the proof of 5.8.

The Hurewicz maps πn(X)→Hn(X) and πn(Xn)→Hn(Xn) are equivalent, and

we will treat the latter via the fibration Fn→Xn→Xn−1 . The associated spectral se-

quence has nothing between the 0th and nth rows, so the first interesting differential

is dn+1 :Hn+1(Xn−1)→Hn(Fn) . This fits into a five-term exact sequence coming from

the filtration of Hn(Xn) :
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Note that the map Hn(Fn)→Hn(Xn) given by the composition through E∞0,n is just

the map induced by the inclusion Fn→Xn since E∞0,n is the first term in the filtration

of Hn(Xn) , the image of Hn of the fibers over the 0 skeleton of Xn−1 , and all these

fibers have the same image under Hn since Xn−1 is path-connected so we can restrict

to any one of them.

If we assume that πi(X) ∈ C for i < n then πi(Xn−1) ∈ C for all i , so by the first

paragraph of the proof the first and fourth terms of the exact sequence above are in

C , and hence the map Hn(Fn)→Hn(Xn) is an isomorphism

mod C . In the commutative square shown at the right the

upper map is an isomorphism from the long exact sequence

of the fibration. The left-hand map is an isomorphism by

the usual Hurewicz theorem since F is (n − 1) connected. We have just seen that

the lower map is an isomorphism mod C , so it follows that this is also true for the

right-hand map. This finishes the proof for X simply-connected.

In case X is not simply-connected but just abelian we can apply the same argu-

ment using a Postnikov tower of principal fibrations Fn→Xn→Xn−1 . As observed in

§4.3, these fibrations have trivial action of π1(Xn−1) on πn(Fn) , which means that

the homotopy equivalences Fn→Fn inducing this action are homotopic to the identity

since Fn is an Eilenberg-MacLane space. Hence the induced action on Hi(Fn) is also

trivial, and the Serre spectral sequence can be applied just as in the simply-connected

case. ⊔⊓

For the sake of completeness we now show:

Proposition 5.11. If a path-connected space X has πn(X) finite for all n then

Hn(X) is finite for all n > 0 .

Proof: First we consider the special case that X is a K(G,1) with G a finite group. An

explicit ∆ complex BG which is a K(G,1) is constructed in Example 1B.7. This has

n simplices corresponding to symbols [g1|g2| ··· |gn] with each gi an element of G ,

so BG has only finitely many simplices in each dimension. Hence the homology groups

of BG are finitely generated. To see that Hn(BG) is finite when n > 0 we use the

transfer homomorphisms defined in §3.G.For the universal cover π :EG→BG there

is a transfer homomorphism τ :Hn(BG)→Hn(EG) obtained by taking all lifts to EG

of each singular n simplex in BG , and the composition π∗τ∗ :Hn(BG)→Hn(BG) is

multiplication by the number of sheets in the covering space, which equals the order of

G . Since EG is contractible this composition π∗τ∗ is zero when n > 0, so we see that
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each element of Hn(BG) has finite order dividing the order of G if n > 0. Combined

with the earlier finite generation, this shows that Hn(BG) is finite for n > 0.

For a general CW complex X with finite homotopy groups, the first stage of its

Postnikov tower gives rise to a fibration F→X→BG where the second map induces

an isomorphism π1(X) ≈ G . The fiber F is simply-connected and has the same

higher homotopy groups as X so these are finite. Hence by Theorem 5.7 the reduced

homology groups of F are all finite. Now we consider the Serre spectral sequence for

this fibration. The term E1
p,q is the group of cellular p chains in BG with coefficients

in Hq(F) . For q > 0 this chain group is finite since BG has finitely many cells in each

dimension and Hq(F) is finite. Hence Erp,q is finite for all r when q > 0. For q = 0

the action of π1(BG) on H0(F) is trivial so E2
p,0 = Hp(BG) which is finite for p > 0.

Thus all the groups in the spectral sequence are finite except for Er0,0 and so Hn(X)

is finite for each n > 0. ⊔⊓

Generalizations and Further Properties

Fiber Bundles

The Serre spectral sequence is valid for fiber bundles as well as for fibrations.

Given a fiber bundle p :E→B , the map p can be converted into a fibration by the usual

pathspace construction. The map from the fiber bundle to the fibration then induces

isomorphisms on homotopy groups of the base and total spaces, hence also for the

fibers by the five-lemma, so the map induces isomorphisms on homology groups as

well, by the relative Hurewicz theorem. For fiber bundles as well as fibrations there

is a notion of the fundamental group of the base acting on the homology of the fiber,

and one can check that this agrees with the action we have defined for fibrations.

Alternatively one could adapt the proof of the main theorem to fiber bundles,

using a few basic facts about fiber bundles such as the fact that a fiber bundle with

base a disk is a product bundle.

Relative Versions

There is a relative version of the spectral sequence. Given a fibration F→X π
-----→B

and a subspace B′ ⊂ B , let X′ = π−1(B′) , so we have also a restricted fibration

F→X′→B′ . In this situation there is a spectral sequence converging to H∗(X,X
′;G)

with E2
p,q = Hp

(
B, B′;Hq(F ;G)

)
, assuming once again that π1(B) acts trivially on

H∗(F ;G) . To obtain this generalization we first assume that (B, B′) is a CW pair,

and we modify the original staircase diagram by replacing the pairs (Xp, Xp−1) by the

triples (Xp ∪X
′, Xp−1 ∪X

′, X′) . The A columns of the diagram consist of the groups

Hn(Xp∪X
′, X′;G) and the E columns consist of the groups Hn(Xp∪X

′, Xp−1∪X
′;G) .

Convergence of the spectral sequence to H∗(X,X
′;G) follows just as before since

Hn(Xp∪X
′, X′;G) = Hn(X,X

′;G) for sufficiently large p . The identification of the E2
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terms also proceeds just as before, the only change being that one ignores everything

in X′ and B′ . To treat the case that (B, B′) is not a CW pair, we may take a CW pair

approximating (B, B′) , as in §4.1.

Local Coefficients

There is a version of the Serre spectral sequence for the case that the fundamental

group of the base space does not act trivially on the homology of the fiber. The only

change in the statement of the theorem is to regard Hp
(
B;Hq(F ;G)

)
as homology with

local coefficients. The latter concept is explained in §3.H, and the reader familiar with

this material should have no difficulty is making the necessary small modifications in

the proof to cover this case.

General Homology Theories

The construction of the Serre spectral sequence works equally well for a general

homology theory, provided one restricts the base space B to be a finite-dimensional

CW complex. There is certainly a staircase diagram with ordinary homology replaced

by any homology theory h∗ , and the finiteness condition on B says that the filtration

of X is finite, so the convergence condition (ii) holds trivially. The proof of the theorem

shows that E2
p,q = Hp(B;hq(F)) . A general homology theory need not have hq = 0 for

q < 0, so the spectral sequence can occupy the fourth quadrant as well as the first.

However, the hypothesis that B is finite-dimensional guarantees that only finitely

many columns are nonzero, so all differentials in Er are zero when r is sufficiently

large. For infinite-dimensional B the convergence of the spectral sequence can be a

more delicate question.

As a special case, if the fibration is simply the identity map X→X we obtain a

spectral sequence converging to h∗(X) with E2
p,q = Hp(X;hq(point)) . This is known

as the Atiyah-Hirzebruch spectral sequence, as is its cohomology analog.

Naturality

The Serre spectral sequence satisfies predictable naturality properties. Suppose

we are given two fibrations and a map between them, a commu-

tative diagram as at the right. Suppose also that the hypotheses

of the main theorem are satisfied for both fibrations. Then the

naturality properties are:

(a) There are induced maps f r∗ :Erp,q→E
′r
p,q commuting with differentials, with f r+1

∗

the map on homology induced by f r∗ .

(b) The map f̃∗ :H∗(X;G)→H∗(X
′;G) preserves filtrations, inducing a map on suc-

cessive quotient groups which is the map f∞∗ .

(c) Under the isomorphisms E2
p,q ≈ Hp

(
B;Hq(F ;G)

)
and E′2p,q ≈ Hp

(
B′;Hq(F

′;G)
)

the map f 2
∗ corresponds to the map induced by the maps B→B′ and F→F ′ .

To prove these it suffices to treat the case that B and B′ are CW complexes, by natural-

ity properties of CW approximations. The map f can then be deformed to a cellular
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map, with a corresponding lifted deformation of f̃ . Then f̃ induces a map of stair-

case diagrams, and statements (a) and (b) are obvious. For (c) we must reexamine the

proof of the main theorem to see that the isomorphisms Ψ commute with the maps

induced by f̃ and f . It suffices to look at what is happening over cells epα of B and

e
p
β of B′ . We may assume f has been deformed so that fΦα sends the interiors of

disjoint subdisks D
p
i of Dpα homeomorphically onto e

p
β and the rest of Dpα to the

complement of e
p
β . Then we have a diagram similar to one in the proof of the main

theorem:

This gives a reduction to the easy situation that f is a homeomorphism Dp→Dp ,

which one can take to be either the identity or a reflection. (Further details are left to

the reader.)

In particular, for the case of the identity map, naturality says that the spectral

sequence, from the E2 page onward, does not depend in any way on the CW structure

of the base space B , if B is a CW complex, or on the choice of a CW approximation to

B in the general case.

By considering the map from the given fibration p :X→B to the identity fibration

B→B we can use naturality to describe the induced map p∗ :H∗(X;G)→H∗(B;G)

in terms of the spectral sequence. In the commutative

square at the right, where the two E∞n,0 ’s are for the two

fibrations, the right-hand vertical map is the identity, so

the square gives a factorization of p∗ as the composi-

tion of the natural surjection Hn(X;G)→E∞n,0 coming from the filtration in the first

fibration, followed by the lower horizontal map. The latter map is the composition

E∞n,0(X)֓ E2
n,0(X)→E

2
n,0(B) = E

∞
n,0(B) whose second map will be an isomorphism if

the fiber F of the fibration X→B is path-connected. In this case we have factored

p∗ as the composition Hn(X;G)→E∞n,0(X)→Hn(B;G) of a surjection followed by

an injection. Such a factorization must be equivalent to the canonical factorization

Hn(X;G)→ Imp∗֓Hn(B;G) .

Example 5.12. Let us illustrate this by considering the fibration p :K(Z,2)→K(Z,2)
inducing multiplication by 2 on π2 , so the fiber is a K(Z2,1) . The E2 page is shown

below. Differentials originating above the 0th row must have source or target 0 so

must be trivial. By contrast, every differential from a Z in the 0th row to a Z2 in an

upper row must be nontrivial, for otherwise a leftmost surviving Z2 would contribute

a Z2 subgroup to H∗(K(Z,2);Z) . Thus E∞2n,0 is the subgroup of E2
2n,0 of index 2n ,

and hence the image of p∗ :H2n(K(Z,2);Z)→H2n(K(Z,2);Z) is the subgroup of in-
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dex 2n . The more standard proof of this fact would use the cup product structure in

H∗(CP∞;Z) , but here we have a proof using only homology.

Spectral Sequence Comparison

We can use the naturality properties of the Serre spectral sequence to prove two

of the three cases of the following result.

Proposition 5.13. Suppose we have a map of fibrations as in the discussion of natu-

rality above, and both fibrations satisfy the hypothesis of trivial action for the Serre

spectral sequence. Then if two of the three maps F→F ′ , B→B′ , and X→X′ induce

isomorphisms on H∗(−;R) with R a principal ideal domain, so does the third.

This can be viewed as a sort of five-lemma for spectral sequences. It can be

formulated as a purely algebraic statement about spectral sequences, known as the

Spectral Sequence Comparison Theorem, and we will give a version of this later in the

chapter.

Proof: First we do the case of isomorphisms in fiber and base. Since R is a PID,

it follows from the universal coefficient theorem for homology of chain complexes

over R that the induced maps Hp(B;Hq(F ;R))→Hp(B
′;Hq(F

′;R)) are isomorphisms.

Thus the map f2 between E2 terms is an isomorphism. Since f2 induces f3 , which

in turn induces f4 , etc., the maps fr are all isomorphisms, and in particular f∞ is

an isomorphism. The map Hn(X;R)→Hn(X
′;R) preserves filtrations and induces

the isomorphisms f∞ between successive quotients in the filtrations, so it follows by

induction and the five-lemma that it restricts to an isomorphism on each term Fpn in

the filtration of Hn(X;R) , and in particular on Hn(X;R) itself.
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Next consider the case of an isomorphism on fiber and total space. Let f :B→B′

be the map of base spaces. The pullback fibration then fits into a commutative diagram

as at the right. By the first case, the map X→f∗(X′) induces an

isomorphism on homology, so it suffices to deal with the second

and third fibrations. We can reduce to the case that f is an

inclusion B֓B′ by interpolating between the second and third

fibrations the pullback of the third fibration over the mapping

cylinder of f . A deformation retraction of this mapping cylinder onto B′ lifts to a

homotopy equivalence of the total spaces.

Now we apply the relative Serre spectral sequence, with E2 = H∗
(
B′, B;H∗(F

′;R)
)

converging to H∗(X
′, f∗(X′);R) . If Hi(B

′, B;R) = 0 for i < n but Hn(B
′, B;R) is

nonzero, then the E2 array will be zero to the left of the p = n column, forcing the

nonzero term E2
n,0 = Hn

(
B′, B;H0(F ;R)

)
to survive to E∞ , making Hn(X

′, f∗(X′);R)

nonzero, contradicting the assumption that the map X→X′ is an isomorphism on

homology. Thus H∗(B′, B;R) = 0.

We will not prove the third case, as it is not needed in this book. ⊔⊓

Transgression

The Serre spectral sequence can be regarded as the more complicated analog for

homology of the long exact sequence of homotopy groups associated to a fibration

F→X→B , and in this light it is natural to ask whether there is anything in homol-

ogy like the boundary homomorphisms πn(B)→πn−1(F) in the long exact sequence

of homotopy groups. To approach this ques-

tion, the diagram at the right is the first thing

to look at. The map j∗ is an isomorphism, as-

suming n > 0, so if the map p∗ were also an

isomorphism we would have a boundary map Hn(B)→Hn−1(F) just as for homotopy

groups. However, p∗ is not generally an isomorphism, even in the case of simple

products X = F×B . Thus if we try to define a boundary map by sending x ∈ Hn(B)

to ∂p−1
∗ (j∗x) , this only gives a homomorphism from a subgroup of Hn(B) , namely

(j∗)
−1(Imp∗) , to a quotient group of Hn−1(F) , namely Hn−1(F)/∂(Kerp∗) . This

homomorphism goes by the high-sounding name of the transgression. Elements of

Hn(B) that lie in the domain of the transgression are said to be transgressive.

The transgression may seem like an awkward sort of object, but it has a nice

description in terms of the Serre spectral sequence:

Proposition 5.14. The transgression is exactly the differential dn :Enn,0→E
n
0,n−1 .

In particular, the domain of the transgression is the subgroup of E2
n,0 = Hn(B)

on which the differentials d2, ··· , dn−1 vanish, and the target is the quotient group

of E2
0,n−1 = Hn−1(F) obtained by factoring out the images of the same collection
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of differentials d2, ··· , dn−1 . Sometimes the transgression is simply defined as the

differential in the proposition. We have seen several examples where this differential

played a particularly significant role in the Serre spectral sequence, so the proposition

gives it a topological interpretation.

Proof: The first step is to identify Enn,0 with Imp∗ :Hn(X, F)→Hn(B, b) . For this

it is helpful to look also at the relative Serre spectral sequence for the fibration

(X, F)→(B, b) , which we distinguish from the original spectral sequence by using

the notation E
r

. We also now use p∗ for the map Hn(X, F)→Hn(B, b) . The two

spectral sequences have the same E2 page except that the p = 0 column of E2 is

replaced by zeros in E
2

since H0(B, b) = 0, as B is path-connected by assumption.

This implies that the map E3
p,q→E

3

p,q is injective for p > 0 and an isomorphism for

p ≥ 3. One can then see inductively that the map Erp,q→E
r
p,q is injective for p > 0

and an isomorphism for p ≥ r . In particular, when we reach the En page we still

have Enn,0 = E
n
n,0 . The differential dn originating at this term is automatically zero

in E
n

, so E
n
n,0 = E

∞

n,0 . The latter group is Imp∗ :Hn(X, F)→Hn(B, b) by the relative

form of the remarks on naturality earlier in this section. Thus Enn,0 = Imp∗ .

For the remainder of the proof we use the following diagram:

The two longer rows are obviously exact, as are the first two columns. In the next

column q is the natural quotient map so it is surjective. Verifying exactness of this

column then amounts to showing that Kerq = ∂(Kerp∗) . Once we show this and

that the diagram commutes, then the proposition will follow immediately from the

subdiagram consisting of the two vertical short exact sequences, since this subdiagram

identifies the differential dn with the transgression Imp∗→Hn−1(F)/∂(Kerp∗) .

The only part of the diagram where commutativily may not be immediately evi-

dent is the middle square containing dn . To see that this square commutes we extract

a few relevant terms from the staircase diagram that leads to the original spectral se-

quence, namely the terms E1
n,0 and E1

0,n−1 . These fit into a diagram
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We may assume B is a CW complex with b as its single 0 cell, so X0 = F in the

filtration of X , hence E1
0,n−1 = Hn−1(F) . The vertical map on the left is surjective

since the pair (X,Xn) is n connected. The map dn is obtained by restricting the

boundary map to cycles whose boundary lies in F , then taking this boundary. Such

cycles represent the subgroup Enn,0 , and the resulting map is in general only well-

defined in the quotient group En0,n−1 of Hn−1(F) . However, if we start with an element

in Hn(Xn, F) in the upper-left corner of the diagram and represent it by a cycle, its

boundary is actually well-defined in Hn−1(F) rather than in the quotient group. Thus

the outer square in this diagram commutes. The upper triangle commutes by the

earlier description of p∗ in terms of the relative spectral sequence. Hence the lower

triangle commutes as well, which is the commutativity we are looking for.

Once one knows the first diagram commutes, then the fact that Kerq = ∂(Kerp∗)

follows from exactness elsewhere in the diagram by the standard diagram-chasing

argument. ⊔⊓

The Serre Spectral Sequence for Cohomology

There is a completely analogous Serre spectral sequence in cohomology:

Theorem 5.15. For a fibration F→X→B with B path-connected and π1(B) acting

trivially on H∗(F ;G) , there is a spectral sequence {Ep,qr , dr } , with :

(a) dr :Ep,qr →E
p+r ,q−r+1
r and E

p,q
r+1 = Kerdr/ Imdr at Ep,qr .

(b) stable terms Ep,n−p∞ isomorphic to the successive quotients Fnp /F
n
p+1 in a filtration

0 ⊂ Fnn ⊂ ··· ⊂ F
n
0 = H

n(X;G) of Hn(X;G) .

(c) E
p,q
2 ≈ Hp(B;Hq(F ;G)) .

Proof: Translating the earlier derivation for homology to cohomology is straightfor-

ward, for the most part. We use the same filtration of X , so there is a cohomology

spectral sequence satisfying (a) and (b) by our earlier general arguments. To identify

the E2 terms we want an isomorphism of chain complexes

The isomorphisms Ψ come from diagrams
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The construction of the isomorphisms εpα goes just as before, with arrows reversed

for cohomology.

The identification of d1 with the cellular coboundary map also follows the earlier

scheme exactly. At the end of the argument where signs have to be checked, we now

have the split exact sequence

0 -→Hq(D̃1;G)
i∗
-----→Hq(S̃0;G)

δ
-----→Hq+1(D̃1, S̃0;G) -→0

The middle group is the direct sum of two copies of the same group, correspond-

ing to the two points of S0 , and the exact sequence represents Hq+1(D̃1, S̃0;G) as

the quotient of this direct sum by the subgroup of elements (x,x) . Each of the two

summands of Hq(S̃0;G) maps isomorphically onto the quotient, but the two isomor-

phisms differ by a sign since (x,0) is identified with (0,−x) in the quotient.

There is just one additional comment about d1 that needs to be made. For coho-

mology, the direct sums occurring in homology are replaced by direct products, and

homomorphisms whose domain is a direct product may not be uniquely determined

by their values on the individual factors. If we view d1 as a map

∏
αH

p+q(D̃pα, S̃
p−1
α ;G) ---------→

∏
βH

p+q+1(D̃
p+1
β , S̃

p
β ;G)

then d1 is determined by its compositions with the projections πβ onto the factors

of the target group. Each such composition πβd1 is finitely supported in the sense

that there is a splitting of the domain as the direct sum of two parts, one consisting

of the finitely many factors corresponding to p cells in the boundary of e
p+1
β , and the

other consisting of the remaining factors, and the composition πβd1 is nonzero only

on the first summand, the finite product. It is obvious that finitely supported maps

like this are determined by their restrictions to factors. ⊔⊓

Multiplicative Structure

The Serre spectral sequence for cohomology becomes much more powerful when

cup products are brought into the picture. For this we need to consider cohomology

with coefficients in a ring R rather than just a group G . What we will show is that

the spectral sequence can be provided with bilinear products Ep,qr ×Es,tr →E
p+s,q+t
r for

1 ≤ r ≤ ∞ satisfying the following properties:

(a) Each differential dr is a derivation, satisfying d(xy) = (dx)y + (−1)p+qx(dy)

for x ∈ Ep,qr . This implies that the product Ep,qr ×Es,tr →E
p+s,q+t
r induces a prod-

uct E
p,q
r+1×E

s,t
r+1→E

p+s,q+t
r+1 , and this is the product for Er+1 . The product in E∞

is the one induced from the products in Er for finite r .
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(b) The product E
p,q
2 ×E

s,t
2 →E

p+s,q+t
2 is (−1)qs times the standard cup product

Hp
(
B;Hq(F ;R)

)
×Hs

(
B;Ht(F ;R)

)
→Hp+s

(
B;Hq+t(F ;R)

)

sending a pair of cocycles (ϕ,ψ) to ϕ`ψ where coefficients are multiplied via

the cup product Hq(F ;R)×Ht(F ;R)→Hq+t(F ;R) .

(c) The cup product in H∗(X;R) restricts to maps Fmp ×F
n
s→F

m+n
p+s . These induce

quotient maps Fmp /F
m
p+1×F

n
s /F

n
s+1→F

m+n
p+s /F

m+n
p+s+1 that coincide with the prod-

ucts Ep,m−p∞ ×Es,n−s∞ →Ep+s,m+n−p−s∞ .

We shall obtain these products by thinking of cup product as the composition

H∗(X;R)×H∗(X;R)
×
------------→H∗(X×X;R)

∆∗
--------------------→H∗(X;R)

of cross product with the map induced by the diagonal map ∆ :X→X×X . The prod-

uct X×X is a fibration over B×B with fiber F×F . Since the spectral sequence is

natural with respect to the maps induced by ∆ it will suffice to deal with cross prod-

ucts rather than cup products. If one wanted, one could just as easily treat a product

X×Y of two different fibrations rather than X×X .

There is a small technical issue having to do with the action of π1 of the base on

the cohomology of the fiber. Does triviality of this action for the fibration F→X→B
imply triviality for the fibration F×F→X×X→B×B ? In most applications, includ-

ing all in this book, B is simply-connected so the question does not arise. There

is also no problem when the cross product H∗(F ;R)×H∗(F ;R)→H∗(F×F ;R) is an

isomorphism. In the general case one can take cohomology with local coefficients for

the spectral sequence of the product, and then return to ordinary coefficients via the

diagonal map.

Now let us see how the product in the spectral sequence arises. Taking the base

space B to be a CW complex, the product X×X is filtered by the subspaces (X×X)p
that are the preimages of the skeleta (B×B)p . There are canonical splittings

Hk
(
(X×X)ℓ, (X×X)ℓ−1

)
≈
⊕

i+j=ℓ

Hk(Xi×Xj , Xi−1×Xj ∪Xi×Xj−1)

that come from the fact that (Xi×Xj)∩ (Xi′×Xj′) = (Xi ∩Xi′)×(Xj ∩Xj′) .

Consider first what is happening at the E1 level. The product E
p,q
1 ×E

s,t
1 →E

p+s,q+t
1

is the composition in the first column of the following diagram, where the second map

is the inclusion of a direct summand. Here m = p + q and n = s + t .
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The derivation property is equivalent to commutativity of the diagram. To see that

this holds we may take cross product to be the cellular cross product defined for CW

complexes, after replacing the filtration X0 ⊂ X1 ⊂ ··· by a chain of CW approxima-

tions. The derivation property holds for the cellular cross product of cellular chains

and cochains, hence it continues to hold when one passes to cohomology, in any rel-

ative form that makes sense, such as in the diagram.

[An argument is now needed to show that each subsequent differential dr is a

derivation. The argument we originally had for this was inadequate.]

For (c), we can regard Fmp as the image of the map Hm(X,Xp−1)→H
m(X) , via

the exact sequence of the pair (X,Xp−1) . With a slight shift of indices, the following

commutative diagram then shows that the cross product respects the filtration:

Recalling how the staircase diagram leads to the relation between E∞ terms and the

successive quotients of the filtration, the rest of (c) is apparent from naturality of

cross products.

In order to prove (b) we will use cross products to give an alternative definition

of the isomorphisms Hp+q(D̃p , S̃p−1) ≈ Hq(F) for a fibration F→D̃p→Dp . Such

a fibration is fiber-homotopy equivalent to a product Dp×F since the base Dp is

contractible. By naturality we then have the com-

mutative diagram at the right. The lower εp is the

map λ֏γ×λ for γ a generator of Hp(Dp , Sp−1) ,

since εp is essentially a composition of coboundary maps of triples, and δ(γ×λ) =

δγ×λ from the corresponding cellular cochain formula δ(a×b) = δa×b ± a×δb ,

where δb = 0 in the present case since b is a cocycle representing λ .

Referring back to the second diagram in the proof of 5.15, we have, for λ ∈

Hom
(
Hp(B

p, Bp−1;Z),Hq(F ;R)
)

and µ ∈ Hom
(
Hs(B

s , Bs−1;Z),Ht(F ;R)
)
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Φ∗Ψ(λ×µ)(epα×esβ) = γα×γβ×λ(epα)×µ(esβ)
= (−1)qsγα×λ(e

p
α)×γβ×µ(e

s
β)

= (−1)qsΦ∗Ψ(λ)(epα)×Φ∗Ψ(µ)(esβ)

using the commutativity property of cross products and the fact that γα×γβ can

serve as the γ for epα×e
s
β . Since the isomorphisms Φ∗ preserve cross products, this

finishes the justification for (b).

Cup product is commutative in the graded sense, so the product in E1 and hence

in Er satisfies ab = (−1)|a||b|ba where |a| = p+q for a ∈ E
p,q
1 = Hp+q(Xp, Xp−1;R) .

This is compatible with the isomorphisms Ψ :Hp(B;Hq(F ;R))→Ep,q2 since for x ∈

Hp(B;Hq(F ;R)) and y ∈ Hs(B;Ht(F ;R)) we have

Ψ(x)Ψ(y) = (−1)qsΨ(xy) = (−1)qs+ps+qtΨ(yx)
= (−1)qs+ps+qt+ptΨ(y)Ψ(x)
= (−1)(p+q)(s+t)Ψ(y)Ψ(x)

It is also worth pointing out that differentials satisfy the familiar-looking formula

d(xn) = nxn−1dx if |x| is even

since d(x ·xn−1) = dx ·xn−1+xd(xn−1) = xn−1dx+(n−1)x ·xn−2dx by induction,

and using the commutativity relation.

Example 5.16. For a first application of the product structure in the cohomology

spectral sequence we shall use the pathspace fibration K(Z,1)→P→K(Z,2) to show

that H∗(K(Z,2);Z) is the polynomial ring Z[x] with x ∈ H2(K(Z,2);Z) . The base

K(Z,2) of the fibration is simply-connected, so we have a Serre spectral sequence

with E
p,q
2 ≈ Hp(K(Z,2);Hq(S1;Z)) . The additive structure of the E2 page can be

determined in much the same way that we did for homology in Example 5.4, or we can

simply quote the result obtained there. In any case, here is what the E2 page looks

like:

The symbols a and xi denote generators of the groups E
0,1
2 ≈ Z and E

i,0
2 ≈ Z . The

generators for the Z ’s in the upper row are a times the generators in the lower row

because the product E
0,q
2 ×E

s,t
2 -→ E

s,q+t
2 is just multiplication of coefficients. The

differentials shown are isomorphisms since all terms except Z1 disappear in E∞ . In

particular, d2a generates Zx2 so we may assume d2a = x2 by changing the sign of

x2 if necessary. By the derivation property of d2 we have d2(ax2i) = (d2a)x2i ±

a(d2x2i) = (d2a)x2i = x2x2i since d2x2i = 0. Since d2(ax2i) is a generator of
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Zx2i+2 , we may then assume x2x2i = x2i+2 . This relation means that H∗(K(Z,2);Z)

is the polynomial ring Z[x] where x = x2 .

Example 5.17. Let us compute the cup product structure in H∗(ΩSn;Z) using the

Serre spectral sequence for the path fibration ΩSn→PSn→Sn . The additive struc-

ture can be deduced just as was done for homology

in Example 5.5. The nonzero differentials are isomor-

phisms, shown in the figure to the right. Replacing some

ak ’s with their negatives if necessary, we may assume

dna1 = x and dnak = ak−1x for k > 1. We also have

akx = xak since |ak||x| is even.

Consider first the case that n is odd. The derivation

property gives dn(a
2
1) = 2a1dna1 = 2a1x , so since

dna2 = a1x and dn is an isomorphism this implies a2
1 = 2a2 . For higher powers of

a1 we have dn(a
k
1) = ka

k−1
1 dna1 = ka

k−1
1 x , and it follows inductively that ak1 = k!ak .

This says that H∗(ΩSn;Z) is a divided polynomial algebra ΓZ[a] when n is odd.

When n is even, |a1| is odd and commutativity implies that a2
1 = 0. Computing

the rest of the cup product structure involves two steps:

a1a2k = a2k+1 and hence a1a2k+1 = a
2
1a2k = 0. Namely we have dn(a1a2k) =

xa2k − a1a2k−1x which equals xa2k since a1a2k−1 = 0 by induction. Thus

dn(a1a2k) = dna2k+1 , hence a1a2k = a2k+1 .

ak2 = k!a2k . This is obtained by computing dn(a
k
2) = a1xa

k−1
2 + a2dn(a

k−1
2 ) . By

induction this simplifies to dn(a
k
2) = ka1xa

k−1
2 . We may assume inductively that

ak−1
2 = (k−1)!a2k−2 , and then we get dn(a

k
2) = k!a1xa2k−2 = k!a2k−1x = k!dna2k

so ak2 = k!a2k .

Thus we see that when n is even, H∗(ΩSn;Z) is the tensor product ΛZ[a]⊗ΓZ[b]
with |a| = n− 1 and |b| = 2n− 2.

These results can also be obtained by a more roundabout route without using

spectral sequences. The loopspace ΩSn is homotopy equivalent to the James reduced

product J(Sn−1) by Proposition 4J.1, and the cup product structure for J(Sn−1) was

computed in Proposition 3.22 using the Künneth formula.

Example 5.18. This will illustrate how the ring structure in E∞ may not determine

the ring structure in the cohomology of the total space. Besides the product S2×S2

there is another fiber bundle S2→X→S2 obtained by taking two copies of the map-

ping cylinder of the Hopf map S3→S2 and gluing them together by the identity map

between the two copies of S3 at the source ends of the map-

ping cylinders. Each mapping cylinder is a bundle over S2 with

fiber D2 so X is a bundle over S2 with fiber S2 . The spectral

sequence with Z coefficients for this bundle is shown at the

right, and is identical with that for the product bundle, with
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no nontrivial differentials possible. In particular the ring structures in E∞ are the

same for both bundles, with a2 = b2 = 0 and ab a generator in dimension 4. This is

exactly the ring structure in H∗(S2×S2;Z) , but H∗(X;R) has a different ring struc-

ture, as one can see by considering the quotient map q :X→CP2 collapsing one of

the two mapping cylinders to a point. The induced map q∗ is an isomorphism on

H4 , so q∗ takes a generator of H2(CP2;Z) to an element x ∈ H2(X;Z) with x2 a

generator of H4(X;Z) . However in H∗(S2×S2;Z) the square of any two-dimensional

class ma+nb is an even multiple of a generator since (ma+nb)2 = 2mnab .

Example 5.19. Let us show that the groups πi(S
3) are nonzero for infinitely many

values of i by looking at their p torsion subgroups, the elements of order a power of

a prime p . We will prove:

(∗ ) The p torsion subgroup of πi(S
3) is 0 for i < 2p and Zp for i = 2p .

To do this, start with a map S3→K(Z,3) inducing an isomorphism on π3 . Turning

this map into a fibration with fiber F , then F is 3 connected and πi(F) ≈ πi(S
3)

for i > 3. Now convert the map F→S3 into a fibration

K(Z,2)→X→S3 with X ≃ F . The spectral sequence for

this fibration looks somewhat like the one in the last ex-

ample, except now we know the cup product structure in

the fiber and we wish to determine H∗(X;Z) . Since X

is 3 connected the differential Za→Zx must be an iso-

morphism, so we may assume d3a = x . The derivation

property then implies that d3(a
n) = nan−1x . From this

we deduce that

Hi(X;Z) ≈

{
Zn if i = 2n+ 1

0 if i = 2n > 0
and hence Hi(X;Z) ≈

{
Zn if i = 2n > 0

0 if i = 2n− 1

The mod C Hurewicz theorem now implies that the first p torsion in π∗(X) , and

hence also in π∗(S
3) , is a Zp in π2p .

This shows in particular that π4(S
3) = Z2 . This is in the stable range, so it follows

that πn+1(S
n) = Z2 for all n ≥ 3. A generator is the iterated suspension of the Hopf

map S3→S2 since the suspension map π3(S
2)→π4(S

3) is surjective. For odd p

the Zp in π2p(S
3) maps injectively under iterated suspensions because it is detected

by the Steenrod operation P1 , as was shown in Example 4L.6, and the operations P i

are stable operations, commuting with suspension. (The argument in Example 4L.6

needed the fact that π2p−1(S
3) has no p torsion, but we have now proved this.) Thus

we have a Zp in π2p+n−3(S
n) for all n ≥ 3. We will prove later in this section that this

is the first p torsion in π∗(S
n) , generalizing the result in the present example. In

particular we have the interesting fact that the Zp in the stable group π s2p−3 originates

all the way down in S3 , a long way outside the stable range when p is large.
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For S2 we have isomorphisms πi(S
2) ≈ πi(S

3) for i ≥ 4 from the Hopf bundle,

so we also know where the first p torsion in π∗(S
2) occurs.

Example 5.20. Let us see what happens when we try to compute H∗(K(Z,3);Z) from

the path fibration K(Z,2)→P→K(Z,3) . The first four columns in the E2 page have

the form shown. The odd-numbered

rows are zero, so d2 must be zero

and E2 = E3 . The first interesting

differential d3 :Za→Zx must be an

isomorphism, otherwise the E∞ ar-

ray would be nontrivial away from

the Z in the lower left corner. We

may assume d3a = x by rechoosing

x if necessary. Then the derivation

property yields d3(a
k) = kak−1x since |a| is even. The term just to the right of Zx

must be 0 since otherwise it would survive to E∞ as there are no nontrivial differen-

tials which can hit it. Likewise the term two to the right of Zx must be 0 since the

only differential which could hit it is d5 originating in the position of the Za2 term,

but this Za2 disappears in E4 since d3 :Za2→Zax is injective. Thus the p = 4 and

p = 5 columns are all zeros. Since d3 :Za2→Zax has image of index 2, the differ-

ential d3 :Zax→E6,0
3 must be nontrivial, otherwise the quotient Zax/2Zax would

survive to E∞ . Similarly, d3 :Zax→E6,0
3 must be surjective, otherwise its cokernel

would survive to E∞ . Thus d3 induces an isomorphism Zax/2Zax ≈ E
6,0
3 . This Z2

is generated by x2 since d3(ax) = (d3a)x = x
2 .

Thus we have shown that Hi(K(Z,3)) is 0 for i = 4,5 and Z2 for i = 6, generated

by the square of a generator x ∈ H3(K(Z,3)) . Note that since x is odd-dimensional,

commutativity of cup product implies that 2x2 = 0 but says nothing about whether

x2 itself is zero or not, and in fact we have x2
≠ 0 in this example. Note that if x2 were

zero then the square of every 3 dimensional integral cohomology class would have

to be zero since H3(X) is homotopy classes of maps X→K(Z,3) for CW complexes

X , the general case following from this by CW approximation.

It is an interesting exercise to push the calculations in this example further. Us-

ing just elementary algebra one can compute Hi(K(Z,3)) for i = 7,8, ··· ,13 to be 0,

Z3y , Z2x
3 , Z2z , Z3xy , Z2x

4⊕Z5w , Z2xz . Eventually however there arise differen-

tials that cannot be computed in this purely formal way, and in particular one cannot

tell without further input whether H14(K(Z,3)) is Z3 or 0.

The situation can be vastly simplified by taking coefficients in Q rather than Z .

In this case we can derive the following basic result:
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Proposition 5.21. H∗(K(Z, n);Q) ≈ Q[x] for n even and H∗(K(Z, n);Q) ≈ ΛQ[x]
for n odd, where x ∈ Hn(K(Z, n);Q) . More generally, this holds also when Z is

replaced by any nonzero subgroup of Q .

Here ΛQ[x] denotes the exterior algebra with generator x .

Proof: This is by induction on n via the pathspace fibration K(Z, n−1)→P→K(Z, n) .
The induction step for n even proceeds exactly as in the case n = 2 done above, as the

reader can readily check. This case could also be deduced from the Gysin sequence

in §4.D.For n odd the case n = 3 is typical. The first two nonzero columns in the

preceding diagram now have Q ’s instead of Z ’s, so the differentials d3 :Qai→Qai−1x

are isomorphisms since multiplication by i is an isomorphism of Q . Then one argues

inductively that the terms E
p,0
2 must be zero for p > 3, otherwise the first such term

that was nonzero would survive to E∞ since it cannot be hit by any differential.

For the generalization, a nontrivial subgroup G ⊂ Q is the union of an increasing

sequence of infinite cyclic subgroups G1 ⊂ G2 ⊂ ··· , and we can construct a K(G,1) as

the union of a corresponding sequence K(G1,1) ⊂ K(G2,1) ⊂ ··· . One way to do this

is to take the mapping telescope of a sequence of maps fi :S
1→S1 of degree equal to

the index of Gi in Gi+1 . This telescope T is the direct limit of its finite subtelescopes

Tk which are the union of the mapping cylinders of the first k maps fi , and Tk
deformation retracts onto the image circle of fk . It follows that T is a K(G,1) since

πi(T) = lim
--→πi(Tk) . Alternatively, we could take as a K(G,1) the classifying space

BG defined in §1.B, which is the union of the subcomplexes BG1 ⊂ BG2 ⊂ ··· since

G is the union of the sequence G1 ⊂ G2 ⊂ ··· . With either construction of a K(G,1)

we have Hi(K(G,1)) ≈ lim
--→Hi(K(Gk,1)) , so the space K(G,1) is also a Moore space

M(G,1) , i.e., its homology groups Hi are zero for i > 1. This starts the inductive

proof of the proposition for the group G . The induction step itself is identical with

the case G = Z . ⊔⊓

The proposition says that H∗(K(Z, n);Z)/torsion is the same as H∗(Sn;Z) for

n odd, and for n even consists of Z ’s in dimensions a multiple of n . One may then

ask about the cup product structure in H∗(K(Z,2k);Z)/torsion, and in fact this is a

polynomial ring Z[α] , with α a generator in dimension 2k . For by the proposition,

all powers αℓ are of infinite order, so the only thing to rule out is that αℓ is a multiple

mβ of some β ∈ H2kℓ(K(Z,2k);Z) with |m| > 1. To dispose of this possibility, let

f :CP∞→K(Z,2k) be a map with f∗(α) = γk , γ being a generator of H2(CP∞;Z) .

Then γkℓ = f∗(αℓ) = f∗(mβ) =mf∗(β) , but γkℓ is a generator of H2kℓ(CP∞;Z) so

m = ±1.

The isomorphism H∗(K(Z,2k);Z)/torsion ≈ Z[α] may be contrasted with the

fact, proved in Corollary 4L.10 that there is a space X having H∗(X;Z) ≈ Z[α] with

α n dimensional only if n = 2,4. So for n = 2k > 4 it is not possible to strip away
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all the torsion from H∗(K(Z,2k);Z) without affecting the cup product structure in

the nontorsion.

Rational Homotopy Groups

If we pass from πn(X) to πn(X)⊗Q , quite a bit of information is lost since all

torsion in πn(X) becomes zero in πn(X)⊗Q . But since homotopy groups are so com-

plicated, it could be a distinct advantage to throw away some of this superabundance

of information, and see if what remains is more understandable.

A dramatic instance of this is what happens for spheres, where it turns out that

all the nontorsion elements in the homotopy groups of spheres are detected either by

degree or by the Hopf invariant:

Theorem 5.22. The groups πi(S
n) are finite for i > n , except for π4k−1(S

2k) which

is the direct sum of Z with a finite group.

Proof: We may assume n > 1, which will make all base spaces in the proof simply-

connected, so that Serre spectral sequences apply.

Start with a map Sn→K(Z, n) inducing an isomorphism on πn and convert this

into a fibration. From the long exact sequence of homotopy groups for this fibration

we see that the fiber F is n connected, and πi(F) ≈ πi(S
n) for i > n . Now convert

the inclusion F→Sn into a fibration K(Z, n− 1)→X→Sn . with X ≃ F . We will look

at the Serre spectral sequence for cohomology for this fibration, using Q coefficients.

The simpler case is when n is odd. Then the spectral sequence is shown in the fig-

ure at the right. The differential Qa→Qx must be an

isomorphism, otherwise it would be zero and the term

Qa would survive to E∞ contradicting the fact that X

is (n − 1) connected. The differentials Qai→Qai−1x

must then be isomorphisms as well, so we conclude that

H̃∗(X;Q) = 0. The same is therefore true for homology,

and thus πi(X) is finite for all i , hence also πi(S
n) for

i > n .

When n is even the spectral sequence has only the first two nonzero rows in the

preceding figure, and it follows that X has the same rational cohomology as S2n−1 .

From the Hurewicz theorem modulo the class of finite groups we conclude that πi(S
n)

is finite for n < i < 2n−1 and π2n−1(S
n) is Z plus a finite group. For the remaining

groups πi(S
n) with i > 2n−1 let Y be obtained from X by attaching cells of dimen-

sion 2n+1 and greater to kill πi(X) for i ≥ 2n−1. Replace the inclusion X֓Y by

a fibration, which we will still call X→Y , with fiber Z . Then Z is (2n−2) connected

and has πi(Z) ≈ πi(X) for i ≥ 2n − 1, while πi(Y ) ≈ πi(X) for i < 2n − 1 so

all the homotopy groups of Y are finite. Thus H̃∗(Y ;Q) = 0 and from the spectral

sequence for this fibration we conclude that H∗(Z ;Q) ≈ H∗(X;Q) ≈ H∗(S2n−1;Q) .
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The earlier argument for the case n odd applies with Z in place of Sn , starting with

a map Z→K(Z,2n− 1) inducing an isomorphism on π2n−1 modulo torsion, and we

conclude that πi(Z) is finite for i > 2n− 1. Since πi(Z) is isomorphic to πi(S
n) for

i > 2n− 1, we are done. ⊔⊓

The preceding theorem says in particular that the stable homotopy groups of

spheres are all finite, except for π s0 = πn(S
n) . In fact it is true that π si (X)⊗Q ≈

Hi(X;Q) for all i and all spaces X . This can be seen as follows. The groups π si (X)

form a homology theory on the category of CW complexes, and the same is true of

π si (X)⊗Q since it is an elementary algebraic fact that tensoring an exact sequence

with Q preserves exactness. The coefficients of the homology theory π si (X)⊗Q are

the groups π si (S
0)⊗Q = π si ⊗Q , and we have just observed that these are zero for

i > 0. Thus the homology theory π si (X)⊗Q has the same coefficient groups as the

ordinary homology theory Hi(X;Q) , so by Theorem 4.58 these two homology theories

coincide for all CW complexes. By taking CW approximations it follows that there are

natural isomorphisms π si (X)⊗Q ≈ Hi(X;Q) for all spaces X .

Alternatively, one can use Hurewicz homomorphisms instead of appealing to The-

orem 4.58. The usual Hurewicz homomorphism h commutes with suspension, by the

commutative diagram

so there is induced a stable Hurewicz homomorphism h :π sn(X)→Hn(X) . Tensoring

with Q , the map h⊗11 :π sn(X)⊗Q→Hn(X)⊗Q ≈ Hn(X;Q) is then a natural trans-

formation of homology theories which is an isomorphism for the coefficient groups,

taking X to be a sphere. Hence it is an isomorphism for all finite-dimensional CW com-

plexes by induction on dimension, using the five-lemma for the long exact sequences

of the pairs (Xk, Xk−1) . It is then an isomorphism for all CW complexes since the

inclusion Xk֓ X induces isomorphisms on π si and Hi for sufficiently large k . By

CW approximation the result extends to arbitrary spaces.

Thus we have:

Proposition 5.23. The Hurewicz homomorphism h :πn(X)→Hn(X) stabilizes to a

rational isomorphism h⊗11 :π sn(X)⊗Q→Hn(X)⊗Q ≈ Hn(X;Q) for all n > 0 . ⊔⊓
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Localization of Spaces

In this subsection we take the word “space" to mean “space homotopy equivalent

to a CW complex".

Localization in algebra involves the idea of looking at a given situation one prime

at a time. In number theory, for example, given a prime p one can pass from the

ring Z to the ring Z(p) of integers localized at p, which is the subring of Q consisting

of fractions with denominator relatively prime to p . This is a unique factorization

domain with a single prime p , or in other words, there is just one prime ideal (p) and

all other ideals are powers of this. For a finitely generated abelian group A , passing

from A to A⊗Z(p) has the effect of killing all torsion of order relatively prime to p

and leaving p torsion unchanged, while Z summands of A become Z(p) summands

of A⊗Z(p) . One regards A⊗Z(p) as the localization of A at the prime p .

The idea of localization of spaces is to realize the localization homomorphisms

A→A⊗Z(p) topologically by associating to a space X a space X(p) together with a

map X→X(p) such that the induced maps π∗(X)→π∗(X(p)) and H∗(X)→H∗(X(p))
are just the algebraic localizations π∗(X)→π∗(X)⊗Z(p) and H∗(X)→H∗(X)⊗Z(p) .
Some restrictions on the action of π1(X) on the homotopy groups πn(X) are needed

in order to carry out this program, however. We shall consider the case that X is

abelian, that is, path-connected with trivial π1(X) action on πn(X) for all n . This is

adequate for most standard applications, such as those involving simply-connected

spaces and H spaces. It is not too difficult to develop a more general theory for spaces

with nilpotent π1 and nilpotent action of π1 on all higher πn ’s, as explained in [Sul-

livan] and [Hilton-Mislin-Roitberg], but this does not seem worth the extra effort in an

introductory book such as this.

The topological localization construction works also for Q in place of Z(p) , pro-

ducing a ‘rationalization’ map X→XQ with the effect on π∗ and H∗ of tensoring

with Q , killing all torsion while retaining nontorsion information.

The spaces X(p) and XQ tend to be simpler than X from the viewpoint of algebraic

topology, and often one can analyze X(p) or XQ more easily than X and then use the

results to deduce partial information about X . For example, we will easily determine a

Postnikov tower for SnQ and this gives much insight into the calculation of πi(S
n)⊗Q

done earlier in this section.

From a strictly geometric viewpoint, localization usually produces spaces which

are more complicated rather than simpler. The space SnQ for example turns out to be a

Moore space M(Q, n) , which is geometrically more complicated than Sn since it must

have infinitely many n cells in any CW structure in order to have Hn isomorphic to Q ,

a nonfinitely-generated abelian group. We should not let this geometric complication

distract us, however. After all, the algebraic complication of Q compared with Z is

not something one often worries about.
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The Construction

Let P be a set of primes, possibly empty, and let ZP be the subring of Q consisting

of fractions with denominators not divisible by any of the primes in P . For example,

Z∅ = Q and Z{p} = Z(p) . If P ≠ ∅ then ZP is the intersection of the rings Z(p) for

p ∈ P . It is easy to see that any subring of Q containing 1 has the form ZP for some

P .

For an abelian group A we have a ‘localization’ map A→A⊗ZP , a֏ a⊗1. El-

ements of A⊗ZP are sums of terms a⊗ r , but such sums can always be combined

into a single term a⊗r by finding a common denominator for the r factors. Further-

more, a term a⊗ r can be written in the form a⊗ 1
m with m not divisible by primes

in P . One can think of a⊗ 1
m as a formal quotient

a
m . Note that the kernel of the

map A→A⊗ZP consists of the torsion elements of order not divisible by primes in

P . One can think of the map A→A⊗ZP as first factoring out such torsion in A , then

extending the resulting quotient group by allowing division by primes not in P .

The group A⊗ZP is obviously a module over the ring ZP , and the map A→A⊗ZP
is an isomorphism iff the Z module structure on A is the restriction of a ZP module

structure on A . This amounts to saying that elements of A are uniquely divisible

by primes ℓ not in P , i.e., that the map A
ℓ
-----→A , a֏ ℓa , is an isomorphism. For

example, Zpn is a ZP module if p ∈ P and n ≥ 1. The general finitely-generated

ZP module is a direct sum of such Zpn ’s together with copies of ZP . This follows

from the fact that ZP is a principal ideal domain.

An abelian space X is called P local if πi(X) is a ZP module for all i . A map

X→X′ of abelian spaces is called a P localization of X if X′ is P local and the map

induces an isomorphism π∗(X)⊗ZP→π∗(X
′)⊗ZP ≈ π∗(X

′) .

Theorem 5.24. (a) For every abelian space X there exists a P localization X→X′ .
(b) A map X→X′ of abelian spaces is a P localization iff H̃∗(X

′) is a ZP module

and the induced map H̃∗(X)⊗ZP→H̃∗(X
′)⊗ZP ≈ H̃∗(X

′) is an isomorphism.

(c) P localization is a functor: Given P localizations X→X′ , Y→Y ′ , and a map

f :X→Y , there is a map f ′ :X′→Y ′ completing a commutative square with the

first three maps. Further, f ≃ g implies f ′ ≃ g′ . In particular, the homotopy

type of X′ is uniquely determined by the homotopy type of X .

We will use the notation XP for the P localization of X , with the variants X(p)
for X{p} and XQ for X∅ .

As an example, part (b) says that SnP is exactly a Moore space M(ZP, n) . Recall that

M(ZP, n) can be constructed as a mapping telescope of a sequence of maps Sn→Sn

of appropriate degrees. When n = 1 this mapping telescope is also a K(ZP,1) , hence

is abelian.

From (b) it follows that an abelian space X is P local iff H̃∗(X) is a ZP module.

For if this condition is satisfied and we form the P localization X→X′ then this map
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induces an isomorphism on H̃∗ with Z coefficients, hence also an isomorphism on

homotopy groups.

The proof of Theorem 5.24 will use a few algebraic facts:

(1) If A→B→C→D→E is an exact sequence of abelian groups and A , B , D , and

E are ZP modules, then so is C . For if we map this sequence to itself by the maps

x֏ ℓx for primes ℓ 6∈ P , these maps are isomorphisms on the terms other than

the C term by hypothesis, hence by the five-lemma the map on the C term is also an

isomorphism.

A consequence of (1) is that for a fibration F→E→B with all three spaces abelian,

if two of the spaces are P local then so is the third. Similarly, from the homological

characterization of P local spaces given by the theorem, we can conclude that for a

cofibration A֓X→X/A with all three spaces abelian, if two of the spaces are P local

then so is the third.

(2) The P localization functor A֏A⊗ZP takes exact sequences to exact sequences.

For suppose A
f
-----→B

g
-----→C is exact. If b⊗ 1

m lies in the kernel of g ⊗11, so g(b)⊗ 1
m is

trivial in C⊗ZP , then g(b) has finite order n not divisible by primes in P . Thus nb

is in the kernel of g , hence in the image of f , so nb = f(a) and (f ⊗11)(a⊗ 1
mn) =

b⊗ 1
m .

(3) From (2) it follows in particular that Tor(A,ZP) = 0 for all A , so H∗(X;ZP) ≈

H∗(X)⊗ZP . One could also deduce that Tor(A,ZP) = 0 from the fact that ZP is

torsionfree.

Proof of Theorem 5.24: First we prove (a) assuming the ‘only if’ half of (b). The idea

is to construct X′ by building its Postnikov tower as a P localization of a Postnikov

tower for X . We will use results from §4.3 on Postnikov towers and obstruction

theory, in particular Theorem 4.67 which says that a connected CW complex has a

Postnikov tower of principal fibrations iff its fundamental group acts trivially on all

its higher homotopy groups. This applies to X which is assumed to be abelian.

The first stage of the Postnikov tower for X gives

the first row of the diagram at the right. Here we use

the abbreviations πi = πi(X) and π ′i = πi(X)⊗ZP .

The natural map π2→π
′
2 gives rise to the third column of the diagram. To construct

the rest of the diagram, start with X′1 = K(π
′
1,1) . Since X1 is a K(π1,1) , the natural

map π1→π
′
1 induces a map X1→X

′
1 . This is a P localization, so the ‘only if’ part

of (b) implies that the induced map H∗(X1;ZP)→H∗(X
′
1;ZP) is an isomorphism. By

the universal coefficient theorem over the principal ideal domain ZP , the induced

map H∗(X′1;A)→H∗(X1;A) is an isomorphism for any ZP module A . Thus if we

view the map X1→X
′
1 as an inclusion of CW complexes by passing to the mapping

cylinder of CW approximations, the relative groups H∗(X′1, X1;A) are zero and there

are no obstructions to extending the composition X1→K(π2,3)→K(π
′
2,3) to a map
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k′1 :X′1→K(π
′
2,3) . Turning k1 and k′1 into fibrations and taking their fibers then gives

the left square of the diagram. The space X′2 is abelian since its fundamental group

is abelian and it has a Postnikov tower of principal fibrations by construction. From

the long exact sequence of homotopy groups for the fibration in the second row we

see that X′2 is P local, using the preliminary algebraic fact (1). The map X2→X
′
2 is a

P localization by the five-lemma and (2).

This argument is repeated to construct inductively a Postnikov tower of principal

fibrations ···→X′n→X
′
n−1→ ··· with P localizations Xn→X

′
n . Letting X′ be a CW

approximation to lim
←-- X

′
n , we get the desired P localization X→ lim

←-- X
′
n→X

′ .

Now we turn to the ‘only if’ half of (b). First we consider the case that X is a

K(π,n) , with P localization X′ therefore a K(π ′, n) for π ′ = π⊗ZP . We proceed

by induction on n , starting with n = 1. For π = Z , K(π ′,1) is a Moore space M(ZP,1)

as noted earlier and the result is obvious. For π = Zpm with p ∈ P we have π ′ = π so

X→X′ is a homotopy equivalence. If π = Zpm with p 6∈ P then π ′ = 0 and the result

holds since H̃∗(K(Zpm ,1);ZP) = 0. The case X = K(π,1) with π finitely generated

follows from these cases by the Künneth formula. A nonfinitely-generated π is the

direct limit of its finitely generated subgroups, so a direct limit argument which we

leave to the reader covers this most general case.

For K(π,n) ’s with n > 1 we need the following fact:

(∗ )

Let F→E→B be a fibration of path-connected spaces with π1(B) acting triv-

ially on H∗(F ;Zp) for all p 6∈ P . If two of H̃∗(F) , H̃∗(E) , and H̃∗(B) are

ZP modules, then so is the third.

To prove this, recall the algebraic fact that H̃∗(X) is a ZP module iff the multiplication

map H̃∗(X)
p
-----→H̃∗(X) is an isomorphism for all p 6∈ P . From the long exact sequence

associated to the short exact sequence of coefficient groups 0→Z→Z→Zp→0, this

is equivalent to H̃∗(X;Zp) = 0 for p 6∈ P . Then from the Serre spectral sequence we

see that if H̃∗(−;Zp) is zero for two of F , E , and B , it is zero for the third as well.

The map π→π⊗ZP = π
′ induces a map of

path fibrations shown at the right. Applying (∗ )

to the second fibration we see by induction on n

that H̃∗(K(π
′, n)) is a ZP module. We may assume n ≥ 2 here, so the base space of

this fibration is simply-connected and the hypothesis of (∗ ) is automatically satisfied.

The map between the two fibrations induces a map between their Serre spectral se-

quences for H∗(−;ZP) , so induction on n and Proposition 5.13 imply that the induced

map H∗(K(π,n);ZP)→H∗(K(π
′, n);ZP) is an isomorphism.

In the general case, a P localization X→X′ induces a map of Postnikov towers.

In particular we have maps of fibrations as at the right.

Since X and X′ are abelian, we have the trivial action

of π1 of the base on πn of the fiber in each fibration.

The fibers are K(π,n) ’s, so this implies the stronger result that the homotopy equiv-
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alences Lγ :K(π,n)→K(π,n) obtained by lifting loops γ in the base are homotopic

to the identity. Hence the action of π1 of the base on the homology of the fiber is

also trivial. Thus we may apply (∗ ) and induction on n to conclude that H̃∗(X
′
n) is a

ZP module. Furthermore, Proposition 5.13 implies by induction on n and using the

previous special case of K(π,n) ’s that the map H∗(Xn;ZP)→H∗(X
′
n;ZP) is an iso-

morphism. Since the maps X→Xn and X′→X′n induce isomorphisms on homology

below dimension n , this completes the ‘only if’ half of (b).

For the other half of (b) let X→X′ satisfy the homology conditions of (b) and

let X→X′′ be a P localization as constructed at the beginning of the proof. We may

assume (X′, X) is a CW pair, and then H∗(X
′, X;ZP) = 0 implies H∗(X′, X;A) =

0 for any ZP module A by the universal coefficient theorem over ZP . Thus there

are no obstructions to extending X→X′′ to X′→X′′ . By the ‘only if’ part of (b) we

know that H̃∗(X
′′) is a ZP module and H∗(X;ZP)→H∗(X

′′;ZP) is an isomorphism,

so since X→X′ induces an isomorphism on ZP homology, so does X′→X′′ . But

H̃∗(X
′;ZP) = H̃∗(X

′) and likewise for X′′ , so H∗(X
′)→H∗(X

′′) is an isomorphism.

These spaces being abelian, the map X′→X′′ is then a weak homotopy equivalence

by Proposition 4.74. Since X→X′′ is a P localization, it follows that X→X′ is a

P localization.

Part (c) is proved similarly, by obstruction theory. ⊔⊓

Applications

Many important spaces in algebraic topology have the nice property that their

cohomology with coefficients in Q or a field Zp is the tensor product of a polynomial

algebra on even-dimensional generators and an exterior algebra on odd-dimensional

generators. If we let V be the vector subspace of the cohomology spanned by these

algebra generators, then we say that the cohomology is the symmetric algebra gener-

ated by V , written S(V) , with the coefficient field being implicit. The word ‘symmetric’

refers to the fact that the generators commute, in the graded sense. One could also

describe S(V) more abstractly as the free graded commutative associative algebra

generated by V , at least when the characteristic of the coefficient field is not 2 so

that the squares of odd-dimensional elements are automatically zero. In characteris-

tic 2 the free object would be simply a polynomial algebra on generators of even or

odd dimension, and one might want to modify the definition of a symmetric algebra

accordingly. We will avoid this issue by not using this terminology when we consider

Z2 coefficients.

An easy application of localization is the following:

Theorem 5.25. If X is a path-connected abelian space such that H∗(X;Q) is a

symmetric algebra with finitely many generators in each dimension, then XQ is ho-

motopy equivalent to a product of Eilenberg-MacLane spaces, and hence H∗(X;Q) ≈

S(π∗(X)⊗Q) .
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The isomorphism H∗(X;Q) ≈ S(π∗(X)⊗Q) is a theorem of Cartan and Serre.

This isomorphism need not hold if X is not abelian. As a simple example, RP2n has

H̃∗(RP2n;Q) = 0 but π∗(RP2n)⊗Q is nonzero since π2n(RP2n) ≈ π2n(S
2n) ≈ Z . The

action of π1 on π2n is nontrivial here since RP2n is nonorientable.

Proof: Suppose H∗(X;Q) ≈ Q[x1, ···]⊗ΛQ[y1, ···] . Each xi or yi determines a

map X→K(Q, ni) . Let f :X→Y be the product of all these maps, with Y the prod-

uct of the K(Q, ni) ’s. Using the calculation of H∗(K(Q, n);Q) in Proposition 5.21 to-

gether with the Künneth formula, we have H∗(Y ;Q) ≈ Q[x′1, ···]⊗ΛQ[y ′1, ···] with

f∗(x′i) = xi and f∗(y ′i) = yi , at least if the number of xi ’s and yi ’s is finite, but

this special case easily implies the general case since there are only finitely many xi ’s

and yi ’s below any given dimension.

The hypothesis of the theorem implies that f∗ :H∗(Y ;Q)→H∗(X;Q) is an iso-

morphism. Passing to homology, the homomorphism f∗ :H∗(X;Q)→H∗(Y ;Q) is the

dual of f∗ , hence is also an isomorphism. The space Y is Q local since it is abelian

and its homotopy groups are vector spaces over Q , so Theorem 5.24 implies that

f :X→Y is the Q localization of X . ⊔⊓

Corollary 5.26. If X is an H-space with finitely generated homology groups then

H∗(X;Q) ≈ S(π∗(X)⊗Q) .

Proof: H∗(X;Q) is a symmetric algebra by Theorem 3C.4. ⊔⊓

Example 5.27: Orthogonal and Unitary Groups. From the cohomology calculations

in Corollary 4D.3 we deduce that π∗U(n)/torsion consists of Z ’s in dimensions

1,3,5, ··· ,2n − 1. For SO(n) the situation is slightly more complicated. Using

the cohomology calculations in §3.D we see that π∗SO(n)/torsion consists of Z ’s

in dimensions 3,7,11, ··· ,2n − 3 if n is odd, and if n is even, Z ’s in dimensions

3,7,11, ··· ,2n − 5 plus an additional Z in dimension n − 1. Stabilizing by letting

n go to ∞ , the nontorsion in π∗(U) consists of Z ’s in odd dimensions, while for

π∗(SO) there are Z ’s in dimensions 3,7,11, ··· . This is the nontorsion part of Bott

periodicity.

Example 5.28. Let us show that H∗(Ω∞Σ∞X;Q) ≈ S(H̃∗(X;Q)) when X is path-

connected and has finitely generated homology groups. Part of the interest in Ω∞Σ∞X
is the fact that the stable homotopy groups π si (X) are expressible as the ordinary

homotopy groups πi(Ω∞Σ∞X) .
In order to apply the Cartan-Serre theorem to Ω∞Σ∞X we first check that its

homology groups are finitely generated. We assume that X has finitely generated

homology, so the same holds for its suspensions ΣnX . These are simply-connected,

so their homotopy groups are also finitely generated, hence also the homotopy groups

of ΩnΣnX . This implies that ΩnΣnX has finitely-generated homology groups since

ΩnΣnX is an H–space and thus abelian. As n increases, each homology group of
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ΩnΣnX eventually stabilizes by the Freudenthal suspension theorem and the relative

Hurewicz theorem, so the homology groups of Ω∞Σ∞X are also finitely generated.

Applying Cartan-Serre to Ω∞Σ∞X using the fact that it is an H–space, we obtain

isomorphisms

H∗(Ω∞Σ∞X;Q) ≈ S(π∗(Ω∞Σ∞X)⊗Q) ≈ S(π s∗(X)⊗Q) ≈ S(H̃∗(X;Q))

where the last isomorphism uses Proposition 5.23.

Another application of localization is to provide a more conceptual calculation of

the nontorsion in the homotopy groups of spheres:

Proposition 5.29. S2k+1
Q is a K(Q,2k+1) , hence πi(S

2k+1)⊗Q = 0 for i ≠ 2k+ 1 .

There is a fibration K(Q,4k−1)→S2k
Q→K(Q,2k) , so πi(S

2k)⊗Q is 0 unless i = 2k

or 4k− 1 , when it is Q .

Note that the fibration K(Q,4k− 1)→S2k
Q→K(Q,2k) gives the Postnikov tower

for S2k
Q , with just two nontrivial stages.

Proof: From our calculation of H∗(K(Q, n);Q) in Proposition 5.21 we know that

K(Q,2k + 1) is a Moore space M(Q,2k + 1) = S2k+1
Q . For the second statement, let

S2k
Q→K(Q,2k) induce an isomorphism on H2k . Turning this map into a fibration,

we see from the long exact sequence of homotopy groups for this fibration that its

fiber F is simply-connected and Q local, via (1) just before the proof of Theorem 5.24.

Consider the Serre spectral sequence for cohomology with Q coefficients. We claim

the E2 page has the following form:

The pattern across the bottom row is known since the base space is K(Q,2k) . The

term Qx must persist to E∞ since the projection S2k
Q→K(Q,2k) is an isomorphism

on H2k . The Qx2 does not survive, so it must be hit by a differential Qa→Qx2 , and

then the rest of the E2 array must be as shown. Thus H̃∗(F ;Q) consists of a single

Q in dimension 4k − 1, so the same is true for the homology H̃∗(F ;Q) . Since F is

Q local, it is then a Moore space M(Q,4k− 1) = K(Q,4k− 1) . ⊔⊓

The technique used to prove the preceding proposition can be applied with Q

replaced by Z(p) to obtain the following generalization of Example 5.19:
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Theorem 5.30. For n ≥ 3 and p prime, the p torsion subgroup of πi(S
n) is zero

for i < n+ 2p − 3 and Zp for i = n+ 2p − 3 .

Lemma 5.31. For n ≥ 3 , the torsion subgroup of Hi(K(Z, n);Z(p)) , or equivalently

the p torsion of Hi(K(Z, n);Z)) , is 0 for i < 2p+n− 1 and Zp for i = 2p+n− 1 .

Proof: This is by induction on n via the spectral sequence for the path fibration

K(Z, n−1)→P→K(Z, n) , using Z(p) coefficients. Consider first the initial case n = 3,

where the fiber is K(Z,2) whose cohomology we know. All the odd-numbered rows of

the spectral sequence are zero so E2 = E3 . The first column of the E2 page consists

of groups E
0,2k
2 = Z(p)a

k .

The next nonzero column is in dimension 3, where E
3,2k
2 = Z(p)a

kx . The differential

d2 must vanish on the first column, but d3(a
k) = kak−1x as in Example 5.20. Thus

the first column disappears in E4 , except for the bottom entry, and the first nonzero

entry in the E
3,q
4 column is E

3,2p−2
4 ≈ Zp , replacing the term Z(p)a

p−1x . If the next

nonzero entry to the right of E
3,0
2 in the bottom row of the E2 page occurred to the

left of E
2p+2,0
2 , this term would survive to E∞ since there is nothing in any Er page

which could map to this term. Thus all columns between the third column and the

2p + 2 column are zero, and the terms E
3,2p−2
4 ≈ Zp and E

2p+2,0
2 survive until the

differential d2p−1 gives an isomorphism between them. This finishes the case n = 3.

For the induction step there are two cases according to whether n is odd or even.

For odd n > 3 we have the following diagram:
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The first time the differential dn(a
k) = kak−1x fails to be an isomorphism is for

k = p , on E0,p(n−1)
n , but this is above the row containing the Zp in E

0,2p+n−2
2 since the

inequality 2p + n− 2 < (n− 1)p is equivalent to n > 3+ 1/p−1 which holds for odd

n > 3. The picture for n even is shown below, with all the dn ’s between the Z(p) ’s

isomorphisms since dn(ax
k) = xk+1 .

In both the n odd and n even cases a term E
2p+n−1,0
2 ≈ Zp in the first row is exactly

what is needed to kill the Zp in the first column. ⊔⊓

Proof of Theorem 5.30: Consider the Z(p) cohomology spectral sequence of the fi-

bration F→Sn(p)→K(Z(p), n) . When n is odd we argue that the E2 page must begin

in the following way:

Namely, by the lemma the only nontrivial cohomology in the base K(Z(p), n) up

through dimension 2p + n− 1 occurs in the three dimensions shown since the non-

torsion is determined by the Q localization K(Q, n) . The Z(p)x must survive to E∞
since the total space is Sn(p) , so the first nontrivial cohomology in the fiber is a Zp in

dimension 2p+n−2, to cancel the Zp in the bottom row. By the universal coefficient

theorem, the first nontrivial homology of F is then a Zp in dimension 2p + n − 3,

hence this is also the first nontrivial homotopy group of F . From the long exact se-

quence of homotopy groups for the fibration, this finishes the induction step when n

is odd.

The case n even is less tidy. One argues that the E2 page for the same spectral

sequence looks like:
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Here the position of row 2p+n−2 and column 2p+n−1 relative to the other rows

and columns depends on the values of n and p . We know from the Q localization

result in Proposition 5.29 that the nontorsion in H̃∗(F ;Z(p)) must be just the term

Z(p)a , so the differentials involving Z(p) ’s must be isomorphisms in the positions

shown. Then just as in the case n odd we see that the first torsion in H∗(F ;Z(p)) is

a Zp in dimension 2p +n− 2, so in homology the first torsion is a Zp in dimension

2p + n− 3. If 2p + n − 3 ≤ 2n− 1 the Hurewicz theorem finishes the argument. If

2p+n−3 > 2n−1 we convert the map F→K(Z(p),2n−1) inducing an isomorphism

on π2n−1 into a fibration and check by a similar spectral sequence argument that

its fiber has its first Z(p) cohomology a Zp in dimension 2p + n − 2, hence its first

nontrivial homotopy group is Zp in dimension 2p +n− 3. ⊔⊓

Cohomology of Eilenberg-MacLane Spaces

The only Eilenberg-MacLane spaces K(π,n) with n > 1 whose homology and

cohomology can be computed by elementary means are K(Z,2) ≃ CP∞ and a product

of copies of K(Z,2) , which is a K(π,2) with π free abelian. Using the Serre spectral

sequence we will now go considerably beyond this and compute H∗(K(Z2, n);Z2) . It

is possible to continue in the same direction and compute H∗(K(Zp, n);Zp) for p an

odd prime, but the technical details are significantly more complicated so we will not

do this here.

Computing H∗(K(Z2, n);Z2) is equivalent to determining all cohomology opera-

tions with Z2 coefficients, so it should not be surprising that Steenrod squares play

a central role in the calculation. The basic axioms for Steenrod squares developed

in §4.L are the following:

(1) Sqi(f∗(α)) = f∗(Sqi(α)) for f :X→Y .

(2) Sqi(α+ β) = Sqi(α)+ Sqi(β) .

(3) Sqi(α` β) =
∑
j Sq

j(α)` Sqi−j(β) (the Cartan formula).

(4) Sqi(σ(α)) = σ(Sqi(α)) where σ :Hn(X;Z2)→H
n+1(ΣX;Z2) is the suspension

isomorphism given by reduced cross product with a generator of H1(S1;Z2) .

(5) Sqi(α) = α2 if i = |α| , and Sqi(α) = 0 if i > |α| .
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(6) Sq0 = 11, the identity.

(7) Sq1 is the Z2 Bockstein homomorphism β associated with the coefficient se-

quence 0→Z2→Z4→Z2→0.

We will not actually use all these properties, and in particular not the most compli-

cated one, the Cartan formula. It would in fact be possible to do the calculation of

H∗(K(Z2, n);Z2) without using Steenrod squares at all, and then use the calculation

to construct the squares and prove the axioms, but since this only occupied five pages

in §4.L and would take a similar length to rederive here, we will not do this.

In order to state the main result we need to recall some notation and terminology

involving Steenrod squares. The monomial Sqi1 ··· Sqik , which is the composition

of the individual operations Sqij , is denoted SqI where I = (i1, ··· , ik) . It is a fact

that any SqI can be expressed as a linear combination of admissible SqI ’s, those for

which ij ≥ 2ij+1 for each j . This will follow from the main theorem, and explicit

formulas are given by the Adem relations in §4.L. The excess of an admissible SqI is

defined to be e(I) =
∑
j(ij −2ij+1) , giving a measure of how much SqI exceeds being

admissible. The last term of this summation is ik−2ik+1 = ik via the convention that

adding zeros at the end of an admissible sequence (i1, ··· , ik) does not change it, in

view of the fact that Sq0 is the identity.

Here is the theorem, first proved by Serre as one of the early demonstrations of

the power of the new spectral sequence.

Theorem 5.32. H∗(K(Z2, n);Z2) is the polynomial ring Z2[Sq
I(ιn)] where ιn is a

generator of Hn(K(Z2, n);Z2) and I ranges over all admissible sequences of excess

e(I) < n .

When n = 1 this is the familiar result that H∗(K(Z2,1);Z2) is the polynomial

ring Z2[ι1] since the only admissible SqI with excess 0 is Sq0 . The admissible SqI ’s

of excess 1 are Sq1 , Sq2Sq1 , Sq4Sq2Sq1 , Sq8Sq4Sq2Sq1 , ··· , so when n = 2 the

theorem says that H∗(K(Z2,1);Z2) is the polynomial ring on the infinite sequence of

generators ι2 , Sq1(ι2) , Sq
2Sq1(ι2) , ··· . For larger n there are even more generators,

but still only finitely many in each dimension, as must be the case since K(Z2, n) has

finitely generated homotopy groups and hence finitely generated cohomology groups.

What is actually happening when we go from K(Z2, n) to K(Z2, n+ 1) is that all the

2j th powers of all the polynomial generators for H∗(K(Z2, n);Z2) shift up a dimen-

sion and become new polynomial generators for H∗(K(Z2, n + 1);Z2) . For example

when n = 1 we have a single polynomial generator ι1 , whose powers ι1 , ι21 = Sq
1(ι1) ,

ι41 = Sq
2Sq1(ι1) , ι

8
1 = Sq

4Sq2Sq1(ι1) , ··· shift up a dimension to become the polyno-

mial generators ι2 , Sq1(ι2) , Sq
2Sq1(ι2) , ··· for H∗(K(Z2,2);Z2) . At the next stage

one would take all the 2j th powers of these generators and shift them up a dimension

to get the polynomial generators for H∗(K(Z2,3);Z2) , and so on for each successive
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stage. The mechanics of how this works is explained by part (b) of the following

lemma. Parts (a) and (b) together explain the restriction e(I) < n in the theorem.

Lemma 5.33. (a) SqI(ιn) = 0 if SqI is admissible and e(I) > n .

(b) The elements SqI(ιn) with SqI admissible and e(I) = n are exactly the powers(
SqJ(ιn)

)2j
with J admissible and e(J) < n .

Proof: For a monomial SqI = Sqi1 ··· Sqik the definition of e(I) can be rewritten as

an equation i1 = e(I)+i2+i3+···+ik . Thus if e(I) > n we have i1 > n+i2+···+ik =

|Sqi2 ··· Sqik(ιn)| , hence SqI(ιn) = 0.

If e(I) = n then i1 = n + i2 + ··· + ik so SqI(ιn) =
(
Sqi2 ··· Sqik(ιn)

)2
. Since

SqI is admissible we have e(i2, ··· , ik) ≤ e(I) = n , so either Sqi2 ··· Sqik has ex-

cess less than n or it has excess equal to n and we can repeat the process to write

Sqi2 ··· Sqik(ιn) =
(
Sqi3 ··· (ιn)

)2
, and so on, until we obtain an equation SqI(ιn) =(

SqJ(ιn)
)2j

with e(J) < n .

Conversely, suppose that Sqi2 ···Sqik is admissible with e(i2, ··· , ik) ≤ n , and

let i1 = n + i2 + ··· + ik so that Sqi1Sqi2 ··· Sqik(ιn) =
(
Sqi2Sqi3 ··· (ιn)

)2
. Then

(i1, ··· , ik) is admissible since e(i2, ··· , ik) ≤ n implies i2 ≤ n+ i3 + ··· + ik hence

i1 = n+ i2+···+ ik ≥ 2i2 . Furthermore, e(i1, ··· , ik) = n since i1 = n+ i2+···+ ik .

Thus we can iterate to express a 2j th power of an admissible SqJ(ιn) with e(J) < n

as an admissible SqI(ιn) with e(I) ≤ n . ⊔⊓

The proof of Serre’s theorem will be by induction on n using the Serre spectral

sequence for the path fibration K(Z2, n)→P→K(Z2, n + 1) . The key ingredient for

the induction step is a theorem due to Borel. The statement of Borel’s theorem in-

volves the notion of transgression which we introduced earlier in this chapter in the

case of homology, and the transgression for cohomology is quite similar. Namely,

in the cohomology Serre spectral sequence of a fibration F→X→B the differential

dr :E0,r−1
r →Er ,0r from the left edge to the bottom edge is call the transgression τ .

This has domain a subgroup of Hr−1(F) , the elements on which the previous differen-

tials d2, ··· , dr−1 are zero. Such elements are called transgressive. The target group

of τ is the quotient of Hr (B) obtained by factoring out the images of d2, ··· , dr−1 .

Thus if an element x ∈ H∗(F) is transgressive, τ(x) is strictly speaking a coset in

H∗(B) , but we will often be careless with words and not distinguish between the coset

and a representative element.

Here is Borel’s theorem:
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Theorem 5.34. Let F→X→B be a fibration with X contractible and B simply-

connected. Suppose that the cohomology H∗(F ;K) with coefficients in a field K has a

basis consisting of all the products xi1···xik , i1 < ··· < ik , of transgressive elements

x1, x2, ··· ∈ H
∗(F ;K) which are odd-dimensional if the characteristic of K is not 2 .

Then H∗(B;K) is the polynomial algebra K[y1, y2, ···] on elements yi representing

the transgressions τ(xi) .

Elements x1, x2, ··· whose products xi1···xik with i1 < ··· < ik form a basis

for H∗(F ;K) are called a simple system of generators. For example, an exterior al-

gebra obviously has a simple system of generators. A polynomial algebra K[x] also

has a simple system of generators, the powers x2i . The same is true for a truncated

polynomial algebra K[x]/(x2n) . The property of having a simple system of genera-

tors is preserved under tensor products, so for example a polynomial ring in several

variables has a simple system of generators.

Here are a few more remarks on the theorem:

If the characteristic of K is not 2, the elements xi in the theorem, being odd-

dimensional, have x2
i = 0, hence H∗(F ;K) is an exterior algebra in this case.

Contractibility of X implies that F has the weak homotopy type of ΩB by Propo-

sition 4.66. Thus if we assume that only finitely many elements xi lie in any

single Hj(F ;K) , then H∗(F ;K) is a commutative, associative Hopf algebra and is

therefore (see the remarks following Theorem 3C.4) the tensor product of exterior

algebras, polynomial algebras, and, when K has characteristic p > 0, truncated

polynomial algebras K[xp
n

] . In particular, when K = Z2 , H∗(F ;K) has a simple

system of generators. These generators may not be transgressive, however.

Another theorem of Borel asserts that H∗(B;K) is a polynomial algebra on even-

dimensional generators if and only if H∗(F ;K) is an exterior algebra on odd-

dimensional generators, without any assumptions about transgressions. Borel’s

original proof of this involved a detailed analysis of the Serre spectral sequence,

but a more conceptual proof can be given using the Eilenberg-Moore spectral

sequence.

In order to find enough transgressive elements to apply Borel’s theorem to in the

present context we will use the following technical fact:

Lemma 5.35. If x ∈ H∗(F ;Z2) is transgressive then so is Sqi(x) , and τ(Sqi(x)) =

Sqi(τ(x)) .

Proof: The analog of Proposition 5.14 for cohomology, proved in just the same way,

says that τ is the composition j∗(p∗)−1δ in

the diagram at the right. For x to be transgres-

sive means that δx lies in the image of p∗ , so

the same holds for Sqi(x) by naturality and
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the fact that Sqi commutes with δ since it commutes with suspension and δ can

be defined in terms of suspension. The relation τ(Sqi(x)) = Sqi(τ(x)) then also

follows by naturality. ⊔⊓

Proof of Serre’s theorem, assuming Borel’s theorem: This is by induction on n start-

ing from the known case K(Z2,1) . For the induction step we use the path fibration

K(Z2, n)→P→K(Z2, n + 1) . When n = 1 the fiber is K(Z2,1) with the simple sys-

tem of generators ι2
i

1 = Sq
2i−1

··· Sq2Sq1(ι1) . These are transgressive by the lemma

since ι1 is obviously transgressive with τ(ι1) = ι2 . So Borel’s theorem says that

H∗(K(Z2,2);Z2) is the polynomial ring on the generators Sq2i ···Sq2Sq1(ι2) .

The general case is similar. If H∗(K(Z2, n);Z2) is the polynomial ring in the ad-

missible SqI(ιn) ’s with e(I) < n then it has a simple system of generators consisting

of the 2i th powers of these SqI(ιn) ’s, i = 0,1, ··· . By Lemma 5.33 these powers are

just the admissible SqI(ιn) ’s with e(I) ≤ n . These elements are transgressive since

ιn is transgressive, the spectral sequence having zeros between the 0th and (n+1)st

rows. Since τ(ιn) = ιn+1 , we have τ(SqI(ιn)) = Sq
I(ιn+1) , and Borel’s theorem gives

the desired result for K(Z2, n+ 1) . ⊔⊓

Proof of Borel’s Theorem: The idea is to build an algebraic model of what we would

like the Serre spectral sequence of the fibration to look like, then use a cohomology

version of the spectral sequence comparison theorem to show that this model is cor-

rect.

The basic building block for the model is a spectral sequence whose E2 page is a

tensor product ΛK[xi]⊗K[y i] where xi and yi have the same dimensions as xi and

yi . The nontrivial differentials are the only ones which could be nonzero, indicated

by the arrows in the diagram below, namely dr (xi ⊗y
m
i ) = y

m+1
i for r = |y i| .

Hence the E∞ page consists of just a K in the (0,0) position. Taking the tensor prod-

uct of these spectral sequences for varying i will give the model spectral sequence we

are looking for. To start, the E2 page is defined by setting E
p,q
2 = E

p,0
2 ⊗E

0,q
2 where the

bottom row is K[y1, y2, ···] and the left column is ΛK[x1, x2, ···] . The differentials

dr will be defined inductively so that they are derivations and the elements xi are

transgressive with dr (xi) = yi . In particular, these conditions determine d2 , with

d2(xi) = y i if |xi| = 1 and d2(xi) = 0 otherwise. From this we can read off the

E3 page since with field coefficients the homology of a tensor product of chain com-

plexes is the tensor product of their homologies, by the algebraic Künneth formula.

The result is that in the E3 page the xi ’s with |xi| = 1 and the yi ’s with |y i| = 2
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become 0 and all the other xi ’s and yi ’s remain unchanged. The left column is the

exterior algebra on the remaining xi ’s, the bottom row is the polynomial algebra on

the remaining y i ’s, and E
p,q
3 = E

p,0
3 ⊗E

0,q
3 . The d3 differentials are defined to be

derivations with d3(xi) = yi if |xi| = 2 and d3(xi) = 0 otherwise. The process

continues in the same way for subsequent pages, so the E∞ page ends up as a single

K in the (0,0) position.

Let us denote the terms in the Serre spectral sequence for the given fibration by

Ep,qr and the terms in the model spectral sequence by E
p,q
r . We may define homo-

morphisms Φ :E
p,q
2 →E

p,q
2 in the following way. On the terms E

0,q
2 we send a product

of distinct generators xi to the corresponding product of xi ’s and extend linearly.

On the terms E
p,0
2 we let Φ be the ring homomorphism sending yi to an element

yi whose image under the quotient map E
p,0
2 →E

p,0
r is the transgression τ(xi) for

r = |yi| . Then on E
p,q
2 = E

p,0
2 ⊗E

0,q
2 we let Φ be the tensor product of its values on

E
p,0
2 and E

0,q
2 . Note that Φ is only an additive homomorphism when K has character-

istic 2 since in ΛK[xi] we have x2
i = 0 but it need not be true that x2

i = 0.

By construction Φ commutes with the d2 differentials and hence induces maps

E
p,q
3 →E

p,q
3 . Also by construction these commute with the d3 differentials, so we get

an induced map of E4 pages which again commutes with differentials, and similarly

for all subsequent pages.

Thus Φ becomes a map of spectral sequences, consisting of homomorphisms

E
p,q
r →E

p,q
r for all r , commuting with differentials and such that the maps E

p,q
r →E

p,q
r

induce the maps E
p,q
r+1→E

p,q
r+1 .

Since the total space X is contractible, Φ is an isomorphism on the E∞ pages.

The assumption that the xi ’s form a simple system of generators implies that Φ is

an isomorphism E
0,q
2 ≈ E

0,q
2 . The algebraic form of the spectral sequence comparison

theorem given below then implies that Φ is an isomorphism E
p,0
2 ≈ E

p,0
2 . On this row

of the E2 page Φ is a ring homomorphism, so the result follows. ⊔⊓

Here is a form of the spectral sequence comparison theorem that suffices for our

present needs:

Theorem 5.36. Suppose we have a map Φ between two first quadrant spectral se-

quences of cohomological type, so dr goes from Ep,qr to Ep+r ,q−r+1
r . Assume that

E
p,q
2 = E

p,0
2 ⊗E

0,q
2 for both spectral sequences, with d2 differentials that are the ten-

sor products of those with p or q zero. Then any two of the following three conditions

imply the third:

(i) Φ is an isomorphism on the E
p,0
2 terms.

(ii) Φ is an isomorphism on the E
0,q
2 terms.

(iii) Φ is an isomorphism on the E∞ page.

There are also generalizations of this in which the tensor products are replaced

by short exact sequences as in the universal coefficient theorems; see for example
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[MacLane]. Another sort of generalization due to Zeeman involves restricting p and

q to a finite range of values, which is sometimes useful for connectivity arguments.

The fact that (i) and (ii) imply (iii) is easy since they imply that Φ is an isomorphism

on E2 , hence on each subsequent page as well. The other two implications take more

work. The proofs are similar, and we shall do just the one we need here.

Proof that (ii) and (iii) imply (i): Assume inductively that Φ is an isomorphism on

E
p,0
2 for p ≤ k . We shall first show that this together with (ii) implies:

(a) Φ is an isomorphism on Ep,qr for p ≤ k− r + 1.

(b) Φ is injective on Ep,qr for p ≤ k .

This is by induction on r . Both assertions are certainly true for r = 2. For the

induction step, assume they are true for r . Let Zp,qr and Bp,qr be the subgroups of

Ep,qr that are the kernel and image of dr , so E
p,q
r+1 = Z

p,q
r /Bp,qr . First we show that (a)

holds with r replaced by r + 1.

(1) From the exact sequence

0 -→Zp,qr -→Ep,qr
dr-----→Ep+r ,q−r+1

r

we deduce that Φ is an isomorphism on Zp,qr for p ≤ k − r since by (a) it is an

isomorphism on Ep,qr for p ≤ k − r + 1 and by (b) it is injective on Ep+r ,q−r+1
r for

p + r ≤ k , that is, p ≤ k− r .

(2) The exact sequence

Ep−r ,q+r−1
r

dr-----→Ep,qr -→Ep,qr /Bp,qr -→0

shows that Φ is an isomorphism on Ep,qr /Bp,qr for p ≤ k − r + 1 since by (a) it is an

isomorphism on Ep,qr for p ≤ k− r + 1 and on Ep−r ,q+r−1
r for p − r ≤ k− r + 1, or

p ≤ k+ 1.

(3) From the preceding step and the short exact sequence

0 -→Bp,qr -→Ep,qr -→Ep,qr /Bp,qr -→0

we conclude that Φ is an isomorphism on Bp,qr for p ≤ k− r + 1.

(4) From steps (1) and (3) and the short exact sequence

0 -→Bp,qr -→Zp,qr -→E
p,q
r+1 -→0

we see that Φ is an isomorphism on E
p,q
r+1 for p ≤ k − r , or in other words, p ≤

k− (r + 1)+ 1, which finishes the induction step for (a).

For (b), induction gives that Φ is injective on Zp,qr if p ≤ k . From exactness of

Ep−r ,q+r−1
r →Bp,qr →0 we deduce using (a) that Φ is surjective on Bp,qr for p − r ≤

k − r + 1, or p ≤ k + 1. Then the exact sequence in (4) shows that Φ is injective on

E
p,q
r+1 if p ≤ k .
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Returning now to the main line of the proof, we will show that Φ is an isomor-

phism on E
k+1,0
2 using the exact sequence

Zk−r+1,r−1
r -→Ek−r+1,r−1

r
dr-----→Ek+1,0

r -→E
k+1,0
r+1 -→0

We know that Φ is an isomorphism on Ek−r+1,r−1
r by (a). We may assume Φ is an

isomorphism on E
k+1,0
r+1 by condition (iii) and downward induction on r . If we can

show that Φ is surjective on Zk−r+1,r−1
r then the five lemma will imply that Φ is an

isomorphism on Ek+1,0
r and the proof will be done.

We show that Φ is surjective on Zk−r+1,r−1
s for s ≥ r by downward induction on

s . Consider the five-term exact sequence

Zk−r−s+1,r+s−2
s -→Ek−r−s+1,r+s−2

s
ds-----→Zk−r+1,r−1

s -→E
k−r+1,r−1
s+1 -→0

On the second term Φ is an isomorphism by (a). The fourth term E
k−r+1,r−1
s+1 is the

same as Z
k−r+1,r−1
s+1 since ds+1 is zero on this term if s ≥ r . Downward induction on

s then says that Φ is surjective on this term. Applying one half of the five lemma, the

half involving surjectivity, yields the desired conclusion that Φ is surjective on the

middle term Zk−r+1,r−1
s . ⊔⊓

The technique used to prove Serre’s theorem works without further modification

in two other cases as well:

Theorem 5.37. (a) H∗(K(Z, n);Z2) for n > 1 is the polynomial ring on the gener-

ators SqI(ιn) as SqI ranges over all admissible monomials of excess e(I) < n and

having no Sq1 term.

(b) H∗(K(Z2k , n);Z2) for k > 1 and n > 1 is the polynomial ring on generators

SqI(ιn) and SqI(κn+1) as SqI ranges over all admissible monomials having no Sq1

term, with e(I) < n for SqI(ιn) and e(I) ≤ n for SqI(κn+1) . Here κn+1 is a

generator of Hn+1(K(Z2k , n);Z2) ≈ Z2 .

If k were 1 in part (b) then κn+1 would be Sq1(ιn) , but for k > 1 we have

Sq1(ιn) = 0 since Sq1 is the Z2 Bockstein and ιn is the Z2 reduction of a Z4 class.

Thus a new generator κn+1 is needed. Nevertheless, the polynomial ring in (b) is

isomorphic as a graded ring to H∗(K(Z2, n);Z2) by replacing κn+1 by Sq1(ιn) .

Proof: For part (a) the induction starts with n = 2 where H∗(K(Z,2);Z2) = Z2[ι2]

with a simple system of generators ι2 , ι22 = Sq
2ι2 , ι42 = Sq

4Sq2ι2 , ··· . This implies

that for n = 3 one has polynomials on the generators ι3 , Sq2(ι3) , Sq
4Sq2(ι3) , ··· ,

and so on for higher values of n .

For (b), when n = 1 and k > 1 the lens space calculations in Example 3.41 show

that H∗(K(Z2k ,1);Z2) is ΛZ2
[ι1]⊗Z2[κ2] rather than a pure polynomial algebra. A

simple system of generators is ι1 , κ2 , κ2
2 = Sq

2(κ2) , κ
4
2 = Sq

4Sq2(κ2) , ··· , and both

ι1 and κ2 are transgressive, transgressing to ι2 and κ3 , so Borel’s theorem says that
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for n = 2 one has the polynomial ring on generators ι2 , κ3 , Sq2(κ3) , Sq
4Sq2(κ3) ,

··· . The inductive step for larger n is similar. ⊔⊓

Using these results and the fact that K(Zpk , n) has trivial Z2 cohomology for p

an odd prime, one could apply the Künneth formula to compute the Z2 cohomology

of any K(π,n) with π a finitely generated abelian group.

Relation with the Steenrod Algebra

The Steenrod algebra A2 can be defined as the algebra generated by the Sqi ’s

subject only to the Adem relations. This is a graded algebra, with SqI having degree

d(I) =
∑
j ij , the amount by which the operation SqI raises dimension.

Corollary 5.38. The map A2→H̃
∗(K(Z2, n);Z2) , Sq

I֏SqI(ιn) , is an isomorphism

from the degree d part of A2 onto Hn+d(K(Z2, n);Z2) for d ≤ n . In particular, the

admissible monomials SqI form an additive basis for A2 .

Proof: The map is surjective since H̃n+d(K(Z2, n);Z2) for d < n consists only of

linear polynomials in the SqI(ιn) ’s, and the only nonlinear term for d = n is ι2n =

Sqn(ιn) . For injectivity, note first that d(I) ≥ e(I) , and Sqn is the only monomial

with degree and excess both equal to n . So the admissible SqI with d(I) ≤ n map

to linearly independent classes in H̃∗(K(Z2, n);Z2) . Since the Adem relations allow

any monomial to be expressed in terms of admissible monomials, injectivity follows,

as does the linear independence of the admissible monomials. ⊔⊓

One can conclude that A2 is exactly the algebra of all Z2 cohomology operations

that are stable, commuting with suspension. Since general cohomology operations

correspond exactly to cohomology classes in Eilenberg-MacLane spaces, the algebra

of stable Z2 operations is the inverse limit of the sequence

··· -→H̃∗(K(Z2, n+ 1);Z2) -→H̃∗(K(Z2, n);Z2) -→···

where the maps are induced by maps fn :ΣK(Z2, n)→K(Z2, n+1) that induce an iso-

morphism on πn+1 , together with the suspension isomorphisms H̃i(K(Z2, n);Z2) ≈

H̃i+1(ΣK(Z2, n);Z2) . Since fn induces an isomorphism on homotopy groups through

dimension approximately 2n by the Freudenthal suspension theorem, Corollary 4.24,

it also induces isomorphisms on homology and cohomology in this same approximate

dimension range, so the inverse limit is achieved at finite stages in each dimension.

Unstable operations do exist, for example x֏ x3 for x ∈ H1(X;Z2) . This cor-

responds to the element ι31 ∈ H
3(K(Z2,1);Z2) , which is not obtainable by applying

any element of A2 to ι1 , the only possibility being Sq2 but Sq2(ι1) is zero since ι1
is 1 dimensional. According to Serre’s theorem, all unstable operations for Z2 coef-

ficients are polynomials in stable ones.
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Integer Coefficients

It is natural to ask about the cohomology of K(Z2, n) with Z coefficients. Since the

homotopy groups are finite 2 groups, so are the reduced homology and cohomology

groups with Z coefficients, and the first question is whether there are any elements

of order 2k with k > 1. For n = 1 the answer is certainly no since RP∞ is a K(Z2,1) .

For larger n it is also true that H̃j(K(Z2, n);Z) contains only elements of order 2

if j ≤ 2n . This can be shown using the Bockstein β = Sq1 , as follows. Using the

Adem relations Sq1Sq2i = Sq2i+1 and Sq1Sq2i+1 = 0 we see that applying β to

an admissible monomial Sqi1Sqi2 ··· gives the admissible monomial Sqi1+1Sqi2 ···

when i1 is even and 0 when i1 is odd. Hence in A2 we have Kerβ = Imβ with basis

the admissible monomials beginning with Sq2i+1 . This implies that Kerβ = Imβ in

H̃j(K(Z2, n);Z2) for j < 2n , so by the general properties of Bocksteins explained in

§3.E this implies that H̃j(K(Z2, n);Z) has no elements of order greater than 2 for

j ≤ 2n .

However if n is even then Kerβ/ Imβ in dimension 2n is Z2 generated by the

element Sqn(ιn) = ι
2
n . Hence H2n+1(K(Z2, n);Z) contains exactly one summand Z2k

with k > 1. The first case is n = 2, and here we will compute explicitly in §5.A that

H5(K(Z2,2);Z) = Z4 . In the general case of an arbitrary even n the universal coef-

ficient theorem implies that H2n(K(Z2, n);Z4) contains a single Z4 summand. This

corresponds to a cohomology operation Hn(X;Z2)→H
2n(X;Z4) called the Pontrya-

gin square.

A full description of the cohomology of K(Z2, n) with Z coefficients can be deter-

mined by means of the Bockstein spectral sequence. This is worked out in Theorem

10.4 of [May 1970]. The answer is moderately complicated.

Cell Structure

Serre’s theorem allows one to determine the minimum number of cells of each

dimension in a CW complex K(Z2, n) . An obvious lower bound on the number of

k cells is the dimension of Hk(K(Z2, n);Z2) as a vector space over Z2 , and in fact

there is a CW complex K(Z2, n) that realizes this lower bound for all k . This is

evident for n = 1 since RP∞ does the trick. For n > 1 we are dealing with a simply-

connected space so Proposition 4C.1 says that there is a CW complex K(Z2, n) having

the minimum number of cells compatible with its Z homology, namely one cell for

each Z summand of its Z homology, which in this case occurs only in dimension 0,

and two cells for each finite cyclic summand. Each finite cyclic summand of the Z

homology has order a power of 2 and gives two Z2 ’s in the Z2 cohomology, so the

result follows.

For example, for K(Z2,2) the minimum number of cells of dimensions 2,3, ··· ,10

is, respectively, 1,1,1,2,2,2,3,4,4. The numbers increase, but not too rapidly, a

pleasant surprise since the general construction of a K(π,n) by killing successive
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homotopy groups might lead one to expect that rather large numbers of cells would

be needed even in fairly low dimensions.

Pontryagin Ring Structure

Eilenberg-MacLane spaces K(π,n) with π abelian are H–spaces since they are

loopspaces, so their cohomology rings with coefficients in a field are Hopf algebras.

Serre’s theorem allows the Hopf algebra structure in H∗(K(Z2, n);Z2) to be deter-

mined rather easily, using the following general fact:

Lemma 5.39. If X is a path-connected H–space and x ∈ H∗(X;Z2) is primitive, then

so is Sqi(x) .

Proof: For x to be primitive means that ∆(x) = x ⊗1+1⊗x where ∆ is the coproduct

in the Hopf algebra structure, the map

H∗(X;Z2)
µ∗

------------→H∗(X×X;Z2) ≈ H
∗(X;Z2)⊗H

∗(X;Z2)

where µ :X×X→X is the H–space multiplication and the indicated isomorphism is

given by cross product. For a general x we have ∆(x) = ∑
i x
′
i ⊗x

′′
i , or in other

words, µ∗(x) =
∑
i x
′
i×x

′′
i . The total Steenrod square Sq = 1 + Sq1 + Sq2 + ··· is

a ring homomorphism by the Cartan formula, and by naturality this is equivalent to

the cross product formula Sq(a×b) = Sq(a)×Sq(b) . So if x is primitive we have

µ∗Sq(x) = Sq
(
µ∗(x)

)
= Sq(x×1+ 1×x)

= Sq(x)×Sq(1)+ Sq(1)×Sq(x) = Sq(x)×1+ 1×Sq(x)

which says that µ∗Sqi(x) = Sqi(x)×1+ 1×Sqi(x) , so Sqi(x) is primitive. ⊔⊓

By Serre’s theorem, H∗(K(Z2, n);Z2) is then generated by primitive elements

SqI(ιn) . In a Hopf algebra generated by primitives the coproduct is uniquely de-

termined by the product since the coproduct is an algebra homomorphism. This

means that H∗(K(Z2, n);Z2) is the tensor product of one-variable polynomial alge-

bras Z2[Sq
I(ιn)] not just as an algebra but also as a Hopf algebra. It follows as in

§3.C that the dual Pontryagin algebra H∗(K(Z2, n);Z2) is the tensor product of di-

vided polynomial algebras ΓZ2
[αI] on the homology classes αI dual to the SqI(ιn) ’s.

Since a divided polynomial algebra over Z2 is actually an exterior algebra, we can also

say that H∗(K(Z2, n);Z2) , regarded just as an algebra and ignoring its coproduct, is an

exterior algebra on the homology classes dual to the powers
(
SqI(ιn)

)2j
as I ranges

over admissible monomials of excess e(I) < n . Thus by Lemma 5.33 we have:

Proposition 5.40. H∗(K(Z2, n);Z2) with its Pontryagin ring structure is the exte-

rior algebra on the homology classes dual to the elements SqI(ιn) as I ranges over

admissible monomials of excess e(I) ≤ n . ⊔⊓
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Computing Homotopy Groups of Spheres

Using information about cohomology of Eilenberg-MacLane spaces one can at-

tempt to compute a Postnikov tower for Sn and in particular determine its homotopy

groups. To illustrate how this technique works we shall carry it out just far enough

to compute πn+i(S
n) for i ≤ 3. We already know that πn+1(S

n) is Z for n = 2 and

Z2 for n ≥ 3. Here are the next two cases:

Theorem 5.41. (a) πn+2(S
n) = Z2 for n ≥ 2 .

(b) π5(S
2) = Z2 , π6(S

3) = Z12 , π7(S
4) = Z⊕Z12 , and πn+3(S

n) = Z24 for n ≥ 5 .

In the course of the proof we will need a few of the simpler Adem relations in

order to compute some differentials. For convenience we list these relations here:

Sq1Sq2n = Sq2n+1, Sq1Sq2n+1 = 0

Sq2Sq2 = Sq3Sq1, Sq3Sq2 = 0, Sq2Sq3 = Sq5 + Sq4Sq1, Sq3Sq3 = Sq5Sq1

Proof: By Theorem 5.30 all the torsion in πi(S
n) for i ≤ n + 3 is 2 torsion except

for a Z3 in πn+3(S
n) for n ≥ 3. This will allow us to focus on cohomology with Z2

coefficients, but we will also need to make some use of Z coefficients. When we do

use Z coefficients we will be ignoring odd torsion, whether we say this explicitly or

not. Alternatively we could localize all the spaces at the prime 2. This may be more

elegant, but it is not really necessary.

Since πn(S
2) ≈ πn(S

3) for n ≥ 3 via the Hopf bundle, we may start with S3 .

A Postnikov tower for S3 consists of fibrations K(πn(S
3),n)→Xn→Xn−1 , starting

with X3 = K(Z,3) . Each Xn comes with a map S3→Xn , and thinking of this as an

inclusions via the mapping cylinder, the pair (Xn, S
3) is (n+1) connected since up to

homotopy equivalence we can build Xn from S3 by attaching cells of dimension n+2

and greater to kill πn+1 and the higher homotopy groups. Thus we have Hi(Xn;Z) ≈

Hi(S
3;Z) for i ≤ n+ 1.

We begin by looking at the Serre spectral sequence in Z2 cohomology for the

fibration K(π4(S
3),4)→X4→K(Z,3) . It will turn out that to compute πi(S

3) for i ≤

6 we need full information on the terms Ep,qr with p+ q ≤ 8 and partial information

for p + q = 9. The relevant part of the E2 page is shown below.
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Across the bottom row we have H∗(K(Z,3);Z2) which we computed in Theorem 5.37.

In the dimensions shown we can also determine the cohomology of K(Z,3) with Z

coefficients, modulo odd torsion, using the Bockstein β = Sq1 . We have

Sq1Sq2ι3 = Sq
3ι3 = ι

2
3

Sq1(ι3Sq
2ι3) = ι3Sq

1Sq2ι3 = ι
3
3

Sq1Sq4Sq2ι3 = Sq
5Sq2ι3 = (Sq

2ι3)
2

Thus Kerβ = Imβ in dimensions 5 through 9, hence the 2 torsion in these dimen-

sions consists of elements of order 2. We have indicated Z cohomology in the diagram

by open circles for the Z2 reductions of Z cohomology classes, the image of the map

on cohomology induced by the coefficient homomorphism Z→Z2 . This induced map

is injective on Z2 summands, with image equal to the image of β .

The fiber is K(π4S
3,4) with π4S

3 finite, so above dimension 0 the Z cohomol-

ogy of the fiber starts with π4S
3 in dimension 5. For the spectral sequence with Z

coefficients this term must be mapped isomorphically by the differential d6 onto the

Z2 in the bottom row generated by ι23 , otherwise something would survive to E∞ and

we would have nonzero torsion in either H5(X4;Z) or H6(X4;Z) , contradicting the

isomorphism Hi(X4;Z) ≈ Hi(S
3;Z) that holds for i ≤ 5 as we noted in the second

paragraph of the proof. Thus we conclude that π4S
3 = Z2 , if we did not already know

this. This is in the stable range, so πn+1(S
n) = Z2 for all n ≥ 3.

Now we know the fiber is a K(Z2,4) , so we know its Z2 cohomology and we can

compute its Z cohomology in the dimensions shown via Bocksteins as before. The

next step is to compute enough differentials to determine Hi(X4) for i ≤ 8. Since

H4(X4;Z2) = 0 we must have d5(ι4) = Sq
2ι3 . This says that ι4 is transgressive, hence

so are all the other classes above it in the diagram. From d5(ι4) = Sq
2ι3 we obtain

d5(ι3ι4) = ι3Sq
2ι3 . Since H5(X4;Z2) = 0 we must also have d6(Sq

1ι4) = ι
2
3 , hence

d6(ι3Sq
1ι4) = ι

3
3 . The classes Sq2ι4 , Sq3ι4 , and Sq2Sq1ι4 must then survive to E∞
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since there is nothing left in the bottom row for them to hit. Finally, since d5(ι4) =

Sq2ι3 we have d9(Sq
4ι4) = Sq

4Sq2ι3 using Lemma 5.35, and similarly d6(Sq
1ι4) = ι

2
3

implies that d9(Sq
3Sq1ι4) = Sq

3ι23 = Sq
3Sq3ι3 = Sq

5Sq1ι3 = 0 via Adem relations

and the fact that Sq1ι3 = 0.

From these calculations we conclude that Hi(X4) with Z2 and Z coefficients is as

shown in the bottom row of the following diagram which shows the E2 page for the

spectral sequence of the fibration K(π5S
3,5)→X5→X4 .

We have labelled the elements of H∗(X4) by the same names as in the preceding spec-

tral sequence, although strictly speaking ‘Sq2ι4 ’ now means an element of H6(X4;Z2)

whose restriction to the fiber K(Z2,4) of the preceding fibration is Sq2ι4 , and simi-

larly for the other classes. Note that restriction to the fiber is injective in dimensions

4 through 8, so this slight carelessness in notation will cause no problems in subse-

quent arguments.

By the same reasoning as was used with the previous spectral sequence we deduce

that π5(S
3) must be Z2 . Also we have the three nonzero differentials shown, d6(ι5) =

Sq2ι4 , d7(Sq
1ι5) = Sq

3ι4 , and d8(Sq
2ι5) = Sq

2Sq2ι4 = Sq
3Sq1ι4 . This is enough to

conclude that H7(X5;Z2) is Z2 with generator Sq2Sq1ι4 . By the universal coefficient

theorem this implies that H8(X5;Z) is cyclic (and of course finite). To determine its

order we look at the terms with p+q = 8 in the spectral sequence with Z coefficients.

In the fiber there is only the element Sq3ι5 . This survives to E∞ since d9(Sq
3ι5) =

Sq3Sq2ι4 , and this is 0 by the Adem relation Sq3Sq2 = 0. The product ι3ι5 exists

only with Z2 coefficients. In the base there is only Sq3Sq1ι4 which survives to E∞
with Z coefficients but not with Z2 coefficients. Thus H8(X5;Z) has order 4, and

since we have seen that it is cyclic, it must be Z4 .
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Now we look at the spectral sequence for the next

fibration K(π6S
3,6)→X6→X5 . With Z2 coefficients

the two differentials shown are isomorphisms as be-

fore. With Z coefficients the upper differential must

be an injection π6(S
3)→Z4 since H7(X6;Z) = 0, and

it must in fact be an isomorphism since after reducing

mod 2 this differential becomes an isomorphism via the Z2 coefficient information.

Recall that we are ignoring odd torsion, so in fact π6(S
3) is Z12 rather than Z4 since

its odd torsion is Z3 . This finishes the theorem for S3 .

For S4 we can use the Hopf bundle S3→S7→S4 . The inclusion of the fiber into

the total space is nullhomotopic, and a nullhomotopy can be used to produce splitting

homomorphisms in the associated long exact sequence of homotopy groups, yielding

isomorphisms πi(S
4) ≈ πi(S

7)⊕πi−1(S
3) . Taking i = 5,6,7 then gives the theorem

for S4 . Note that the suspension map π5(S
3)→π6(S

4) , which is guaranteed to be

surjective by the Freudenthal suspension theorem, is in fact an isomorphism since

both groups are Z2 .

For Sn with n ≥ 5 the groups πn+i(S
n) , i ≤ 3, are in the stable range, so

it remains only to compute the stable group π s3 , say π10(S
7) . This requires only

minor changes in the spectral sequence arguments above. For the first fibration

K(π8S
7,8)→X8→K(Z,7) we have the following diagram:

There are no terms of interest off the two axes. The differentials can be computed
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using Adem relations, starting with the fact that d9(ι8) = Sq
2ι7 . Thus we have

d10(Sq
1ι8) = Sq

1Sq2ι7 = Sq
3ι7

d11(Sq
2ι8) = Sq

2Sq2ι7 = Sq
3Sq1ι7 = 0

d12(Sq
3ι8) = Sq

3Sq2ι7 = 0

d12(Sq
2Sq1ι8) = Sq

2Sq1Sq2ι7 = Sq
2Sq3ι7 = Sq

5ι7 + Sq
4Sq1ι7 = Sq

5ι7

d13(Sq
3Sq1ι8) = Sq

3Sq1Sq2ι7 = Sq
3Sq3ι7 = Sq

5Sq1ι7 = 0

d13(Sq
4ι8) = Sq

4Sq2ι7

With Z coefficients Sq5ι7 survives to E∞ , so we deduce that H12(X8;Z) has order 4

while H12(X8;Z2) = Z2 , hence H12(X8;Z) = Z4 . The generator of this Z4 corresponds

to Sq3Sq1ι8 while the element of order 2 corresponds to Sq5ι7 , in view of the way

that E∞ is related to the filtration of H∗(X8;Z) in the Serre spectral sequence for

cohomology. In other words, restriction to the fiber sends H12(X8;Z) = Z4 onto the

Z2 generated by Sq3Sq1ι8 , and the kernel of this restriction map is Z2 generated

by the image of Sq5ι7 ∈ H
12(K(Z,7);Z) under the map induced by the projection

X8→K(Z,7) .
For the next fibration K(π9S

7,9)→X9→X8 we have the picture below:

From this we see that H11(X9;Z2) = Z2 so H12(X9;Z) is cyclic. Its order is 8 since in

the spectral sequence with Z coefficients the term Sq3Sq1ι8 has order 4 and the term

Sq3ι9 has order 2. Just as in the case of S3 we then deduce from the next fibration

that π10(S
7) is Z8 , ignoring odd torsion. Hence with odd torsion included we have

π10(S
7) = Z24 . ⊔⊓

It is not too difficult to describe specific maps generating the various homotopy

groups in the theorem. The Hopf map η : S3→S2 generates π3(S
2) , and the suspen-

sion homomorphism Σ :π3(S
2)→π4(S

3) is a surjection onto the stable group π s1 = Z2

by the suspension theorem, so suspensions of η generate πn+1(S
n) for n ≥ 3. For

the groups πn+2(S
n) we know that these are all Z2 for n ≥ 2, and the isomorphism
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π4(S
2) ≈ π4(S

3) coming from the Hopf bundle S1→S3→S2 is given by composition

with η , so π4(S
2) is generated by the composition η◦Ση . It was shown in Propo-

sition 4L.11 that this composition is stably nontrivial, so its suspensions generate

πn+2(S
n) for n > 3. This tells us that π5(S

2) is generated by η◦Ση◦Σ2η via the

isomorphism π5(S
2) ≈ π5(S

3) . We shall see in §5.2 that η◦Ση◦Σ2η is nontrivial

in π s3 = Z24 , where it is written just as η3 . This tells us that the first map in the

suspension sequence

is injective. The next map is also injective, as one can check by examining the isomor-

phism π7(S
4) ≈ π7(S

7)⊕π6(S
3) coming from the Hopf bundle S3→S7→S4 . This

isomorphism also gives the Hopf map ν :S7→S4 as a generator of the Z summand of

π7(S
4) . The last map in the sequence above is surjective by the suspension theorem,

so Σν generates π8(S
5) . Thus in π s3 we have the interesting relation η3 = 12ν since

there is only one element of order two in Z24 . This also tells us that the suspension

maps are injective on 2 torsion. They are also injective, hence isomorphisms, on the

3 torsion since by Example 4L.6 the element of order 3 in π6(S
3) is stably nontriv-

ial, being detected by the Steenrod power P1 . The surjection Z⊕Z12→Z24 is then

the quotient map obtained by setting twice a generator of the Z summand equal to a

generator of the Z12 summand.

An explicit map S6→S3 generating π6(S
3) = Z12 can be constructed from the

unit quaternion group S3 as follows. The map S3×S3→S3 , (u,v)֏ uvu−1v−1 ,

sends the wedge sum S3×{1} ∪ {1}×S3 to 1, hence induces a quotient map S3 ∧

S3→S3 . This generates π6(S
3) , although we are not in a position to show this here.

The technique we have used here for computing homotopy groups of spheres

can be pushed considerably further, but eventually one encounters ambiguities which

cannot be resolved purely on formal grounds. In the next section we will study a more

systematic refinement of this procedure in the stable dimension range, the Adams

spectral sequence.

Exercises

1. Compute the homology of the homotopy fiber of a map Sk→Sk of degree n , for

k,n > 1.

2. Compute the Serre spectral sequence for homology with Z coefficients for the

fibration K(Z2,1)→K(Z8,1)→K(Z4,1) . [See Example 5.6.]

3. For a fibration K(A,1)→K(B,1)→K(C,1) associated to a short exact sequence

of groups 1→A→B→C→1 show that the associated action of π1K(C,1) = C on

H∗(K(A,1);G) is trivial if A , regarded as a subgroup of B , lies in the center of B .
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4. Show that countable abelian groups form a Serre class satisfying the condition (2)

as well as (1).

5. Use the Serre spectral sequence to compute H∗(F ;Z) for F the homotopy fiber of

a map Sk→Sk of degree n for k,n > 1, and show that the cup product structure in

H∗(F ;Z) is trivial.

6. For a fibration F
i
-----→ X

p
-----→ B with B path-connected, show that if the map

i∗ :H∗(X;G)→H∗(F ;G) is surjective then:

(a) The action of π1(B) on H∗(F ;G) is trivial.

(b) All differentials originating in the left-hand column of the Serre spectral sequence

for cohomology are zero.

7. Let F
i
-----→X

p
-----→B be a fibration with B path-connected. The Leray-Hirsch theorem,

proved in §4.D without using spectral sequences, asserts that if Hk(F ;R) is a finitely-

generated free R module for each k and there exist classes cj ∈ H
∗(X;R) whose

images under i∗ form a basis for H∗(F ;R) , then H∗(X;R) , regarded as a module over

H∗(B;R) , is free with basis the classes cj . This is equivalent to saying that the map

H∗(F ;R)⊗RH
∗(B;R)→H∗(X;R) sending i∗(cj)⊗b to cj`p

∗(b) is an isomorphism

of H∗(B;R) modules. (It is not generally a ring isomorphism.) The coefficient ring

R can be any commutative ring, with an identity element of course. Show how this

theorem can be proved using the Serre spectral sequence. [Use the preceding problem.

The freeness hypothesis gives E
p,q
2 ≈ E

p,0
2 ⊗RE

0,q
2 . Deduce that all differentials must

be trivial so E2 = E∞ . The final step is to go from E∞ to H∗(X;R) .]

8. Show that the map H∗(Ω∞Σ∞X;Q)→H∗(X;Q) induced by the natural inclusion

of X into Ω∞Σ∞X is the canonical algebra homomorphism S(A)→A defined for any

graded commutative associative algebra A .
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The Adams spectral sequence was invented as a tool for computing stable homo-

topy groups of spheres, and more generally the stable homotopy groups of any space.

Let us begin by explaining the underlying idea of this spectral sequence.

As a first step toward computing the set [X, Y ] of homotopy classes of maps

X→Y one could consider induced homomorphisms on homology. This produces a

map [X, Y ]→Hom(H∗(X),H∗(Y )) . The first interesting instance of this is the notion

of degree for maps Sn→Sn , where it happens that the degree computes [Sn, Sn]

completely. For maps between spheres of different dimension we get no information

this way, however, so it is natural to look for more sophisticated structure. For a start

we can replace homology by cohomology since this has cup products and their stable

outgrowths, Steenrod squares and powers. Changing notation by switching the roles

of X and Y for convenience, we then have a map [Y ,X]→HomA(H
∗(X),H∗(Y ))

where A is the mod p Steenrod algebra and cohomology is taken with Zp coefficients.

Since cohomology and Steenrod operations are stable under suspension, it makes

sense to change our viewpoint and let [Y ,X] now denote the stable homotopy classes

of maps, the direct limit under suspension of the sets of maps ΣkY→ΣkX . This has

the advantage that the map [Y ,X]→HomA(H
∗(X),H∗(Y )) is a homomorphism of

abelian groups, where cohomology is now to be interpreted as reduced cohomology

since we want it to be stable under suspension.

Since HomA(H
∗(X),H∗(Y )) is just a subgroup of Hom(H∗(X),H∗(Y )) , we are

not yet using the real strength of the A module structure. To do this, recall that

HomA is the n = 0 case of a whole sequence of functors ExtnA . Since A has such

a complicated multiplicative structure, these higher ExtnA groups could be nontriv-

ial and might carry quite a bit more information than HomA by itself. As evidence

that there may be something to this idea, consider the functor Ext1
A . This measures

whether short exact sequences of A modules split. For a map f :Sk→Sℓ with k > ℓ

one can form the mapping cone Cf , and then associated to the pair (Cf , S
ℓ) there is

a short exact sequence of A modules

0→H∗(Sk+1)→H∗(Cf )→H
∗(Sℓ)→0

Additively this splits, but whether it splits over A is equivalent to whether A acts

trivially in H∗(Cf ) since it automatically acts trivially on the two adjacent terms in

the short exact sequence. Since A is generated by the squares or powers, we are

therefore asking whether some Sqi or P i is nontrivial in H∗(Cf ) . For p = 2 this is

the mod 2 Hopf invariant question, and for p > 2 it is the mod p analog. The answer

for p = 2 is the theorem of Adams that Sqi can be nontrivial only for i = 1,2,4,8.

For odd p the corresponding statement is that only P1 can be nontrivial.
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Thus Ext1
A does indeed detect some small but nontrivial part of the stable ho-

motopy groups of spheres. One could hardly expect the higher ExtnA functors to give

a full description of stable homotopy groups, but the Adams spectral sequence says

that, rather miraculously, they give a reasonable first approximation. In the case that

Y is a sphere, the Adams spectral sequence will have the form

E
s,t
2 = Ext

s,t
A
(H∗(X),Zp) converging to π s∗(X)/non p torsion

Here the second index t in Ext
s,t
A denotes merely a grading of ExtsA arising from

the usual grading of H∗(X) . The fact that torsion of order prime to p is factored

out should be no surprise since one would not expect Zp cohomology to give any

information about non-p torsion.

More generally if Y is a finite CW complex and we define πYk (X) = [ΣkY ,X] , the

stable homotopy classes of maps, then the Adams spectral sequence is

E
s,t
2 = Ext

s,t
A (H

∗(X),H∗(Y )) converging to πY∗ (X)/non p torsion

Taking Y = S0 gives the earlier case, which suffices for the more common applications,

but the general case illuminates the formal machinery, and is really no more difficult

to set up than the special case. For the space X a modest hypothesis is needed for

convergence, that it is a CW complex with finitely many cells in each dimension.

The Adams spectral sequence breaks the problem of computing stable homotopy

groups of spheres up into three steps. First there is the purely algebraic problem of

computing Ext
s,t
A (Zp,Zp) . Since A is a complicated ring, this is not easy, but at least

it is pure algebra. After this has been done through some range of values for s and t

there remain the two problems one usually has with a spectral sequence, computing

differentials and resolving ambiguous extensions. In practice it is computing differ-

entials that is the most difficult. As with the Serre spectral sequence for cohomology,

there will be a product structure that helps considerably.

The fact that the Steenrod algebra tells a great deal about stable homotopy groups

of spheres should not be quite so surprising if one recalls the calculations done in

Theorem 5.41. Here the Serre spectral sequence was used repeatedly to figure out

successive stages in a Postnikov tower for a sphere. The main step was computing

differentials by means of computations with Steenrod squares. One can think of the

Adams spectral sequence as streamlining this process. There is one spectral sequence

for all the p torsion rather than one spectral sequence for the p torsion in each

individual homotopy group, and the algebraic calculation of the E2 page replaces

much of the calculation of differentials in the Serre spectral sequences. As we will

see, the first several stable homotopy groups of spheres can be computed completely

without having to do any nontrivial calculations of differentials in the Adams spectral

sequence. Eventually, however, hard work is involved in computing differentials, but

we will stop well short of that point in the exposition here.
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A Sketch of the Construction

Our approach to constructing the Adams spectral sequence will be to try to realize

the algebraic definition of the Ext functors topologically. Let us recall how Extn
R
(M,N)

is defined, for modules M and N over a ring R . The first step is to choose a free

resolution of M , an exact sequence

··· -→F2 -→F1 -→F0 -→M -→0

with each Fi a free R module. Then one applies the functor HomR(−,N) to the free

resolution, dropping the term HomR(M,N) , to obtain a chain complex

···←HomR(F2,N)←HomR(F1,N)←HomR(F0,N)←0

Finally, the homology groups of this chain complex are by definition the groups

ExtnR(M,N) . It is a basic lemma that these do not depend on the choice of the free

resolution of M .

Now we take R to be the Steenrod algebra A for some prime p and M to

be H∗(X) , the reduced cohomology of a space X with Zp coefficients, and we ask

whether it is possible to construct a sequence of maps

X -→K0 -→K1 -→K2 -→···

that induces a free resolution of H∗(X) as an A module:

··· -→H∗(K2) -→H∗(K1) -→H∗(K0) -→H∗(X) -→0

Stated in this way, this is impossible because no space can have its cohomology a free

A module. For if H∗(K) were free as an A module then for each basis element α we

would have Sqiα nonzero for all i in the case p = 2, or P iα nonzero for all i when

p is odd, but this contradicts the basic property of squares and powers that Sqiα = 0

for i > |α| and P iα = 0 for i > |α|/2.

The spaces whose cohomology is closest to being free over A are Eilenberg-

MacLane spaces. The cohomology H∗
(
K(Zp, n)

)
is free over A in dimensions less

than 2n , with one basis element, the fundamental class ι in Hn . When p = 2 this

follows from the calculations in Theorem 5.32 since below dimension 2n there are

only linear combinations of admissible monomials, and the condition that the mono-

mials have excess less than n is automatically satisfied in this range. Alternatively, if

one defines A to have as its degree i part the limit of Hi+n
(
K(Zp, n)

)
as n goes

to infinity, then the freeness of H∗
(
K(Zp, n)

)
below dimension 2n is automatic

from the Freudenthal suspension theorem. More generally, by taking a wedge sum

of K(Zp, ni) ’s with ni ≥ n and only finitely many ni ’s below any given N we would

have a space whose cohomology is free over A below dimension 2n . Instead of the

wedge sum we could just as well take the product since this would have the same

cohomology as the wedge sum below dimension 2n .
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Free modules have the good property that every module is the homomorphic

image of a free module, and products of Eilenberg-MacLane spaces have an analogous

property: For every space X there is a product K of Eilenberg-MacLane spaces and

a map X→K inducing a surjection on cohomology. Namely, choose some set of

generators αi for H∗(X) , either as a group or more efficiently as an A module, and

then there are maps fi :X→K(Zp, |αi|) sending fundamental classes to the αi ’s, and

the product of these maps induces a surjection on H∗ .

Using this fact, we construct a diagram

by the following inductive procedure. Start with a map X→K0 to a product of

Eilenberg-MacLane spaces inducing a surjection on H∗ . Then after replacing this

map by an inclusion via a mapping cylinder, let X1 = K0/X and repeat the process

with X1 in place of X = X0 , choosing a map X1→K1 to another product of Eilenberg-

MacLane spaces inducing a surjection on H∗ , and so on. Thus we have a diagram of

short exact sequences

The sequence across the top is exact, so we have a resolution of H∗(X) which would

be a free resolution if the modules H∗(Ki) were free over A .

Since stable homotopy groups are a homology theory, when we apply them to the

cofibrations Xi→Ki→Ki/Xi = Xi+1 we obtain a staircase diagram

and hence a spectral sequence. Since it is stable homotopy groups we are interested

in, we may assume X has been suspended often enough to be highly connected, say

n connected, and then all the spaces Ki and Xi can be taken to be n connected as

well. Then below dimension 2n the cohomology H∗(Ki) is a free A module and the

stable homotopy groups of Ki coincide with its ordinary homotopy groups, hence

are very simple. As we will see, these two facts allow the E1 terms of the spectral

sequence to be identified with HomA groups and the E2 terms with ExtA groups,

at least in the range of dimensions below 2n . The Adams spectral sequence can be
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obtained from the exact couple above by repeated suspension and passing to a limit

as n goes to infinity. In practice this is a little awkward, and a much cleaner and more

elegant way to proceed is to do the whole construction with spectra instead of spaces,

so this is what we will do instead.

Spectra

The derivation of the Adams spectral sequence will be fairly easy once we have

available some basic facts about spectra, so our first task will be to develop these

facts. The theme here will be that spectra are much like spaces, but are better in a

few key ways, behaving more like abelian groups than spaces.

A spectrum consists of a sequence of basepointed spaces Xn , n ≥ 0, together

with basepoint-preserving maps ΣXn→Xn+1 . In the realm of spaces with basepoints

the suspension ΣXn should be taken to be the reduced suspension, with the basepoint

cross I collapsed to a point. The two examples of spectra we will have most to do

with are:

— The suspension spectrum of a space X . This has Xn = ΣnX with ΣXn→Xn+1

the identity map.

— An Eilenberg-MacLane spectrum for an abelian group G . Here Xn is a CW complex

K(G,n) and ΣK(G,n)→K(G,n+ 1) is the adjoint of a map giving a CW approx-

imation K(G,n)→ΩK(G,n + 1) . More generally we could shift dimensions and

take Xn = K(G,m+n) for some fixed m , with maps ΣK(G,m+n)→K(G,m+
n+ 1) as before.

The idea of spectra is that they should be the objects of a category that is the natu-

ral domain for stable phenomena in homotopy theory. In particular, the homotopy

groups of the suspension spectrum of a space X should be the stable homotopy

groups of X . With this aim in mind, one defines πi(X) for an arbitrary spectrum

X = {Xn} to be the direct limit of the sequence

··· -→πi+n(Xn)
Σ
-----→πi+n+1(ΣXn) -→πi+n+1(Xn+1)

Σ
-----→πi+n+2(ΣXn+1) -→···

Here the unlabeled map is induced by the map ΣXn→Xn+1 that is part of the struc-

ture of the spectrum X . For a suspension spectrum these are the identity maps, so the

homotopy groups of the suspension spectrum of a space X are the stable homotopy

groups of X . For the Eilenberg-MacLane spectrum with Xn = K(G,m+n) the Freuden-

thal suspension theorem implies that the map ΣK(G,m +n)→K(G,m+n+ 1) in-

duces an isomorphism on ordinary homotopy groups up to dimension approximately

2(m +n) , so the spectrum has πi equal to G for i =m and zero otherwise, just as

for an Eilenberg-MacLane space.

The homology groups of a spectrum can be defined in the same way, and in this

case the suspension maps Σ are isomorphisms on homology. For cohomology, how-

ever, this definition in terms of limits would involve inverse limits rather than direct
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limits, and inverse limits are not as nice as direct limits since they do not generally

preserve exactness, so we will give a different definition of cohomology for spectra.

For suspension spectra and Eilenberg-MacLane spectra the definition in terms of in-

verse limits turns out to give the right thing since the limits are achieved at a finite

stage. But for the construction of the Adams spectra sequence we have to deal with

more general spectra than these, so we need a general definition of the cohomology

of a spectrum. The definition should be such that the fundamental property of CW

complexes that Hn(X;G) is homotopy classes of maps X→K(G,n) remains valid for

spectra. Our task then is to give good definitions of CW spectra, their cohomology,

and maps between them, so that this result is true.

CW Spectra

For a spectrum X whose spaces Xn are CW complexes it is always possible to find

an equivalent spectrum of CW complexes for which the structure maps ΣXn→Xn+1

are inclusions of subcomplexes, since one can first deform the structure maps to be

cellular and then replace each Xn by the union of the reduced mapping cylinders of

the maps

ΣnX0 -→Σn−1X1 -→··· -→ΣXn−1 -→Xn

This leads us to define a CW spectrum to be a spectrum X consisting of CW complexes

Xn with the maps ΣXn֓ Xn+1 being inclusions of subcomplexes. The basepoints

are assumed to be 0 cells. For example, the suspension spectrum associated to a CW

complex is certainly a CW spectrum. An Eilenberg-MacLane CW spectrum with Xn a

K(G,m+n) can be constructed inductively by letting Xn+1 be obtained from ΣXn by

attaching cells to kill πi for i > m+n+ 1. By the Freudenthal theorem the attached

cells can be taken to have dimension greater than approximately 2m+ 2n .

In a CW spectrum X each nonbasepoint cell eiα of Xn becomes a cell ei+1
α of

Xn+1 . Regarding these two cells as being equivalent, one can define the cells of X

to be the equivalence classes of nonbasepoint cells of all the Xn ’s. Thus a cell of X

consists of cells ek+nα of Xn for all n ≥ nα for some nα . The dimension of this cell

is said to be k . The terminology is chosen so that for the suspension spectrum of a

CW complex the definitions agree with the usual ones for CW complexes.

The cells of a spectrum can have negative dimension. A somewhat artificial ex-

ample is the CW spectrum X with Xn the infinite wedge sum S1 ∨ S2 ∨ ··· for each

n and with ΣXn֓ Xn+1 the evident inclusion. In this case there is one cell in every

dimension, both positive and negative. There are other less artificial examples that

arise in some contexts, but for the Adams spectral sequence we will only be concerned

with CW spectra whose cells have dimensions that are bounded below. Such spectra

are called connective. For a connective spectrum the connectivity of the spaces Xn
goes to infinity as n goes to infinity.
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The homology and cohomology groups of a CW spectrum X can be defined

in terms of cellular chains and cochains. If one considers cellular chains relative

to the basepoint, then the inclusions ΣXn֓ Xn+1 induce inclusions C∗(Xn;G)֓
C∗(Xn+1;G) with a dimension shift to account for the suspension. The union C∗(X;G)

of this increasing sequence of chain complexes is then a chain complex having one G

summand for each cell of X , just as for CW complexes. We define Hi(X;G) to be the

ith homology group of this chain complex C∗(X;G) . Since homology commutes with

direct limits, this is the same as the direct limit of the homology groups Hi+n(Xn;G) .

Note that this can be nonzero for negative values of i , as in the earlier example having

Xn =
∨
kS
k for each n , which has Hi(X;Z) = Z for all i ∈ Z .

For cohomology we define C∗(X;G) to be simply the dual cochain complex, so

Ci(X;G) is Hom(Ci(X;Z),G) , the functions assigning an element of G to each cell of

X , and H∗(X;G) is defined to be the homology of this cochain complex. This ensures

that the universal coefficient theorem remains valid, for example.

A CW spectrum is said to be finite if it has just finitely many cells, and it is of

finite type if it has only finitely many cells in each dimension. If X is of finite type

then for each i there is an n such that Xn contains all the i cells of X . It follows that

Hi(X;G) = Hi(Xn;G) for all sufficiently large n , and the same is true for cohomology.

The corresponding statement for homotopy groups is not always true, as the example

with Xn =
∨
kS
k for each n shows. In this case the groups πi+n(Xn) never stabilize

since, for example, there are elements of π2p(S
3) of order p that are stably nontrivial,

for all primes p . But for a connective CW spectrum of finite type the groups πi+n(Xn)

do eventually stabilize by the Freudenthal theorem.

Maps between CW Spectra

Now we come to the slightly delicate question of how to define a map between CW

spectra. A reasonable goal would be that a map f :X→Y of CW spectra should induce

maps f∗ :πi(X)→πi(Y ) , and likewise for homology and cohomology. Certainly a

sequence of basepoint-preserving maps fn :Xn→Yn forming commutative diagrams

as at the right would induce maps on homotopy groups, and also

on homology and cohomology groups if the individual fn ’s were

cellular. Let us call such a map f a strict map, since it is not

the most general sort of map that works. For example, it would

suffice to have the maps fn defined only for all sufficiently large n . This would be

enough to yield an induced map on πi , thinking of πi(X) as lim
--→πi+n(Xn) and πi(Y )

as lim
--→πi+n(Yn) . If the maps fn were cellular there would also be an induced chain

map C∗(X)→C∗(Y ) and hence induced maps on H∗ and H∗ .

It turns out that a weaker condition will suffice: For each cell eiα of an Xn , the map

fn+k is defined on Σkeiα for all sufficiently large k . Here each fn should be defined

on a subcomplex X′n ⊂ Xn such that ΣX′n ⊂ X′n+1 . Such a sequence of subcomplexes

is called a subspectrum of X . The condition that for each n and each cell eiα of
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Xn the cell Σkeiα belongs to X′n+k for all sufficiently large k is what is meant by

saying that X′ is a cofinal subspectrum of X . Thus we define a map of CW spectra

f :X→Y to be a strict map X′→Y for some cofinal subspectrum X′ of X . If the

maps fn :X′n→Yn defining f are cellular it is clear that there is an induced chain map

f∗ :C∗(X)→C∗(Y ) and hence induced maps on homology and cohomology. A map of

CW spectra f :X→Y also induces maps f∗ :πi(X)→πi(Y ) since each map Si+n→Xn
has compact image contained in a finite union of cells, whose k fold suspensions lie

in X′n+k for sufficiently large k , and similarly for homotopies Si+n×I→Xn .

Two maps of CW spectra X→Y are regarded as the same if they take the same

values on a common cofinal subspectrum. Since the intersection of two cofinal sub-

spectra is a cofinal subspectrum, this amounts to saying that replacing the cofinal

subspectrum on which a spectrum map is defined by a smaller cofinal subspectrum

is regarded as giving the same map.

It needs to be checked that the composition of two spectrum maps X
f
-----→Y

g
-----→Z

is defined. If f and g are given by strict maps on subspectra X′ and Y ′ , let X′′ be

the subspectrum of X′ consisting of the cells of the complexes X′n mapped by f to

Y ′n . Then X′′ is also cofinal in X′ and hence in X since f takes each cell eiα of X′n
to a union of finitely many cells of Yn , suspending to cells of Y ′n+k for some k since

Y ′ is cofinal in Y , and then fn+k takes Σkeiα to Y ′n+k so Σkeiα is in X′′n+k . Thus X′′ is

cofinal in X and the composition gf is a strict map X′′→Z .

The inclusion of a subspectrum X′ into a spectrum X is of course a map of

spectra, in fact a strict map. If X′ is cofinal in X then the identity maps X′n→X
′
n

define a map X→X′ which is an inverse to the inclusion X′֓ X , in the sense that

the compositions of these two maps, in either order, are the identity. This means that

a spectrum is always equivalent to any cofinal subspectrum.

For example, for any spectrum X the subspectrum X′ with X′n defined to be

ΣXn−1 ⊂ Xn is cofinal and hence equivalent to X . This means that every spectrum

X is equivalent to the suspension of another spectrum. Namely, if we define the

suspension ΣY of a spectrum Y by setting (ΣY)n = ΣYn , then a given spectrum X

is equivalent to ΣY for Y the spectrum with Yn = Xn−1 . It is reasonable to denote

this spectrum Y by Σ−1X , so that X = Σ(Σ−1X) . More generally we could define ΣkX
for any k ∈ Z by setting (ΣkX)n = Xn+k , where Xn+k is taken to be the basepoint if

n+k < 0. (Alternatively, we could define spectra in terms of sequences Xn for n ∈ Z ,

and then use the fact that such a spectrum is equivalent to the cofinal subspectrum

obtained by replacing Xn for n < 0 with the basepoint.)

A homotopy of maps between spectra is defined as one would expect, as a map

X×I→Y , where X×I is the spectrum with (X×I)n = Xn×I , this being the reduced

product, with basepoint cross I collapsed to a point, so that Σ(Xn×I) = ΣXn×I .
The set of homotopy classes of maps X→Y is denoted [X, Y ] . When X is Si , by

which we mean the suspension spectrum of the sphere Si , we have [Si, Y ] = πi(Y )
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since spectrum maps Si→Y are space maps Si+n→Yn for some n , and spectrum

homotopies Si×I→Y are space homotopies Si+n×I→Yn for some n .

One way in which spectra are better than spaces is that [X, Y ] is always a group,

in fact an abelian group, since as noted above, every CW spectrum X is equivalent

to a suspension spectrum, hence also to a double suspension spectrum, allowing an

abelian sum operation to be defined just as in ordinary homotopy theory. The sus-

pension map [X, Y ]→[ΣX,ΣY] is a homomorphism, and in fact an isomorphism, as

one can see in the following way. To show surjectivity, start with a map f :ΣX→ΣY ,

which we may assume is a strict map. For clarity write this as f :X ∧ S1→Y ∧ S1 ,

consisting of map fn :Xn∧S
1→Yn∧S

1 . Passing to cofinal subspectra, we can replace

this by its restriction Σfn−1 :Σ(Xn−1 ∧ S
1)→Σ(Yn−1 ∧ S

1) . The parentheses here are

redundant and can be omitted. This map is independent of the suspension coordinate

Σ , and we want it to be independent of the last coordinate S1 . This can be achieved

by a homotopy rotating the sphere ΣS1 by 90 degrees. So Σfn−1 is homotopic to a

map hn∧11, as desired, proving surjectivity. Injectivity is similar using X×I in place

of X .

The homotopy extension property is valid for CW spectra as well as for CW com-

plexes. Given a map f :X→Y and a homotopy F :A×I→Y of f ||A for a subspec-

trum A of X , we may assume these are given by strict maps, after passing to cofinal

subspectra. Assuming inductively that F has already been extended over Xn×I , we

suspend to get a map ΣXn×I→ΣYn֓Yn+1 , then extend the union of this map with

the given An+1×I→Yn+1 over Xn+1×I .

The cellular approximation theorem for CW spectra can be proved in the same

way. To deform a map f :X→Y to be cellular, staying fixed on a subcomplex A

where it is already cellular, we may assume we are dealing with strict maps, and that

f is already cellular on Xn , hence also its suspension ΣXn→Yn+1 . Then we deform

f to be cellular on Xn+1 , staying fixed where it is already cellular, and extend this

deformation to all of X to finish the induction step.

Whitehead’s theorem also translates to spectra:

Proposition 5.42. A map between CW spectra that induces isomorphisms on all ho-

motopy groups is a homotopy equivalence.

Proof: Without loss we may assume the map is cellular. We will use the same scheme

as in the standard proof for CW complexes, showing that if f :X→Y induces isomor-

phisms on homotopy groups, then the mapping cylinder Mf deformation retracts

onto X as well as Y . First we need to define the mapping cylinder of a cellular map

f :X→Y of CW spectra. This is the CW spectrum Mf obtained by first passing to

a strict map f :X′→Y for a cofinal subspectrum X′ of X , then taking the usual re-

duced mapping cylinders of the maps fn :X′n→Yn . These form a CW spectrum since

the mapping cylinder of Σfn is the suspension of the mapping cylinder of fn . Replac-
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ing X′ by a cofinal subspectrum replaces the spectrum Mf by a cofinal subspectrum,

so Mf is independent of the choice of X′ , up to equivalence. The usual deformation

retractions of Mfn onto Yn give a deformation retraction of the spectrum Mf onto

the subspectrum Y .

If f induces isomorphisms on homotopy groups, the relative groups π∗(Mf , X)

are zero, so the proof of the proposition will be completed by applying the following

result to the identity map of (Mf , X) : ⊔⊓

Lemma 5.43. If (Y , B) is a pair of CW spectra with π∗(Y , B) = 0 and (X,A) is an

arbitrary pair of CW spectra, then every map (X,A)→(Y , B) is homotopic, staying

fixed on A , to a map with image in B .

Proof: The corresponding result for CW complexes is proved by the usual method

of induction over skeleta, but if we filter a CW spectrum by its skeleta there may

be no place to start the induction unless the spectrum is connective. To deal with

nonconnective spectra we will instead use a different filtration. In a CW complex the

closure of each cell is compact, hence is contained in a finite subcomplex. There is in

fact a unique smallest such subcomplex, the intersection of all the finite subcomplexes

containing the given cell. Define the width of the cell to be the number of cells in this

minimal subcomplex. In the basepointed situation we do not count the basepoint

0 cell, so cells that attach only to the basepoint have width 1. Reduced suspension

preserves width, so we have a notion of width for cells of a CW spectrum. The key

fact is that cells of width k attach only to cells of width strictly less than k , if k > 1.

Thus a CW spectrum X is filtered by its subspectra X(k) consisting of cells of width

at most k .

Using this filtration by width we can now prove the lemma. Suppose inductively

that for a given map f : (X,A)→(Y , B) , which we may assume is a strict map, we have

a cofinal subspectrum X′(k) of X(k) for which we have constructed a homotopy of

f ||X
′(k) to a map to B , staying fixed on A ∩ X′(k) . Choose a cofinal subspectrum

X′(k + 1) of X(k + 1) with X′(k + 1) ∩ X(k) = X′(k) . This is possible since each

cell of width k + 1 will have some sufficiently high suspension that attaches only to

cells in X′(k) . Extend the homotopy of f ||X
′(k) to a homotopy of f ||X

′(k+ 1) . The

restriction of the homotoped f to each cell of width k + 1 then defines an element

of π∗(Y , B) . Since π∗(Y , B) = 0, this restriction will be nullhomotopic after some

number of suspensions. Thus after replacing X′(k + 1) by a cofinal subspectrum

that still contains X′(k) , there will be a homotopy of the restriction of f to the new

X′(k+1) to a map to B . We may assume this homotopy is fixed on cells of A , so this

finishes the induction step. In the end we have a cofinal subspectrum X′ of X , the

union of the X′(k) ’s, with a homotopy of f on X′ to a map to B , fixing A . ⊔⊓
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Proposition 5.44. If a CW spectrum X is n connected in the sense that πi(X) = 0

for i ≤ n , then X is homotopy equivalent to a CW spectrum with no cells of dimension

≤ n .

In particular this says that a CW spectrum that is n connected for some n is ho-

motopy equivalent to a connective CW spectrum, so one could broaden the definition

of a connective spectrum to mean one whose homotopy groups vanish below some

dimension.

Another consequence of this proposition is the Hurewicz theorem for CW spectra:

If a CW spectrum X is n connected, then the Hurewicz map πn+1(X)→Hn+1(X) is

an isomorphism. This follows since if X has no cells of dimension ≤ n then the

Hurewicz map πn+1(X)→Hn+1(X) is the direct limit of the Hurewicz isomorphisms

πn+1+k(Xk)→Hn+1+k(Xk) , hence is also an isomorphism.

Proof the Proposition: We can follow the same procedure as for CW complexes, con-

structing the desired CW spectrum Y and a map Y→X inducing isomorphisms on

all homotopy groups by an inductive process. To start, choose maps Sn+1+kα→Xkα
representing generators of πn+1(X) . These give a map of spectra

∨
αS

n+1
α →X induc-

ing a surjection on πn+1 . Next choose generators for the kernel of this surjection and

represent these generators by maps from suitable suspensions of Sn+1 to the cor-

responding suspensions of
∨
αS

n+1
α . Use these maps to attach cells to the wedge of

spheres, producing a spectrum Y 1 with a map Y 1→X that induces an isomorphism

on πn+1 . Now repeat the process for πn+2 and each successive πn+i . ⊔⊓

Notice that if X has finitely generated homotopy groups, then we can choose

the CW spectrum Y to be of finite type. Thus a connective CW spectrum with finitely

generated homotopy groups is homotopy equivalent to a connective spectrum of finite

type.

Cofibration Sequences

We have defined the mapping cylinder Mf for a map of CW spectra f :X→Y , and

the mapping cone Cf can be constructed in a similar way, by first passing to a strict

map on a cofinal subspectrum X′ and then taking the mapping cones of the maps

fn :X′n→Yn . For an inclusion A֓X the mapping cone can be written as X∪CA . We

would like to say that the quotient map X ∪CA→X/A collapsing CA is a homotopy

equivalence, but first we need to specify what X/A means for a spectrum X and

subspectrum A . In order for the quotients Xn/An to form a CW spectrum we need

to assume that A is a closed subspectrum of X , meaning that if a cell of an Xn has

an iterated suspension lying in An+k for some k , then the cell is itself in An . Any

subspectrum is cofinal in its closure, the subspectrum consisting of cells of X having

some suspension in A , so in case A is not closed we can first pass to its closure before

taking the quotient X/A .
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When A is closed in X the quotient map X ∪ CA→X/A is a strict map con-

sisting of the quotient maps Xn ∪ CAn→Xn/An , which are homotopy equivalences

of CW complexes. Whitehead’s theorem for CW spectra then implies that the map

X ∪ CA→X/A is a homotopy equivalence of spectra. (This could also be proved

directly.)

Thus for a pair (X,A) of CW spectra we have a cofibration sequence just like the

one for CW complexes:

A֓X -→X ∪ CA -→ΣA֓ ΣX -→···

This implies that, just as for CW complexes, there is an associated long exact sequence

[A,Y ]←------ [X, Y ]←------ [X/A,Y]←------ [ΣA,Y]←------ [ΣX,Y]←------ ···

But unlike for CW complexes, there is also an exact sequence

[Y ,A] -→[Y ,X] -→[Y ,X/A] -→[Y ,ΣA] -→[Y ,ΣX] -→···

To derive this it suffices to show that [Y ,A]→[Y ,X]→[Y ,X∪CA] is exact. The com-

position of these two maps is certainly zero, so to prove exactness consider a map

f :Y→X which becomes nullhomotopic after we include X in X ∪ CA . A nullhomo-

topy gives a map CY→X∪CA making a commutative square with f in the following

diagram:

We can then automatically fill in the next two vertical maps to make homotopy-

commutative squares. We observed earlier that the suspension map [Y ,A]→[ΣY ,ΣA]
is an isomorphism, so we can take the map ΣY→ΣA in the diagram to be a suspen-

sion Σg for some g :Y→A . Commutativity of the right-hand square gives Σf ≃
(Σi)(Σg) = Σ(ig) , and this implies that f ≃ ig since suspension is an isomorphism.

This gives the desired exactness.

If we were dealing with spaces instead of spectra, the analog of the exactness of

[Y ,A]→[Y ,X]→[Y ,X/A] would be the exactness of [Y , F]→[Y , E]→[Y , B] for a

fibration F→E→B . This exactness follows immediately from the homotopy lifting

property. Thus when one is interested in homotopy properties of spectra, cofibrations

can also be regarded as fibrations. For a cellular map f :A→X of CW spectra with

mapping cone Cf , the sequence [Y ,Σ−1(Cf )]→[Y ,A]→[Y ,X] is exact, so Σ−1Cf
can be thought of as the fiber of f .

The second long exact sequence associated to a cofibration, in the case of a pair

(A∨ B,A) , has the form

··· -→[Y ,A] -→[Y ,A∨ B] -→[Y , B] -→···
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and this sequence splits, so we deduce that the natural map [Y ,A∨B]→[Y ,A]⊕[Y , B]
is an isomorphism. By induction this holds more generally for wedge sums of finitely

many factors.

Cohomology and Eilenberg-MacLane Spectra

The long exact sequences we have constructed can be extended indefinitely in

both directions since spectra can always be desuspended. In the case of the first

long exact sequence this means that for a fixed spectrum Y the functors hi(X) =

[Σ−i(X), Y ] define a reduced cohomology theory on the category of CW spectra. The

wedge axiom hi(
∨
αXα) =

∏
αh

i(Xα) is obvious.

In particular, we have a cohomology theory associated to the Eilenberg-MacLane

spectrum K = K(G,m) with Kn = K(G,m + n) , and this coincides with ordinary

cohomology:

Proposition 5.45. There are natural isomorphisms Hm(X;G) ≈ [X,K(G,m)] for

all CW spectra X .

The proof of the analogous result for CW complexes given in §4.3 works equally

well for CW spectra, and is in fact a little simpler since there is no need to talk about

loopspaces since spectra can always be desuspended. It is also possible to give a direct

proof that makes no use of generalities about cohomology theories, analogous to the

direct proof for CW complexes. One takes the spaces Kn = K(G,m+n) to have trivial

(m+n−1) skeleton, and then each cellular map f :X→K gives a cellular cochain cf
in X with coefficients in πm(K) = G sending an m cell of X to the element of πm(K)

determined by the restriction of f to this cell. One checks that this association f֏cf
satisfies several key properties: The cochain cf is always a cocycle since f extends

over (m + 1) cells; every cellular cocycle occurs as cf for some f ; and cf − cg is a

coboundary iff f is homotopic to g .

The identification Hm(X;G) = [X,K(G,m)] allows cohomology operations to

be defined for cohomology groups of spectra by taking compositions of the form

X→K(G,m)→K(H,k) . Taking coefficients in Zp , this gives an action of the Steenrod

algebra A on H∗(X) , making H∗(X) a module over A . This uses the fact that com-

position of maps of spectra satisfies the distributivity properties f(g+h) = fg+fh

and (f + g)h = fh+ gh , the latter being valid when h is a suspension, which is no

loss of generality if we are only interested in homotopy classes of maps. For spectra

X of finite type this definition of an A module structure on H∗(X) agrees with the

definition using the usual A module structure on the cohomology of spaces and the

identification of H∗(X) with the inverse limit lim
←-- H

∗+n(Xn) since Steenrod opera-

tions are stable under suspension.

For use in the Adams spectral sequence we need a version of the splitting [Y ,A∨

B] = [Y ,A]⊕[Y , B] for certain infinite wedge sums. Here the distinction between

infinite direct sums and infinite direct products becomes important. For an infinite
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wedge sum
∨
αXα the group [Y ,

∨
αXα] can sometimes be the direct sum

⊕
α [Y ,Xα] ,

for example if Y is a finite CW spectrum. This follows from the case of finite wedge

sums by a direct limit argument since the image of any map Y→
∨
αXα lies in the

wedge sum of only finitely many factors by compactness. However, we will need cases

when Y is not finite and [Y ,
∨
αXα] is instead the direct product

∏
α[Y ,Xα] . There

is always a natural map [Y ,
∨
αXα]→

∏
α[Y ,Xα] whose coordinates are obtained by

composing with the projections of
∨
αXα onto its factors.

Proposition 5.46. The natural map [X,
∨
iK(G,ni)]→

∏
i[X,K(G,ni)] is an isomor-

phism if X is a connective CW spectrum of finite type and ni→∞ as i→∞ .

Proof: When X is finite the result is obviously true since we can omit the factors

K(G,ni) with ni greater than the maximum dimension of cells of X without af-

fecting either [X,
∨
iK(G,ni)] or

∏
i[X,K(G,ni)] . For the general case we use a

limiting argument, expressing X as the union of its skeleta Xk , which are finite.

Let h∗(X) be the cohomology theory associated to the spectrum
∨
iK(G,ni) , so

hn(X) = [Σ−nX,∨iK(G,ni)] . There is a short exact sequence

0 -→ lim
←--

1hn−1(Xk) -→hn(X)
λ
-----→ lim
←-- h

n(Xk) -→0

whose derivation for CW complexes in Theorem 3F.8 applies equally well to CW spec-

tra. The term lim
←-- h

n(Xk) is just the product
∏
i[Σ−nX,K(G,ni)] from the finite case,

since the inverse limit of the finite products is the infinite product. So it remains to

show that the lim
←--

1 term vanishes.

We will use the Mittag-Leffler criterion, which says that lim
←--

1Gk vanishes for a

sequence of homomorphisms of abelian groups ··· -→G2
α2-----→G1

α1-----→G0 if for each k

the decreasing chain of subgroups of Gk formed by the images of the compositions

Gk+n→Gk is eventually constant once n is sufficiently large. This holds in the present

situation since the images of the maps Hi(Xk+n;G)→Hi(Xk;G) are independent of

n when k+n > i . (When G = Zp these cohomology groups are finite so the groups

Gk are all finite and the Mittag-Leffler condition holds automatically.)

The proof of the Mittag-Leffler criterion was relegated to the exercises in §3.F, so

here is a proof. Recall that lim
←-- Gk and lim

←--
1Gk are defined as the kernel and cokernel

of the map δ :
∏
kGk→

∏
kGk given by δ(gk) =

(
gk − αk+1(gk+1)

)
, or in other words

as the homology groups of the two-term chain complex

0→
∏
kGk

δ
-----→

∏
kGk→0

Let Hk ⊂ Gk be the image of the maps Gk+n→Gk for large n . Then αk takes

Hk to Hk−1 , so the short exact sequences 0→Hk→Gk→Gk/Hk→0 give rise to a

short exact sequence of two-term chain complexes and hence a six-term associated

long exact sequence of homology groups. The part of this we need is the sequence

lim
←--

1Hk→lim
←--

1Gk→lim
←--

1(Gk/Hk) . The first of these three terms vanishes since the
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maps αk :Hk→Hk−1 are surjections, so it suffices to show that the third term van-

ishes. For the sequence of quotients Gk/Hk the associated groups ‘Hk ’ are zero, so

it is enough to check that lim
←--

1Gk = 0 when the groups Hk are zero. In this case δ is

surjective since a given sequence (gk) is the image under δ of the sequence obtained

by adding to each gk the sum of the images in Gk of gk+1, gk+2, ··· , a finite sum if

Hk = 0. ⊔⊓

Constructing the Spectral Sequence

Having established the basic properties of CW spectra that we will need, we begin

this section by filling in details of the sketch of the construction of the Adams spectral

sequence given in the introduction to this chapter. Then we examine the spectral

sequence as a tool for computing stable homotopy groups of spheres.

We will be dealing throughout with CW spectra that are connective and of finite

type. This assures that all homotopy and cohomology groups are finitely generated.

The coefficient group for cohomology will be Zp throughout, with p a fixed prime. A

comment on notation: We will no longer have to consider the spaces Xn that make up

a spectrum X , so we will be free to use subscripts to denote different spectra, rather

than the spaces in a single spectrum.

Let X be a connective CW spectrum of finite type. We construct a diagram

in the following way. Choose generators αi for H∗(X) as an A module, with at most

finitely many αi ’s in each group Hk(X) . These determine a map X→K0 where K0

is a wedge of Eilenberg-MacLane spectra, and K0 has finite type. Replacing the map

X→K0 by an inclusion, we form the quotient X1 = K0/X . This is again a connective

spectrum of finite type, so we can repeat the construction with X1 in place of X . In

this way the diagram is constructed inductively. Note that even if X is the suspension

spectrum of a finite complex, as in the application to stable homotopy groups of

spheres, the subsequent spectra Xs will no longer be of this special form.

The associated diagram of cohomology

then gives a resolution of H∗(X) by free A modules, by Proposition 5.46.

Now we fix a finite spectrum Y and consider the functors πYt (Z) = [ΣtY ,Z] .
Applied to the cofibrations Xs→Ks→Xs+1 these give long exact sequences forming

a staircase diagram
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so we have a spectral sequence, the Adams spectral sequence. The spectrum Y

plays a relatively minor role in what follows, and the reader is free to take it to be the

spectrum S0 so that πYt (Z) = πt(Z) . The groups πYt (Z) are finitely generated when

Z is a connective spectrum of finite type, as one can see by induction on the number

of cells of Y .

There is another way of describing the construction of the spectral sequence

which provides some additional insight, although it involves nothing

more than a change in notation really. Let Xn = Σ−nXn and Kn =

Σ−nKn . Then the earlier horizontal diagram starting with X can be

rewritten as a vertical tower as at the right. The spectra Kn are again

wedges of Eilenberg-MacLane spectra, so this tower is reminiscent of a

Postnikov tower. Let us call it an Adams tower for X . The staircase

diagram can now be rewritten in the following form:

This has the small advantage that the groups πYi in each column all have the same

index i .

The E1 and E2 terms of the spectral sequence are easy to identify. Since Ks is a

wedge of Eilenberg-MacLane spectra Ks,i , elements of [Y ,Ks] are tuples of elements of

H∗(Y ) , one for each summand Ks,i , in the appropriate group Hni(Y ) . Since H∗(Ks)

is free over A this means that the natural map [Y ,Ks]→Hom0
A(H

∗(Ks),H
∗(Y )) is

an isomorphism. Here Hom0 denotes homomorphisms that preserve degree, i.e.,

dimension. Replacing Y by ΣtY , we obtain a natural identification

[ΣtY ,Ks] = Hom0
A(H

∗(Ks),H
∗(ΣtY)) = Homt

A(H
∗(Ks),H

∗(Y ))

where the superscript t denotes homomorphisms that lower degree by t . Thus if we

set E
s,t
1 = πYt (Ks) , we have E

s,t
1 = Homt

A(H
∗(Ks),H

∗(Y )) .

The differential d1 :πYt (Ks)→π
Y
t (Ks+1) is induced by the map Ks→Ks+1 in the

resolution of X constructed earlier. This implies that the E1 page of the spectral
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sequence consists of the complexes

0 -→Homt
A(H

∗(K0),H
∗(Y )) -→Homt

A(H
∗(K1),H

∗(Y )) -→···

The homology groups of this complex are by definition Ext
s,t
A
(H∗(X),H∗(Y )) , so we

have E
s,t
2 = Ext

s,t
A (H

∗(X),H∗(Y )) .

Theorem 5.47. For X a connective CW spectrum of finite type, this spectral sequence

converges to πY∗ (X) modulo torsion of order prime to p . In other words,

(a) For fixed s and t the groups Es,tr are independent of r once r is sufficiently

large, and the stable groups Es,t∞ are isomorphic to the quotients F s,t/F s+1,t+1

for the filtration of πYt−s(X) by the images F s,t of the maps πYt (Xs)→π
Y
t−s(X) ,

or equivalently the maps πYt−s(X
s)→πYt−s(X) .

(b)
⋂
n F

s+n,t+n is the subgroup of πYt−s(X) consisting of torsion elements of order

prime to p .

Thus we are filtering πYt−s(X) by how far its elements pull back in the Adams

tower. Unlike in the Serre spectral sequence this filtration is potentially infinite, and

in fact will be infinite if πYt−s(X) contains elements of infinite order since all the

terms in the spectral sequence are finite-dimensional Zp vector spaces. Namely E
s,t
1 =

Homt
A(H

∗(Ks),H
∗(Y )) is certainly a finite-dimensional Zp vector space, so Es,tr is as

well.

Throughout the proof we will be dealing only with connective CW spectra of finite

type, so we make this a standing hypothesis that will not be mentioned again.

A key ingredient in the proof will be an analog for spectra of the algebraic lemma

(Lemma 3.1) used to show that Ext is independent of the choice of free resolution. In

order to state this we introduce some terminology. A sequence of maps of spectra

Z→L0→L1→ ··· will be called a complex on Z if each composition of two suc-

cessive maps is nullhomotopic. If the Li ’s are wedges of Eilenberg-MacLane spectra

K(Zp,mij) we call it an Eilenberg-MacLane complex. A complex for which the in-

duced sequence 0←H∗(Z)←H∗(L0)← ··· is exact is a resolution of Z .

Lemma 5.48. Suppose we are given the solid arrows in a diagram

where the first row is a resolution and the second row is an Eilenberg-MacLane com-

plex. Then the dashed arrows can be filled in by maps fi :Li→Ki forming homotopy-

commutative squares.

Proof: Since the compositions in a complex are nullhomotopic we may start with an

enlarged diagram
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where the triangles are homotopy-commutative. The map X→K0 is equivalent to a

collection of classes αj ∈ H
∗(X) . Since H∗(L0)→H

∗(Z) is surjective by assumption,

there are classes βj ∈ H
∗(L0) mapping to the classes f∗(αj) ∈ H

∗(Z) . These βj ’s

give a map f0 :L0→K0 making a homotopy-commutative square with f . This square

induces a map L0/Z→K0/X making another homotopy commutative square. The

exactness property of the upper row implies that the map H∗(L1)→H
∗(L0/Z) is

surjective, so we can repeat the argument with Z and X replaced by Z1 = L0/Z and

X1 = K0/X to construct the map f1 , and so on inductively for all the fi ’s. ⊔⊓

Proof of Theorem 5.47: First we show statement (b). As noted earlier, all the terms

E
s,t
1 = Homt

A(H
∗(Ks),H

∗(Y )) in the staircase diagram are Zp vector spaces, so by

exactness all the vertical maps in the diagram are isomorphisms on non-p torsion.

This implies that the non-p torsion in πYt−s(X) is contained in
⋂
n F

s+n,t+n .

To prove the opposite inclusion we first do the special case that π∗(X) is entirely

p torsion. These homotopy groups are then finite since we are dealing only with

connective spectra of finite type. We construct a special Eilenberg-MacLane complex

(not a resolution) of the form X→L0→L1→ ··· in the following way. Let πn(X) be

the first nonvanishing homotopy group of X . Then let L0 be a wedge of K(Zp, n) ’s

with one factor for each element of a basis for Hn(X) , so there is a map X→L0

inducing an isomorphism on Hn . This map is also an isomorphism on Hn , so on πn it

is the map πn(X)→πn(X)⊗Zp by the Hurewicz theorem, which holds for connective

spectra. After converting the map X→L0 into an inclusion, the cofiber Z1 = L0/X

then has πi(Z1) = 0 for i ≤ n and πn+1(Z1) is the kernel of the map πn(X)→πn(L0) ,

which has smaller order than πn(X) . Now we repeat the process with Z1 in place

of X to construct a map Z1→L1 inducing the map πn+1(Z1)→πn+1(Z1)⊗Zp on

πn+1 , so the cofiber Z2 = L1/Z1 has its first nontrivial homotopy group πn+2(Z2) of

smaller order than πn+1(Z1) . After finitely many steps we obtain Zk with πn+k(Zk) =

0 as well as all the lower homotopy groups. At this point we switch our attention

to πn+k+1(Zk) and repeat the steps again. This infinite process yields the complex

X→L0→L1→ ··· .

It is easier to describe what is happening in this complex if we look at the associ-

ated tower ···→Z2→Z1→X where Zk = Σ−kZk . Here the first map Z1→X induces

an isomorphism on all homotopy groups except πn , where it induces an inclusion of

a proper subgroup. The same is true for the next map Z2→Z1 , and after finitely



598 Chapter 5 Spectral Sequences

many steps this descending chain of subgroups πn(Z
k) becomes zero and we move

on to πn+1(X) , eventually reducing this to zero, and so on up the tower, killing each

πi(X) in turn. Thus for each i the groups πi(Z
k) are zero for all sufficiently large

k . The same is true for the groups πYi (Z
k) when Y is a finite spectrum, since a map

ΣiY→Zk can be homotoped to a constant map one cell at a time if all the groups

πj(Z
k) vanish for j less than or equal to the largest dimension of the cells of ΣiY .

By the lemma the complex used to define the spectral sequence maps to the com-

plex we have just constructed. This is equivalent to a map of towers, inducing a

commutative diagram

If an element of πYi (X) pulled back arbitrarily far in the first row, it would also pull

back arbitrarily far in the second row, but we have just seen this is impossible. Hence⋂
n F

s+n,t+n is empty, which proves (b) in the special case that π∗(X) is all p torsion.

In the general case let α be an element of πYn (X) whose order is either infinite

or a power of p . Then there is a positive integer k such that α is not divisible by pk ,

meaning that α is not pk times any element of πYn (X) . Consider the map X
pk

-----→X

obtained by adding the identity map of X to itself pk times using the abelian group

structure in [X,X] . This map fits into a cofibration X
pk

-----→X -→Z inducing a long

exact sequence ···→πi(X)
pk

-----→πi(X)→πi(Z)→ ··· where the map pk is multipli-

cation by pk . From exactness it follows that π∗(Z) consists entirely of p torsion.

By the lemma the map X→Z induces a map from the given Adams tower on X to a

chosen Adams tower on Z . The map πYn (X)→π
Y
n (Z) sends α to a nontrivial element

β ∈ πYn (Z) by our choice of α and k , using exactness of πYn (X)
pk

-----→πYn (X)→π
Y
n (Z) .

If α pulled back arbitrarily far in the tower on X then β would pull back arbitrarily

far in the tower on Z . This is impossible by the special case already proved. Hence

(b) holds in general.

To prove (a) consider the portion of the r th derived couple shown

in the diagram at the right. We claim first that if r is sufficiently

large then the vertical map ir is injective. For nontorsion

and non p torsion this follows from exactness since the E

columns are Zp vector spaces. For p torsion it follows from

part (b) that a term As,tr contains no p torsion if r is

sufficiently large since As,tr consists of the elements

of A
s,t
1 that pull back r − 1 units vertically.

Since ir is injective for large r , the preceding map

kr is zero, so the differential dr starting at Es,tr is

zero for large r . The differential dr mapping to Es,tr is also zero for large r since it

originates at a zero group, as all the terms in each E column of the initial staircase
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diagram are zero below some point. Thus Es,tr = E
s,t
r+1 for r sufficiently large.

Since the map kr starting at Es,tr is zero for large r , exactness implies that for

large r the group Es,tr is the cokernel of the vertical map in the lower left corner of

the diagram. This vertical map is just the inclusion F s+1,t+1֓ F s,t when r is large,

so the proof of (a) is finished. ⊔⊓

Computing a Few Stable Homotopy Groups of Spheres

For a first application of the Adams spectral sequence let us consider the special

case that was one of the primary motivations for its construction, the problem of

computing stable homotopy groups of spheres. Thus we take X and Y both to be S0 ,

in the notation of the preceding section. We will focus on the prime p = 2, but we

will also take a look at the p = 3 case as a sample of what happens for odd primes.

Fixing p to be 2, here is a picture of an initial portion of the E2 page of the

spectral sequence (the musical score to the harmony of the spheres?):

The horizontal coordinate is t − s so the ith column is giving information about π si .

Each dot represents a Z2 summand in the E2 page, so in this portion of the page

there are only two positions with more than one summand, the (15,5) and (18,4)

positions. Referring back to the staircase diagram, we see that the differential dr
goes one unit to the left and r units upward. The nonzero differentials are drawn

as lines sloping upward to the left. For t − s ≤ 20 there are thus only six nonzero

differentials, but if the diagram were extended farther to the right one would see many

more nonzero differentials, quite a jungle of them in fact.

For example, in the t − s = 15 column we see six dots that survive to E∞ , which

says that the 2 torsion in π s15 has order 26 . In fact it is Z32×Z2 , and this information

about extensions can be read off from the vertical line segments which indicate multi-

plication by 2 in π s∗ . So the fact that this column has a string of five dots that survive
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to E∞ and are connected by vertical segments means that there is a Z32 summand of

π s15 , and the other Z2 summand comes from the remaining dot in this column. In the

t − s = 0 column there is an infinite string of connected dots, corresponding to the

fact that π s0 = Z , so iterated multiplication of a generator by 2 never gives zero. The

individual dots in this column are the successive quotients 2nZ/2n+1
Z in the filtration

of Z by the subgroups 2nZ .

The line segments sloping upward to the right indicate multiplication by the el-

ement h1 in the (1,1) position of the diagram. We have drawn them mainly as a

visual aid to help tie together some of the dots into recognizable patterns. There is in

fact a graded multiplication in each page of the spectral sequence that corresponds to

the composition product in π s∗ . (This is formally like the multiplication in the Serre

spectral sequence for cohomology.) For example in the t− s = 3 column we can read

off the relation h3
1 = 4h2 . To keep the diagram uncluttered we have not used line

segments to denote any other nonzero products, such as multiplication by h2 , which

is nonzero in a number of cases.

The s = 1 row of the E2 page consists of just the elements hi in the position

(2i − 1,1) . These are related to the Hopf invariant, and in particular h1 , h2 , and h3

correspond to the classical Hopf maps. The next one, h4 does not survive to E∞ , and

in fact the differential d2h4 = h0h
2
3 is the first nonzero differential in the spectral

sequence. It is easy to see why this differential must be nonzero: The element of

π s14 corresponding to h2
3 must have order 2 by the commutativity property of the

composition product, since h3 has odd degree, and there is no other term in the E2

page except h4 that could kill h0h
2
3 . No hi for i > 4 survives to E∞ either, but this

is a harder theorem, equivalent to Adams’ theorem on the nonexistence of elements

of Hopf invariant one.

There are only a few differentials to the left of the t − s = 14 column that could

be nonzero since dr goes r units upward and r ≥ 2. It is easy to use the derivation

property d(xy) = x(dy) + (dx)y to see that these differentials must vanish. For

the element h1 , if we had drh1 = h
r+1
0 then we would have d(h0h1) = h

r+2
0 nonzero

as well, but h0h1 = 0. The only other differential which could be nonzero is d2

on the element h1h3 in the t − s = 8 column, but d2h1 and d2h3 both vanish so

d2(h1h3) = 0.

Computing the E2 page of the spectral sequence is a mechanical process, as we

will see, although its complexity increases rapidly as t−s increases, so that even with

computer assistance the calculations that have been made only extend to values of

t − s on the order of 100. Computing differentials is much harder, and not a purely

mechanical process, and the known calculations only go up to t − s around 60.

Let us first show that for computing Ext
s,t
A (H

∗(X),Zp) it suffices just to construct

a minimal free resolution of H∗(X) , that is, a free resolution

··· -→F2

ϕ2
------------→F1

ϕ1
------------→F0

ϕ0
------------→H∗(X) -→0
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where at each step of the inductive construction of the resolution we choose the min-

imum number of free generators for Fi in each degree.

Lemma 5.49. For a minimal free resolution, all the boundary maps in the dual com-

plex

···←HomA(F2,Zp)←HomA(F1,Zp)←HomA(F0,Zp)←0

are zero, hence Ext
s,t
A
(H∗(X),Zp) = Homt

A(Fs ,Zp) .

Proof: Let A
+ be the ideal in A consisting of all elements of strictly positive degree,

or in other words the kernel of the augmentation map A→Zp given by projection onto

the degree zero part A
0 of A . Observe that Kerϕi ⊂ A

+Fi since if we express an

element x ∈ Kerϕi of some degree in terms of a chosen basis for Fi as x =
∑
j ajxij

with aj ∈ A , then if x is not in A
+Fi , some aj is a nonzero element of A

0 = Zp and

we can solve the equation 0 =ϕi(x) =
∑
j ajϕi(xij) for ϕi(xij) , which says that the

generator xij was superfluous.

Since ϕi−1ϕi = 0, we have ϕi(x) ∈ Kerϕi−1 for each x ∈ Fi , so from the

preceding paragraph we obtain a formula ϕi(x) =
∑
j ajxi−1,j with aj ∈ A

+ . Hence

for each f ∈ HomA(Fi−1,Zp) we have ϕ∗i (f (x)) = fϕi(x) =
∑
j ajf(xi−1,j) = 0

since aj ∈ A
+ and f(xi−1,j) lies in Zp which has a trivial A module structure. ⊔⊓

Let us describe how to compute Ext
s,t
A (Z2,Z2) by constructing a minimal resolu-

tion of Z2 as an A module. An initial portion of the resolution is shown in the chart

on the next page. For the first stage of the resolution F0→Z2 we must take F0 to

be a copy of A with a generator ι in degree 0 mapping to the generator of Z2 . This

copy of A forms the first column of the table, which consists of the elements SqIι

as SqI ranges over the admissible monomials in A . The kernel of the map F0→Z2

consists of everything in the first column except ι , so we want the second column,

which represents F1 , to map onto everything in the first column except ι . To start,

we need an element α1 at the top of the second column mapping to Sq1ι . (We will

use subscripts to denote the degree t , so αi will have degree t = i , and similarly

for the later generators βi, γi, ··· .) Once we have α1 in the second column, we also

have all the terms SqIα1 for admissible I lower down in this column. To see what

else we need in the second column we need to compute how the terms in the second

column map to the first column. Since α1 is sent to Sq1ι , we know that SqIα1 is

sent to SqISq1ι . The product SqISq1 will be admissible unless I ends in 1, in which

case SqISq1 will be 0 because of the Adem relation Sq1Sq1 = 0. In particular, Sq1α1

maps to 0. This means we have to introduce a new generator α2 to map to Sq2ι .

Then SqIα2 maps to SqISq2ι and we can use Adem relations to express this in terms

of admissibles. For example Sq1α2 maps to Sq1Sq2ι = Sq3ι and Sq2α2 maps to

Sq2Sq2ι = Sq3Sq1ι .
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Some of the simpler Adem relations, enough to do the calculations shown in the

chart, are listed in the following chart.

Sq1Sq2n = Sq2n+1 Sq3Sq4n = Sq4n+3

Sq1Sq2n+1 = 0 Sq3Sq4n+1 = Sq4n+2Sq1

Sq2Sq4n = Sq4n+2 + Sq4n+1Sq1 Sq3Sq4n+2 = 0

Sq2Sq4n+1 = Sq4n+2Sq1 Sq3Sq4n+3 = Sq4n+5Sq1

Sq2Sq4n+2 = Sq4n+3Sq1 Sq4Sq3 = Sq5Sq2

Sq2Sq4n+3 = Sq4n+5 + Sq4n+4Sq1 Sq4Sq4 = Sq7Sq1 + Sq6Sq2

Note that the relations for Sq3Sqi follow from the relations for Sq2Sqi and Sq1Sqi

since Sq3 = Sq1Sq2 .

Moving down the s = 1 column we see that we need a new generator α4 to map

to Sq4ι . In fact it is easy to see that the only generators we need in the second column

are α2n ’s mapping to Sq2nι . This is because Sqi is indecomposable iff i = 2n , which

implies inductively that every SqIι except Sq2nι will be hit by previously introduced

terms, while Sq2nι will not be hit.

Now we start to work our way down the third column, introducing the minimum

number of generators necessary to map onto the kernel of the map from the second

column to the first column. Thus, near the top of this column we need β2 mapping to

Sq1α1 , β4 mapping to Sq3α1+Sq
2α2 , and β5 mapping to Sq4α1+Sq

2Sq1α2+Sq
1α4 .

One can see that things are starting to get more complicated here, and it is not easy

to predict where new generators will be needed.

Subsequent columns are computed in the same way. Near the top, the structure

of the columns soon stabilizes, each column looking just the same as the one before.

This is fortunate since it is the rows, with t− s constant, that we are interested in for

computing π st−s . The most obvious way to proceed inductively would be to compute

each diagonal with t constant by induction on t , moving up the diagonal from left to

right. However, this would require infinitely many computations to determine a whole

row. To avoid this problem we can instead proceed row by row, moving across each

row from left to right assuming that higher rows have already been computed. To

determine whether a new generator is needed in the (s, t− s) position we need to see

whether the map from the (s−1, t− s+1) position to the (s−2, t− s+2) position is

injective. These two positions are below the row we are working on, so we do not yet

know whether any new generators are required in these positions, but if they are, they

will have no effect on the kernel we are interested in since minimality implies that new

generators always generate a subgroup that maps injectively. Thus we have enough

information to decide whether new generators are needed in the (s, t − s) position,

and so the induction can continue.

The chart shows the result of carrying out the row-by-row calculation through

the row t − s = 5. As it happens, no new generators are needed in this row or the
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preceding one. In the next row t−s = 6 one new generator β8 will be needed, but the

chart does not show the computations needed to justify this. And in the t−s = 7 row

four new generators α8 , β9 , γ10 , and δ11 will be needed. The reader is encouraged

to do some of these calculations to get a real feeling for what is involved. Most of the

work involves applying Adem relations, and then when the maps have been computed,

their kernels need to be determined.
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Associated to a simply-connected CW complex X there is an exact sequence due

to J.H.C. Whitehead,

··· -→Hp+1(X) -→Γp(X) -→πp(X)
h
------------→Hp(X) -→···

where Γp(X) = Im
(
πp(X

p−1)→πp(X
p)
)

and h is the Hurewicz homomorphism. (All

homology groups will implicitly have Z coefficients in this section.) The groups Γp(X)
thus measure the failure of the Hurewicz maps to be isomorphisms. As we shall see,

Γp(X) does not depend on the CW structure on X . It is evident that Γ1(X) and Γ2(X)
are zero since π1(X

0) = 0 and π2(X
1) = 0, so the first interesting Γp is Γ3 . We will

show that Γ3(X) depends only on π2(X) , and in a very simple way when π2(X) is

finitely generated.

We will derive the Whitehead sequence using exact couples. The starting point is

the staircase diagram

We are assuming X is a simply-connected CW complex, so it is homotopy equivalent to

a CW complex whose 1 skeleton is a point and we shall assume X itself has this prop-

erty. This guarantees that all the terms in the staircase diagram are actually abelian

groups since the π0 and π1 terms are all zero and the relative π2 ’s are quotients of

absolute π2 ’s.

The staircase diagram gives an exact couple with A = ⊕Ap,q , Ap,q = πp+q(X
p) ,

E = ⊕Ep,q , and Ep,q = πp+q(X
p, Xp−1) . The derived couple is again exact, and part

of this derived couple is the exact sequence in the first row of the following diagram:

We want to show that the terms in the first row can be identified with those in the

second row. From the definition of the derived couple, A′p,0 is the image of i in Ap,0 =
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πp(X
p) , in other words the image of πp(X

p−1)→πp(X
p) , so A′p,0 = Γp(X) . Similarly

A′p+1,−1 is the image of πp(X
p)→πp(X

p+1) , but by cellular approximation this latter

map is surjective and πp(X
p+1) ≈ πp(X) , so A′p+1,−1 ≈ πp(X) . The map i′ is the

restriction of i , so it corresponds to the natural map Γp(X)→πp(X) induced by inclu-

sion. The group E′p,0 is Ker(jk)/ Im(jk) at πp(X
p, Xp−1) , and via the Hurewicz the-

orem jk is the cellular boundary map Hp(X
p, Xp−1)→Hp−1(X

p−1, Xp−2) , so E′p,0 ≈

Hp(X) . Finally, the map j′ is induced by ji−1 , so j′ is the Hurewicz map. Thus we

have derived the Whitehead exact sequence.

A cellular map f :X→Y , with Y also having trivial 1 skeleton, induces a map

from the Whitehead sequence of X to that of Y , with commuting squares. If g is

another cellular map X→Y homotopic to f then the maps Γp(X)→Γp(Y ) induced

by f and g are equal since we can take the homotopy from f to g to be cellular,

and then for any map Sp→Xp−1 the compositions Sp→Xp−1→Yp−1 ⊂ Yp where

the second maps are f and g are homotopic. This implies that Γp(X) depends only

on the homotopy type of X . By means of CW approximations we can then extend the

domain of definition of Γp(X) to all simply-connected spaces X . In particular, when

X is a CW complex Γp(X) is independent of the CW structure.

If X is (p−1) connected we may assume Xp−1 is a point, and then Γp(X) is obvi-

ously zero. Hence from the Whitehead sequence we see that not only is the Hurewicz

map πp(X)→Hp(X) an isomorphism, but πp+1(X)→Hp+1(X) is surjective. A dif-

ferent proof of this fact was sketched in an exercise for §4.2. Of course, we used

the Hurewicz theorem in our derivation of the Whitehead sequence, so we have not

produced another proof of this theorem here.

Let us consider the first nontrivial group Γ3(X) in more detail. This can be ex-

pressed in terms of more classical functors of Eilenberg-MacLane spaces K(G,2) and

Moore spaces M(G,2) , as the next result shows:

Proposition 5A.1. Γ3(X) depends only on π2(X) , and in fact, if π2(X) = G then

Γ3(X) ≈ Γ3
(
K(G,2)

)
≈ H4

(
K(G,2)

)
≈ π3

(
M(G,2)

)
≈ Γ3

(
M(G,2)

)
.

Proof: We can construct a K(G,2) from a simply-connected X with π2(X) = G by

attaching cells of dimensions four and greater to kill π3 and the higher homotopy

groups. Since Γ3 by its definition depends only on the 3 skeleton, the inclusion X֓
K(G,2) then induces an isomorphism Γ3(X) ≈ Γ3

(
K(G,2)

)
. The Whitehead sequence

for K(G,2) shows Γ3
(
K(G,2)

)
≈ H4

(
K(G,2)

)
. Similarly, the Whitehead sequence for

a Moore space M(G,2) yields Γ3
(
M(G,2)

)
≈ π3

(
M(G,2)

)
. Taking X =M(G,2) in the

first part of the proof shows that Γ3
(
M(G,2)

)
≈ Γ3

(
K(G,2)

)
. ⊔⊓

Let us write Γ(G) for Γ3
(
K(G,2)

)
= H4

(
K(G,2)

)
. This functor of G can be viewed

as an analog of the homology groups of G , Hi
(
K(G,1)

)
. It is a general fact that

Hn+1

(
K(G,n)

)
= 0 for n > 1 since one can build a K(G,n) from an M(G,n) by

attaching cells of dimension n+ 2 and greater. Thus H4

(
K(G,2)

)
≈ Γ(G) is the first
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homology group Hi
(
K(G,2)

)
with i > 2 that could be nontrivial. In fact Γ(G) is

always nontrivial when G is a nontrivial finitely generated group, as the following

calculations show:

Proposition 5A.2. (a) Γ(Z) ≈ Z .

(b) Γ(Zm) is cyclic of order m or 2m for m odd or even, respectively.

(c) Γ(G⊕H) ≈ Γ(G)⊕Γ(H)⊕(G⊗H) .

Proof: Part (a) is easy since CP∞ is a K(Z,2) . Also (c) is immediate from the Künneth

formula, taking K(G,2)×K(H,2) for a K(G×H,2) .

For (b) we first observe that the group Γ(Zm) ≈ Γ3
(
M(Zm,2)

)
is cyclic since we

can take M(Zm,2) to be S2 with a 3 cell attached by a map of degree m , and then

Γ(Zm) is the image of π3(S
2)→π3

(
M(Zm,2)

)
, hence is cyclic since π3(S

2) ≈ Z . To

determine the order of Γ(Zm) we will compute H5(K(Zm,2);Z) , which is isomorphic

to H4

(
K(Zm,2)

)
by the universal coefficient theorem since the homotopy groups of

K(Zm,2) are finite, hence also the homology groups by what we have shown about

Serre classes.

Consider the Serre spectral sequence for integral cohomology for the path fi-

bration K(Zm,1)→P→K(Zm,2) . The cohomology of the fiber, which we know, is

concentrated in even dimensions since we

are using Z coefficients. Hence only the

even-dimension rows of the E2 page can be

nonzero, and the only interesting differen-

tials are d3, d5, ··· . The term E
5,0
2 is the

group Γ = Γ(Zm) that we wish to compute.

Since the E∞ page is trivial, the differential

d3 :Zma→Zmx must be an isomorphism,

and so we may assume d3(a) = x . Then d3(a
2) = 2ax so d3 :Zma

2→Zmax is

multiplication by 2. This is an isomorphism if m is odd, but has kernel Z2 if m is

even. Hence E0,4
4 is 0 for m odd and Z2 for m even. The term E2,2

2 = Zmy comes

from the universal coefficient theorem. The differential d3 :Zmy→Γ must be injec-

tive, otherwise its kernel would survive to E∞ . Also, d5 : E
0,4
5 = E

0,4
4 →Γ/ Imd3 must

be an isomorphism. Hence Γ is Zm if m is odd and either Z2m or Zm⊕Z2 if m is

even. But we have already noted that Γ is cyclic. ⊔⊓

In particular, H4

(
K(Z2,2)

)
≈ Z4 . This may be contrasted with the fact that if a

group G has order n , then all elements of H∗
(
K(G,1)

)
have order dividing n , an

elementary application of transfer homomorphisms.

The isomorphism H4

(
K(Z2,2)

)
≈ Z4 also shows that for simply-connected spaces

X whose homotopy and reduced homology groups are all finite, there can be elements

of H̃∗(X) having order larger than the orders of any elements of π∗(X) . In the other
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direction, the example of M(Z2,2) shows that π∗(X) can contain elements of order

larger than the orders of any elements of H̃∗(X) .

A generator of π3

(
M(Z2,2)

)
≈ Z4 is the Hopf map S3→S2 ⊂ M(Z2,2) = S

2 ∪ e3 ,

as one sees by looking at the following exact sequence:

So, attaching the cell e3 to S2 by a map of degree 2 makes the Hopf map have order

4. This is somewhat curious, especially since the same argument shows that attaching

the 3 cell by a map of degree 3 would make the Hopf map have order 3.

From the universal coefficient theorem, H4(K(Z2,2);Z4) is Z4 . A generator of

this group corresponds to a map K(Z2,2)→K(Z4,4) which defines a cohomology op-

eration P :H2(X;Z2)→H
4(X;Z4) known as the Pontryagin square. The name arises

from the fact that for α ∈ H2(X;Z2) , the image of P(α) in H4(X;Z2) is α2 , or in

other words, the square of a 2 dimensional Z2 cohomology class is the Z2 reduc-

tion of a Z4 cohomology class. To verify this it suffices to take α to be the gener-

ator of H2(K(Z2,2);Z2) , and in this case the result follows by looking at the map

CP∞→K(Z2,2) inducing an isomorphism on H2(−;Z2) .
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One could say a great deal about the homotopy groups of spheres if one had

a good grasp on the suspension homomorphisms πi(S
n)→πi+1(S

n+1) . A good ap-

proach to understanding a sequence of homomorphisms like these is to try to fit them

into an exact sequence whose remaining terms are not too inscrutable. In the case of

the suspension homomorphisms πi(S
n)→πi+1(S

n+1) when n is odd we will con-

struct an exact sequence whose third terms, quite surprisingly, are also homotopy

groups of spheres. This is the so-called EHP sequence:

··· -→πi(S
n)

E
-----→πi+1(S

n+1)
H
-----→πi+1(S

2n+1)
P
-----→πi−1(S

n) -→···

When n is even there is an EHP sequence of the same form, but only after localizing

the groups at the prime 2, factoring out odd torsion. These exact sequences have been

of great help for calculations outside the stable range, particularly for computing the

2 torsion.

The ‘EHP’ terminology deserves some explanation. The letter E is used for the sus-

pension homomorphism for historical reasons — Freudenthal’s original 1937 paper

on suspension was written in German where the word for suspension is Einhängung.

At the edge of the range where the suspension map is an isomorphism the EHP se-

quence has the form

π2n(S
n)

E
-----→π2n+1(S

n+1)
H
-----→π2n+1(S

2n+1)
P
-----→π2n−1(S

n)
E
-----→π2n(S

n+1) -→0

This part of the EHP sequence is actually valid for both even and odd n , without

localization at 2. Identifying the middle term π2n+1(S
2n+1) with Z , the map H is

the Hopf invariant, while P sends a generator to the Whitehead product [ι, ι] of the

identity map of Sn with itself. These facts will be explained after we go through

the construction of the EHP sequence. Exactness of this portion of the EHP sequence

was essentially proved by Freudenthal, although not quite in these terms since the

Whitehead product is a later construction. Here is what exactness means explicitly:

Exactness at π2n−1(S
n) says that the suspension π2n−1(S

n)→π2n(S
2n) , which

the Freudenthal suspension theorem says is surjective, has kernel generated by

[ι, ι] .

When n is even the Hopf invariant map H is zero so exactness at π2n+1(S
2n+1)

says that [ι, ι] has infinite order, which also follows from the fact that its Hopf

invariant is nonzero. When n is odd the image of H contains the even integers

since H([ι, ι]) = 2. Thus there are two possibilities: If there is a map of Hopf

invariant 1 then the next map P is zero so [ι, ι] = 0, while if there is no map

of Hopf invariant 1 then [ι, ι] is nonzero and has order 2. According to Adams’

theorem, the former possibility occurs only for n = 1,3,7.
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Exactness at π2n+1(S
n+1) says that the kernel of the Hopf invariant is the image

of the suspension map.

Now we turn to the construction of the EHP sequence. The suspension homomor-

phism E is the map on πi induced by the natural inclusion map Sn→ΩSn+1 adjoint

to the identity ΣSn→ΣSn = Sn+1 . So to construct the EHP sequence it would suffice

to construct a fibration

Sn→ΩSn+1→ΩS2n+1

after localization at 2 when n is even. What we shall actually construct is a map

between spaces homotopy equivalent to ΩSn+1 and ΩS2n+1 whose homotopy fiber is

homotopy equivalent to Sn , again after localization at 2 when n is even.

To make the existence of such a fibration somewhat plausible, consider the co-

homology of the two loopspaces. When n is odd we showed in Example 5.17 that

H∗(ΩSn+1;Z) is isomorphic as a graded ring to H∗(Sn;Z)⊗H∗(ΩS2n+1;Z) . This

raises the question whether ΩSn+1 might even be homotopy equivalent to the prod-

uct Sn×ΩS2n+1 . This is actually true for n = 1,3,7, but for other odd values of n

there is only a twisted product in the form of a fibration. For even n there is a similar

tensor product factorization of the cohomology ring of ΩSn+1 with Z2 coefficients,

as we will see, and this leads to the localized fibration in this case.

To construct the fibration we use the fact that ΩSn+1 is homotopy equivalent

to the James reduced product JSn . This is shown in §4J. What we want is a map

f : JSn→JS2n that induces an isomorphism on H2n(−;Z) . Inside JSn is the subspace

J2S
n which is the quotient of Sn×Sn under the identifications (x, e) ∼ (e,x) where

e is the basepoint of Sn , the identity element of the free monoid JSn . These identifi-

cations give a copy of Sn in J2(S
n) and the quotient J2S

n/Sn is S2n , with the image

of Sn chosen as the basepoint. Any extension of the quotient map J2S
n→S2n ⊂ JS2n

to a map JSn→JS2n will induce an isomorphism on H2n and hence will serve as the

f we are looking for. An explicit formula for an extension is easy to give. Writing the

quotient map J2S
n→S2n as x1x2֏ x1x2 , we can define

f(x1 ···xk) = x1x2x1x3 ···x1xkx2x3x2x4 ···x2xk ···xk−1xk

For example f(x1x2x3x4) = x1x2x1x3x1x4x2x3x2x4x3x4 . It is easy to check that

f(x1 ···xk) = f(x1 ··· x̂i ···xk) if xi = e since xe and ex are both the identity

element of JS2n , so the formula for f gives a well-defined map JSn→JS2n . This

map is sometimes called the combinatorial extension of the quotient map J2S
n→S2n .

Let F denote the homotopy fiber of f : JSn→JS2n . When n is odd we can show

that F is homotopy equivalent to Sn by looking at the Serre spectral sequence for

this fibration. The E2 page has the following form:
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Across the bottom row we have the divided polynomial algebra H∗(JS2n;Z) . Above

this row, the next nonzero term in the left column must be a Z in the (0, n) position

since the spectral sequence converges to H∗(JSn;Z) which consists of a Z in each

dimension a multiple of n . The nth row is then as shown and there is nothing between

this row and the bottom row. Since f∗ is an isomorphism on H2n it is injective in all

dimensions, so no differentials can hit the bottom row. Nor can any differentials hit

the next nonzero row since all the products axi have infinite order in H∗(JSn;Z) .

When n is odd the first two nonzero rows account for all of H∗(JSn;Z) since

this is isomorphic to H∗(Sn;Z)⊗H∗(ΩS2n+1;Z) . The implies that there can be no

more cohomology in the left column since the first extra term above the nth row

would survive to E∞ and given additional classes in H∗(JSn;Z) . Thus we have an

isomorphism H∗(F ;Z) ≈ H∗(Sn) . This implies that F is homotopy equivalent to Sn

if n > 1 since F is then simply-connected from the long exact sequence of homotopy

groups of the fibration, and the homotopy groups of F are finitely generated hence

also the homology groups, so a map Sn→F inducing an isomorphism on πn induces

isomorphisms on all homology groups.

In the special case n = 1 we have in fact a homotopy equivalence ΩS2 ≃ S1×ΩS3 .

Namely there is a map S1×ΩS3→ΩS2 obtained by using the H–space structure in ΩS2

to multiply the suspension map S1→ΩS2 by the loop of the Hopf map S3→S2 . It is

easy to check the product map induces isomorphisms on all homotopy groups.

When n is even it is no longer true that the 0th and nth rows of the spectral

sequence account for all the cohomology of JSn . The elements of H∗(JSn;Z) de-

termined by a and x1 are generators in dimensions n and 2n , but the product

of these two generators, which corresponds to ax1 , is 3 times a generator in di-

mension 3n . This implies that in the first column of the spectral sequence the next

nonzero term above the nth row is a Z3 in the (0,3n) position, and so F is not ho-

motopy equivalent to Sn . With Q coefficients the two rows give all the cohomology

so H∗(F ;Q) ≈ H∗(Sn;Q) and H∗(F ;Z) consists only of torsion above dimension n .

To see that all the torsion has odd order, consider what happens when we take Z2

coefficients for the spectral sequence. The divided polynomial algebra H∗(JSn;Z2) is

isomorphic to an exterior algebra on generators in dimensions n,2n,4n,8n, ··· , as

shown in Example 3C.5, so once again the 0th and nth rows account for all the coho-

mology of JSn , and hence H∗(F ;Z2) ≈ H
∗(Sn;Z2) . We have a map Sn→F inducing

an isomorphism on homology with Q and Z2 coefficients, so the homotopy fiber of

this map has only odd torsion in its homology, hence also in its homotopy groups, so
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the map is an isomorphism on π∗⊗Z(2) . This gives the EHP sequence of 2 localized

groups when n is even.

The fact that the cohomology of F and of Sn are the same below dimension 3n

implies the same is true for homology below dimension 3n−1, so the map Sn→F that

induces an isomorphism on πn in fact induces isomorphisms on πi for i < 3n− 1.

This means that starting with the term π3n(S
n+1) the EHP sequence for n even is

valid without localization.

Now let us return to the question of identifying the maps H and P in

π2n(S
n)

E
-----→π2n+1(S

n+1)
H
-----→π2n+1(S

2n+1)
P
-----→π2n−1(S

n)
E
-----→π2n(S

n+1) -→0

The kernel of the E on the right is generated by the Whitehead product [ι, ι] of the

identity map of Sn with itself, since this is the attaching map of the 2n cell of JSn

and the sequence π2n(JS
n, Sn)→π2n−1(S

n)→π2n−1(JS
n) is exact. Therefore the

map P must take one of the generators of π2n+1(S
2n+1) to [ι, ι] .

To identify the map H with the Hopf invariant, consider the commutative di-

agram at the right with vertical maps Hurewicz

homomorphisms. The lower horizontal map is

an isomorphism since by definition H is induced

from a map ΩSn+1→S2n+1 inducing an isomor-

phism on H2n . Since the right-hand Hurewicz map is an isomorphism, the diagram

allows us to identify H with the Hurewicz map on the left. This Hurewicz map sends

a map f ′ :S2n→ΩSn+1 adjoint to f :S2n+1→Sn+1 to the image of a generator α of

H2n(S
2n;Z) under the induced map f ′∗ on H2n . We can factor f ′ as the composition

S2n֓ ΩS2n+1 Ωf
-----→ΩSn+1 where the first map induces an isomorphism on H2n , so

f ′∗(α) is the image under (Ωf)∗ of a generator of H2n(ΩS2n+1;Z) . This reduces the

problem to the following result, where we have replaced n by n− 1:

Proposition 5D.1. The homomorphism (Ωf)∗ :H2n−2(ΩS2n−1;Z)→H2n−2(ΩSn;Z)

induced by a map f :S2n−1→Sn , n > 1 , sends a generator to ±H(f) times a gen-

erator, where H(f) is the Hopf invariant of f .

Proof: We can use cohomology instead of homology. When n is odd the result is

fairly trivial since H(f) = 0 and Ωf induces the trivial map on Hn−1 hence also on

H2n−2 , both cohomology rings being divided polynomial algebras. When n is even,

on the other hand, (Ωf)∗ is a map ΛZ[x]⊗ΓZ[y]→ΓZ[z] with |y| = |z| so this map

could well be nontrivial.

Assuming n is even, let (Ωf)∗ :H2n−2(ΩSn;Z)→H2n−2(ΩS2n−1;Z) send a gen-

erator to m times a generator. After rechoosing generators we may assume m ≥ 0.

We wish to show that m = ±H(f) . There will be a couple places in the argument

where the case n = 2 requires a few extra words, and it will be left as an exercise for

the reader to find these places and fill in the extra words.
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By functoriality of pathspaces and loopspaces we

have the commutative diagram of fibrations at the

right, where the middle fibration is the pullback of

the pathspace fibration on the right. Consider the

Serre spectral sequences for integral cohomology for

the first two fibrations. The first differential which

could be nonzero in each of these spectral sequences is d2n−1 :E
0,2n−2
2n−1 →E

2n−1,0
2n−1 . In

the spectral sequence for the first fibration this differential is an isomorphism. The

map between the two fibrations is the identity on base spaces and hence induces an

isomorphism on the terms E
2n−1,0
2n−1 . Since the map between the E

0,2n−2
2n−1 terms sends a

generator to m times a generator, naturality of the spec-

tral sequences implies that d2n−1 in the spectral sequence

for Xf sends a generator to ±m times a generator. Hence

H2n−1(Xf ;Z) is Zm , where Z0 = Z if m = 0.

The Hopf invariant H(f) is defined via the cup product structure in the mapping

cone of f , but for the present purposes it is more convenient to use instead the double

mapping cylinder of f , the union of two copies of the ordinary mapping cylinder

Mf with the domain ends S2n−1 identified. Call this double cylinder Df . We have

Hn(Df ;Z) ≈ Z⊕Z with generators x1 and x2 corresponding to the two copies of Sn at

the ends of Df , and we have H2n(Df ;Z) ≈ Z with a generator y . By collapsing either

of the two mapping cylinders in Df to a point we get the mapping cone, and so x2
1 =

±H(f)y and x2
2 = ±H(f)y . (In fact the signs are opposite in these two equations

since the homeomorphism of Df switching the two mapping cylinders interchanges

x1 and x2 but takes y to −y .) We also have x1x2 = 0, as can be seen using the cup

product Hn(Df , A;Z)×Hn(Df , A;Z)→H2n(Df , A∪B;Z) , where A and B are the two

mapping cylinders in Df .

There are retractions Df→S
n onto the two copies of Sn in Df . Using one of

these retractions to pull back the path fibration ΩSn→PSn→Sn , we obtain a fibra-

tion ΩSn→Yf→Df . The space Yf is the union of the pullbacks over the two map-

ping cylinders in Df , and these two subfibrations of Yf intersect in Xf . The total

spaces of these two subfibrations are contractible since a deformation retraction of

each mapping cylinder to its target end Sn lifts to a deformation retraction (in the

weak sense) of the subfibration onto PSn which is contractible. The Mayer-Vietoris

sequence for the decomposition of Yf into the two subfibrations then gives isomor-

phisms H̃i(Yf ;Z) ≈ Hi−1(Xf ;Z) for all i , so in particular we have H2n(Yf ;Z) ≈ Zm .

Now we look at the Serre spectral sequence for the fibration ΩSn→Yf→Df .

This fibration retracts onto the subfibration

ΩSn→PSn→Sn over each end of Df . We

know what the spectral sequence for this

subfibration looks like, so by naturality of
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the spectral sequence we have da = x1 + x2 for a suitable choice of generator

a of Hn−1(ΩSn;Z) . Then d(ax1) = (x1 + x2)x1 = x
2
1 = ±H(f)y and similarly

d(ax2) = ±H(f)y . Since H2n(Yf ;Z) ≈ Zm it follows that m = ±H(f) . ⊔⊓

The EHP Spectral Sequence

All the EHP exact sequences of 2 localized homotopy groups can be put together

into a staircase diagram:

This gives a spectral sequence converging to the stable homotopy groups of

spheres, localized at 2, since these are the groups that occur sufficiently far down each

A column. The E1 page consists of 2 localized homotopy groups of odd-dimensional

spheres. The E2 page has no special form as it does for the Serre spectral sequence,

so one starts by looking at the E1 page. A convenient way to display this is to set

E1
k,n = πn+kS

2n−1 as shown on the next page. The terms in the kth column of the

E∞ page are then the successive quotients for a filtration of π sk modulo odd torsion,

the filtration that measures how many times an element of π sk can be desuspended.

Namely, E∞k,n consists of the elements of π sk coming from πn+k(S
n) modulo those

coming from πn+k−1(S
n−1) . The differential dr goes from Erk,n to Erk−1,n−r , one unit

to the left and r units downward. The nontrivial differentials for k ≤ 6 are shown in

the diagram.
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For example, in the k = 3 column there are three Z2 ’s in the E∞ page, the quo-

tients in a filtration Z2 ⊂ Z4 ⊂ Z8 of the 2 torsion subgroup Z8 of π s3 ≈ Z24 . The

Z2 subgroup comes from π5(S
2) , generated by the composition S5→S4→S3→S2 of

the Hopf map and its first two suspensions. The Z4 subgroup comes from π6(S
3) ,

and the full Z8 comes from π7(S
4) . A generator for this Z8 is the Hopf map S7→S4 .

It is interesting that determining the kth column of the E∞ page involves only

groups πn+i(S
n) for i < k . This suggests the possibility of an inductive procedure for

computing homotopy groups of spheres. This is discussed in some detail in §1.5 of

[Ravenel 1986]. For computing stable homotopy groups the Adams spectral sequence

is a more efficient tool, but for computing unstable groups the EHP spectral sequence

can be quite useful. If one truncates the spectral sequence by replacing all rows above

the nth row with zeros, one obtains a spectral sequence converging to π∗(S
n) . In the

staircase diagram this amounts to replacing all the exact sequences below a given one

with trivial exact sequences having E terms zero and isomorphic pairs of A terms.

Odd Torsion

In the case that the EHP sequence is valid at all primes, it in fact splits at odd

primes:
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Proposition 5D.2. After factoring out 2 torsion there are isomorphisms

πi(S
n) ≈ πi−1(S

n−1)⊕πi(S
2n−1) for all even n .

Thus, apart from 2 torsion, the homotopy groups of even dimensional spheres

are determined by those of odd-dimensional spheres. For Z summands we are already

familiar with the splitting, as the only Z ’s in the right side occur when i is n and

2n− 1.

Proof: Given a map f :S2n−1→Sn , consider the map i · Ωf :Sn−1×ΩS2n−1 -→ΩSn
obtained by multiplying the inclusion map i :Sn−1֓ ΩSn and the map Ωf , using

the H–space structure on ΩSn . Taking f to have H(f) = ±2 in the case that n

is even, for example taking f = [ι, ι] , the preceding Proposition 5D.1 implies that

the map i · Ωf induces an isomorphism on cohomology with Z[1/2] coefficients in

all dimensions. The same is therefore true for homology with Z[1/2] coefficients and

therefore also for homotopy groups tensored with Z[1/2] by Theorem 5.24 since we

are dealing with spaces that are simply-connected if n > 2, or abelian if n = 2. ⊔⊓

When n = 2,4,8 we can modify the proof by taking f to have Hopf invariant ±1,

and then i·Ωf will induce an isomorphism on homology with Z coefficients and hence

be a homotopy equivalence, so in these cases the splitting holds without factoring out

2 torsion. However there is a much simpler derivation of these stronger splittings

using the Hopf bundles Sn−1→S2n−1→Sn since a nullhomotopy of the inclusion

Sn−1֓S2n−1 gives rise to a splitting of the long exact sequence of homotopy groups

of the bundle. This can be interpreted as saying that if we continue the Hopf bundle

to a fibration sequence

ΩS2n−1→ΩSn→Sn−1→S2n−1→Sn

then we obtain a product two stages back from the Hopf bundle.

The EHP spectral sequence we constructed for 2 torsion has an analog for odd

primary torsion, but the construction is a little more difficult. This is described in

[Ravenel 1986].
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Throughout this section the coefficient group for homology and cohomology will be

taken to be a field K so that the Künneth formula takes its simplest form without Tor

terms. To simplify the notation we will omit the coefficients when we mean homology

and cohomology with coefficients in K .

There are two Eilenberg-Moore spectral sequences that we shall consider, one

for homology and the other for cohomology. In contrast with the situation for the

Serre spectral sequence, the Eilenberg-Moore spectral sequences for homology and

cohomology arise in two different topological settings, although the two settings are

in a sense dual. Both versions share the same underlying algebra, however, involving

Tor functors.

The first occurrence of a Tor functor in algebraic topology is in the universal

coefficient theorem. Here one has a group Tor(A, B) associated to abelian groups A

and B which measures the common torsion of A and B . The formal definition of

Tor(A, B) in terms of tensor products and free resolutions extends naturally from the

context of abelian groups to that of modules over an arbitrary ring, and the result is

a sequence of functors TorRn(A, B) for modules A and B over a ring R . In case R is a

principal ideal domain such as Z the groups TorRn(A, B) happen to be zero for n > 1,

and TorR1 (A, B) is the Tor(A, B) in the universal coefficient theorem. This same Tor

functor appears also in the general form of the Künneth formula for the homology

groups of a product X×Y . The Eilenberg-Moore spectral sequences can be regarded

as generalizations of the Künneth formula to fancier kinds of products where extra

structure is involved. The rings R that arise need not be principal ideal domains, so

the Torn groups can be nonzero for n > 1.

For the case of homology the E2 page of the spectral sequence consists of groups

E2
p,q = TorH∗(G)p,q

(
H∗(X),H∗(Y )

)
, where the index p has the same meaning as the

subscript in Torn and the second index q arises from the fact that the various ho-

mology groups involved are graded, so Torp =
⊕
qTorp,q . In order for the notation

TorH∗(G)p,q

(
H∗(X),H∗(Y )

)
to make sense H∗(G) must be a ring, and the simplest situa-

tion when this is the case is when G is a topological group and homology is taken with

coefficients in a commutative ring, so the product in G induces, via the cross product

in homology, a product in H∗(G) , the Pontryagin product. We also need H∗(X) and

H∗(Y ) to be modules over H∗(G) , and the most natural way for this structure to arise

is if G acts on X and Y , the actions being given by maps G×X→X and G×Y→Y
inducing the module structures on homology. These are the ingredients needed in

order for the terms in the E2 page to be defined, and then with a few additional hy-

potheses of a more technical nature (namely that the coefficient ring is a field and the

action of G on Y is free, defining a principal bundle Y→Y/G ) the spectral sequence
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exists and converges to H∗(X×GY) , where X×GY is X×Y with the diagonal action

of G factored out. One can think of X×GY as the topological analog of the tensor

product of modules. Thus the spectral sequence measures whether the homology of

a ‘tensor product of spaces’ is the tensor product of the homology of the spaces.

For cohomology with coefficients in a commutative ring we always have a ring

structure coming from cup product, so we can replace the topological group G by

any space B . In order for H∗(X) and H∗(Y ) to be modules over H∗(B) it suffices

to specify maps X→B and Y→B . Converting one of these maps into a fibration, we

can use the other map to construct a pullback square with fourth space Z , and then,

again with some technical hypotheses, there is an Eilenberg-Moore spectral sequence

having E
p,q
2 = TorH

∗(B)
p,q

(
H∗(X),H∗(Y )

)
and converging to H∗(Z) .

When X is a point the two spectral sequences specialize in the following ways:

For a principal bundle G→Y→Y/G one has a spectral sequence converging to

H∗(Y/G) with E2
p,q = TorH∗(G)p,q

(
K,H∗(Y )

)
, for K the coefficient field.

For a fibration F→Y→B with B simply-connected one has a spectral sequence

converging to H∗(F) with E
p,q
2 = TorH

∗(B)
p,q

(
K,H∗(Y )

)
.

In some situations these spectral sequences can be more effective than the Serre spec-

tral sequence. If one has a fibration and one is trying to compute homology or co-

homology of the base or fiber from the homology or cohomology of the other two

spaces, then in the Serre spectral sequence one has to argue backward from E∞ to

E2 , whereas here one is going forward, which is usually easier. In some important

cases where the differentials in the Serre spectral sequence are fairly complicated

the differentials in the Eilenberg-Moore spectral sequence are all trivial, and one has

only the problem of computing the Tor groups in E2 . This is generally easier than

computing differentials.

The original derivations of these spectral sequences by Eilenberg and Moore were

fairly algebraic, but here we shall follow (not too closely) a more topological route first

described in [Smith 1970] and [Hodgkin 1975].

The Homology Spectral Sequence

If G is a topological group, its homology H∗(G) has a ring structure with multi-

plication the Pontryagin product, which is the composition of cross product with the

map induced by the group multiplication:

H∗(G)×H∗(G)
×
-----→H∗(G×G) -→H∗(G)

Similarly, if G acts on a space X , the map G×X→X defining the action gives the

homology H∗(X) the structure of a module over H∗(G) via the composition

H∗(G)×H∗(X)
×
-----→H∗(G×X) -→H∗(X)

With coefficients in a field the Künneth formula gives an isomorphism H∗(X×Y) ≈

H∗(X)⊗KH∗(Y ) , and we may ask whether there is an analog of this formula that
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takes the module structure over H∗(G) into account when actions of G on X and Y

are given, so that ⊗K is replaced by ⊗H∗(G) . We might expect that X×Y would have

to be replaced by some quotient space of itself taking the actions into account since

H∗(X)⊗H∗(G)H∗(Y ) is a quotient of H∗(X)⊗KH∗(Y ) .

Since the ring H∗(G) need not be commutative, even in the graded sense, we need

to pay attention to the distinction between left and right modules. This matters in the

definition of A⊗RB , where in the case that R is noncommutative, A must be a right

R module and B a left R module, and we obtain A⊗RB from A⊗ZB by imposing the

additional relations ar ⊗b = a⊗ rb . Topologically, we should then consider a right

action X×G→X and a left action G×Y→Y . If we start with a left action on X we

can easily convert it into a right action via the formula xg = g−1x , and conversely a

right action can be made into a left action, so there is no intrinsic distinction between

left and right actions.

The topological analog of A⊗RB is the quotient space X×GY of X×Y under the

identifications (xg,y) ∼ (x,gy) . This definition leads naturally to the following

question:

Is H∗(X×GY) isomorphic to H∗(X)⊗H∗(G)H∗(Y )? Or if they are not isomorphic,

how are they related?

Consider for example the important special case that Y is a point, so X×GY is just

the orbit space X/G . Then we are asking whether H∗(X/G) is H∗(X)⊗H∗(G)K , which

is H∗(X) with the action of H∗(G) factored out. However, it is easy to find instances

where this is not the case. A simple one is CPn , regarded as the orbit space of an action

of G = S1 on X = S2n+1 . Here H∗(CPn) is quite a bit larger than H∗(S
2n+1)⊗H∗(S1)K ,

which is just H∗(S
2n+1) since the action of H∗(S

1) cannot produce any nontrivial

identifications, for dimension reasons.

The isomorphism H∗(X×GY) ≈ H∗(X)⊗H∗(G)H∗(Y ) does sometimes hold. A

fairly trivial case is when X is a product Z×G with G acting just on the second factor,

(z, g)h = (z, gh) . Then X×GY is homeomorphic to Z×Y via the map (z, g,y)֏
(z, gy) with inverse (z,y)֏ (z,1, y) . In this case the isomorphism H∗(X×GY) ≈

H∗(X)⊗H∗(G)H∗(Y ) becomes

(
H∗(Z)⊗KH∗(G)

)
⊗H∗(G)H∗(Y ) ≈ H∗(Z)⊗KH∗(Y )

which is a special case of the algebraic isomorphism (A⊗KR)⊗RB ≈ A⊗KB . This

special case will play a role in the construction of the spectral sequence. One can in

fact view the spectral sequence as an algebraic machine for going from this rather

uninteresting special case to the general case.

Constructing the Spectral Sequence

To save words, let us call a space with an action by G a G space. A G map

between G spaces is a map f that preserves the action, so f(xg) = f(x)g for right

actions and similarly for left actions.
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It will be convenient to have basepoints for all the spaces we consider, and to have

all maps preserve basepoints. To be consistent, this would require that elements of G

act by basepoint-preserving maps, in other words basepoints are fixed by the group

actions. This excludes many interesting actions, but there is an easy way around this

problem. Given a space X with a G action, let X+ be the disjoint union of X with a

new basepoint x0 , and extend the action to fix x0 , so x0g = x0 for all g ∈ G . This

trick makes it possible to assume all actions fix basepoints. It also allows us to use

reduced homology since H̃∗(X+) ≈ H∗(X) . So in what follows we assume all maps

and all actions preserve the basepoint.

In basepointed situations it is often best to replace the product X×Y by the

smash product X ∧ Y , the quotient of X×Y with {x0}×Y ∪ X×{y0} collapsed to a

point, the basepoint in X ∧ Y . Notice that X+ ∧ Y+ = (X×Y)+ . For actions fixing the

basepoint the quotient X ∧GY is defined, and X+ ∧GY+ = (X×GY)+ . So we will be

working with X ∧G Y rather than X×GY .

Recall the definition of TorRn(A, B) . One chooses a resolution

··· -→F1 -→F0 -→A -→0

of A by free right R modules and then tensors this over R with B , dropping the final

term A⊗RB , to get a chain complex

··· -→F1⊗RB -→F0⊗RB -→0

whose nth homology group is TorRn(A, B) . If R is a graded ring and A and B are

graded modules over R , as will be the case in our application, then a free resolution

of A can be chosen in the category of graded modules, with maps preserving grading.

Tensoring with B stays within the graded category, so there is an induced grading of

TorRn(A, B) as a direct sum of its qth grading subgroups TorRn,q(A, B) .

The ideal topological realization of this algebraic construction would require a se-

quence of G spaces and G maps ···→K1→K0→X such that applying the functor

H∗(−) gave a free resolution of H∗(X) as a module over H∗(G) . To start the induc-

tive construction of such a sequence we would want a G space K0 with a G map

f0 :K0→X such that f0 induces a surjection on homology and H∗(K0) is a free

H∗(G) module. Algebraically, the simplest way to construct a free R module F0 and a

surjective R module homomorphism F0→A is to take F0 to be a direct sum of copies

of R , one for each element of A . One can regard this direct sum as a family of copies

of R parametrized by A . The topological analog of this is to choose K0 to be the

product X×G , a family of copies of G parametrized by X . For the map f0 :K0→X
we choose the action map (x,g)֏ xg . This will be a G map if we take the action

of G to be trivial on the X factor, so (x,g)h = (x,gh) . This action does not fix the

basepoint, but we can correct this problem by taking K0 to be the quotient of X×G

with {x0}×G collapsed to a point. For this new K0 there is an induced quotient map

f0 :K0→X since the action of G on X fixes x0 .
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If the coefficient ring K is a field the Künneth formula gives an isomorphism

H̃∗(K0) ≈ H̃∗(X)⊗KH∗(G) . From this we see that H∗(K0) is free as a module over

H∗(G) since H∗(G) acts trivially on the factor H̃∗(X) . The map f0 induces a sur-

jection on homology since it is a retraction with respect to the inclusion X֓ K0 ,

x֏ (x,1) . Another way of seeing that f0∗ is surjective is to identify it with the map

H̃∗(X)⊗KH∗(G)→H̃∗(X) induced by the action, and this map is surjective since the

identity element of G gives an identity element of H0(G) .

If we let X1 be the mapping cone of f0 we then have a short exact sequence

0 -→H̃∗(X1)
∂
-----→H̃∗(K0)

f0∗
------------→ H̃∗(X) -→0

For basepoint reasons we should take the reduced mapping cone, the quotient of the

ordinary mapping cone with the cone on the basepoint collapsed to a point. The

actions of G on X and K0 extend naturally to an action on the mapping cone since it

is the mapping cone of a G map.

Now we iterate the construction to produce maps fp :Kp→Xp that are retractions

with mapping cones Xp+1 fitting into a diagram

The associated short exact sequences

0 -→H̃∗(Xp+1)
∂
-----→H̃∗(Kp)

fp∗
------------→ H̃∗(Xp) -→0

can be spliced together as in the following diagram to produce a resolution of H̃∗(X)

by free H∗(G) modules:

The next step is to apply ∧GY . Since the map Kp→Xp is a G map with mapping

cone Xp+1 , there is an induced map Kp ∧GY→Xp ∧GY and its mapping cone is

Xp+1 ∧GY . The associated long exact sequences of reduced homology may no longer

split since the inclusions Xp֓Kp , x֏(x,1) , are not G maps, but we can assemble

all these long exact sequences into a staircase diagram:

Thus we have a spectral sequence.
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Let us set E1
p,q = H̃p+q(Kp ∧GY) . We will show in a moment that E1

p,q = 0 for

q < 0, so the spectral sequence lives in the first quadrant. From the staircase diagram

we see that the differentials have the form dr :Erp,q→E
r
p−r ,q+r−1 just as in the Serre

spectral sequence for homology.

The E1 page consists of the chain complexes

··· -→H̃q+2(K2 ∧GY) -→H̃q+1(K1 ∧GY) -→H̃q(K0 ∧GY) -→0

Recall that Kp = (Xp×G)/({xp}×G) with the action (x,g)h = (x,gh) . By an ear-

lier observation we have H∗
(
(Xp×G)×GY

)
≈ H∗(Xp×G)⊗H∗(G)H∗(Y ) . The space

(Xp×G)×GY retracts via G maps onto each of its G subspaces ({xp}×G)×GY and

(Xp×G)×G{y0} , and collapsing these subspaces produces Kp ∧GY . It follows that

H̃∗(Kp ∧GY) ≈ H̃∗(Kp)⊗H∗(G)H̃∗(Y ) .

To see that E1
p,q = 0 for q < 0 it suffices to show that H̃i(Kp) = 0 for i < p .

The map fp :Kp→Xp is a retraction with mapping cone Xp+1 so we have short exact

sequences

0 -→H̃i+1(Xp+1)
∂
-----→H̃i(Kp)

fp∗
------------→ H̃i(Xp) -→0

We also have H̃∗(Kp) ≈ H̃∗(Xp)⊗KH∗(G) so H̃i(Kp) = 0 for i < p if and only if

H̃i(Xp) = 0 for i < p . The exact sequence together with induction on p then shows

that H̃i(Kp) = 0 for i < p , where the induction starts with the case p = 0 which

holds vacuously, or it could start with p = 1 where X1 is path-connected since it is

the mapping cone of a surjection, so H̃0(X1) = 0 hence also H̃0(K1) = 0.

Under the isomorphism H̃∗(Kp∧GY) ≈ H̃∗(Kp)⊗H∗(G)H̃∗(Y ) the differential d1 ,

which is the composition of two horizontal maps in the staircase diagram, corresponds

to gp∗ ⊗11 where gp is the composition Kp→Xp→ΣKp−1 , the second map being part

of the mapping cone sequence Kp−1→Xp−1→Xp→ΣKp−1 . By the definition of Torp,q

this says that E2
p,q = TorH∗(G)p,q

(
H̃∗(X), H̃∗(Y )

)
.

In order to prove that the spectral sequence converges to H̃∗(X∧GY) we need to

impose some restrictions on the action of G on Y . We shall assume that Y has the

form Y+ for a G space Y on which G acts freely in such a way that the projection

π :Y→Y/G is a principal G bundle. This means that each point of Y/G has a neigh-

borhood U for which there is a G homeomorphism π−1(U)→G×U where the latter

space is a G space via the action g(h,y) = (gh,y) . This hypothesis guarantees that

the projection X×GY→Y/G induced by X×Y→Y , (x,y)֏y , is a fiber bundle with

fiber X , since X×G(G×U) is just X×U , by an argument given earlier in a slightly

different context.

Theorem 5E.1. Suppose X is a right G space and Y is a left G space such that the

projection Y→Y/G is a principal bundle. Then there is a first-quadrant spectral

sequence with E2
p,q = TorH∗(G)p,q

(
H∗(X),H∗(Y )

)
converging to H∗(X×GY) .

The convergence statement means that the groups E∞p,q for p + q = n form the

successive quotients in a filtration of Hn(X×GY) .
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Proof: We take the preceding spectral sequence for the G spaces X+ and Y+ . The

E2 terms have already been identified, so it remains only to check convergence. At

the top of each A column of the staircase diagram, the columns with the arrows, we

have the groups H∗(X×GY) , so by Proposition 5.2 it will suffice to show that all the

terms sufficiently far down each A column are zero, that is, H̃n(Xp ∧G Y+) = 0 for

sufficiently large p . It will suffice to show that Xp ∧G Y+ is (p − 1) -connected.

Since Y→Y/G is a principal G bundle, the projection Xp×GY→Y/G is a bun-

dle with fiber Xp . The action of G on Xp fixes the basepoint xp , so this bundle has

a section {xp}×Y/G . We can view this section as a subbundle with fiber a point.

The inclusion map of this subbundle induces a map of the long exact sequences of

homotopy groups for these bundles, so by the five-lemma, the fact that Xp ∧G Y+ is

(p − 1) -connected will follow if we can show that Xp is (p − 1) -connected, strength-

ening the earlier fact that H̃i(Xp) = 0 for i < p .

To show this we will use the following:

Lemma 5E.2. (1) If r :W→Z is a retraction with W n connected (hence Z is also

n -connected) then the mapping cone of r is (n+ 1) connected.

(2) If Z is n connected then so is (Z×W)/({z0}×W) for any locally path-connected

space W, assuming that the point z0 ∈ Z is a deformation retract of some neighbor-

hood.

Proof: For statement (1), observe first that the mapping cone Cr is path-connected

if W and Z are nonempty since a retraction is surjective. For the case n = 0 we can

apply van Kampen’s theorem to the decomposition of Cr into the cone on W and the

mapping cylinder of r . For n ≥ 1 we use the exact sequences

0→H̃i+1(Cr ;Z)→H̃i(W ;Z)→H̃i(Z ;Z)→0

together with the Hurewicz theorem.

For (2), when n = 0 the space (Z×W)/({z0}×W) is path-connected since any

point in Z×W is connected by a path to a point in {z0}×W . When n = 1 we de-

compose W into its path components Wα and apply van Kampen’s theorem to the

decomposition of (Z×W)/({z0}×W) into its subsets (Z×Wα)/({z0}×Wα) , which

are simply-connected. For n > 1 we apply the Künneth formula with Z coefficients

to see that H̃i(Z ;Z) = 0 for i ≤ n implies H̃i
(
(Z×W)/({z0}×W);Z

)
= 0 for i ≤ n ,

then we apply the Hurewicz theorem. ⊔⊓

Now we can finish the proof of the theorem. By (1), X1 is 0-connected. By (2) this

implies that K1 is 0-connected. Then (1) implies that X2 is 1-connected hence so is

K2 by (2), and in the same we each Xp and Kp in turn is (p − 1) -connected. ⊔⊓
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The Cohomology Spectral Sequence

The situation we are interested in here is that the cohomology H∗(X) of a space

X is a module over the cohomology ring H∗(B) of another space B by means of a map

f :X→B , which allows us to define rx = f∗(r)` x for r ∈ H∗(B) and x ∈ H∗(X) .

We shall take B to be fixed and consider different choices for X , each choice having

a specified map to B . Of particular interest is a pullback diagram involving a pair

of spaces mapping to B , a commutative square as shown at the right,

where Z is the subspace of X×Y consisting of pairs (x,y) mapping to

the same point in B . Eventually we will be assuming one or both of the

maps X→B and Y→B is a fibration, so Z is the pullback fibration, but

for the moment we do not need any assumptions about fibrations.

The pullback can be regarded as a product of the two maps to B in a categori-

cal sense, since it has the property that if we have a commutative

square with the pullback Z replaced by some other space W , then

there is a unique map W→Z making the enlarged diagram at the

right commute. From this point of view, what we are looking for

is a Künneth-type formula for the cohomology of the ‘product’ Z

in terms of the cohomology of X and Y , regarded as modules over the cohomology

of B . When B is a point the pullback Z is just the usual product X×Y . We can ex-

pect things to be quite a bit more complicated for a general space B , and the Künneth

formula that we will obtain will be in the form of a spectral sequence rather than the

simpler form of the classical Künneth formula.

Theorem 5E.3. Given a map X→B and a fibration Y→B , there is a spectral se-

quence with E
p,q
2 = TorH

∗(B)
p,q

(
H∗(X),H∗(Y )

)
converging to H∗(Z) if B is simply-

connected and the cohomology groups of X , Y , and B are finitely generated over

the coefficient field K in each dimension.

The finite generation hypothesis is needed since we will be using the Künneth

formula repeatedly, and this needs finiteness assumptions in the case of cohomology,

unlike homology.

The derivation of this spectral sequence will be formally similar to what we did for

the spectral sequence in the previous section, once the proper categorical framework

is established. Instead of considering arbitrary maps X→B we will consider only

maps that are retractions onto a subspace B ⊂ X . This may seem too restrictive at

first glance, but it actually includes the case of an arbitrary map f :X→B by enlarging

X to XB = X ∐ B with the retraction r :XB→B that equals f on X and the identity

on B . When B is a point this amounts to enlarging X to X+ by adding a disjoint

basepoint. Thus XB is X with a disjoint basespace adjoined. In the situation we will

be considering of retractions r :X→B we can similarly regard B as a basespace for

X instead of just a basepoint.
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To formalize, we will be working in the category CB whose objects are retractions

r :X→B and whose morphisms are commutative triangles as at the right.

The category CB has quotients: Given a pair (X,A) in CB , with the retrac-

tion X→B restricting to the retraction A→B , we can form the quotient

space of X obtained by identifying points of A with their images under the retraction

to B . This idea allows us to construct the (reduced) mapping cone of a map f :X→Y
in CB . First form the ordinary mapping cylinder of f and collapse its subspace B×I

to B , then collapse the copy of X at the source end of the mapping cylinder to B

via the retraction X→B . The retractions of X and Y to B induce a retraction of the

resulting mapping cone to B , so we stay within CB .

The pullback of two retractions rX :X→B and rY :Y→B in CB serves as their

product, as we observed earlier, and we shall use the notation X×BY for this product,

to emphasize the analogy with the object X×GY in the previous section. The product

X×BY lies in CB since the retractions rX and rY induce a well-defined retraction of

X×BY to B sending (x,y) to rX(x) = rY (y) .

We can also define a smash product X∧BY in CB as the quotient space of X×BY

obtained by collapsing X×BB = X to B via rX and B×BY = Y to B via rY . For the

operation of adjoining disjoint basespaces we have XB ∧BYB = (X×BY)B .

Since H∗(XB , B) ≈ H
∗(X) we will frequently be working with cohomology relative

to the basespace B in what follows. This can be thought of as the analog of reduced

cohomology for the category CB . For a pair (X,A) in CB with quotient X/A in CB

obtained by collapsing A to B via the retraction there is a long exact sequence

··· -→Hn(X/A,B) -→Hn(X, B) -→Hn(A, B) -→···

assuming that A is a deformation retract of a neighborhood in X so that excision can

be applied. Given also a space Y in CB it is easy to check from the definitions that

(X ∧B Y)/(A∧B Y) = (X/A)∧B Y so there is also an exact sequence

··· -→Hn
(
(X/A)∧B Y ,B

)
-→Hn(X ∧B Y ,B) -→Hn(A∧B Y ,B) -→···

We will be using this in the case that X is a mapping cylinder with A its source end,

so that X/A is the mapping cone.

Proof of 5E.3: The first step will be to construct a commutative diagram

such that applying H∗(−, B) to the horizontal row gives a resolution of H∗(X, B) by

free H∗(B) modules. Then we will apply ∧BY to the diagram and again take H∗(−, B)

to get a staircase diagram, which will give the spectral sequence we want.

Let K0 = (X/B)×B , viewed as an object in CB by including B in (X/B)×B as the

subspace (B/B)×B and taking the projection (X/B)×B→B as the retraction. Then
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H∗(K0) ≈ H
∗(X/B)⊗KH

∗(B) and hence H∗(K0, B) ≈ H
∗(X, B)⊗KH

∗(B) . This is a

free right H∗(B) module since the module structure is given by (a⊗b)c = a⊗bc ,

the retraction K0→B being projection onto the second factor. There is a natural map

f :X→K0 , f(x) = (x, r(x)) , which is a morphism in CB . This induces a surjection

f∗ :H∗(K0, B)→H
∗(X, B) since the composition X/B→K0/B→X/B of the maps in-

duced by f and the projection onto the first factor is the identity map. (Note that

these quotient maps are not maps in CB .) Another way to see that f∗ is a surjection

is to identify H∗(K0, B) with H∗(X, B)⊗KH
∗(B) , and then f∗ can be viewed as the

map H∗(X, B)⊗KH
∗(B)→H∗(X, B) defining the module structure on H∗(X, B) . This

map is obviously onto since there is an identity element in H∗(B) .

Let X1 be the mapping cone of f in the category CB . We will eventually need the

following statement about vanishing of cohomology:

(∗) If Hi(X, B) = 0 for i < n , then this is true also for (K0, B) , and Hi(X1, B) = 0 for

i < n+ 1 if B is path-connected.

The first half of this assertion is an immediate consequence of the isomorphism

H∗(K0, B) ≈ H
∗(X, B)⊗KH

∗(B) while the second half is evident from the exact se-

quence

0 -→Hn(X1, B) -→Hn(K0, B)
f∗

-----→Hn(X, B) -→0

since f∗ is an isomorphism in this dimension if H0(B) ≈ K .

Iteration of the construction of K0 and X1 from X now produces the diagram

displayed at the beginning of the proof. The long exact sequences of cohomology

H∗(−, B) break up into short exact sequences that splice together to give a free reso-

lution

After applying ∧BY we obtain long exact sequences of cohomology H∗(−, B) that

may no longer split into short exact sequences, but do form a staircase diagram

hence we get a spectral sequence.

To recognize the E2 terms as Tor groups we argue as follows. The pullback X×BY

will be a product Z×Y if X is a product Z×B , with projection onto the second factor
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as the retraction. Thus in this case we have isomorphisms

H∗(X×BY) ≈ H
∗(Z)⊗KH

∗(Y )

≈ H∗(Z)⊗K
[
H∗(B)⊗H∗(B)H

∗(Y )
]

≈
[
H∗(Z)⊗KH

∗(B)
]
⊗H∗(B)H

∗(Y )

≈ H∗(X)⊗H∗(B)H
∗(Y )

≈
[
H∗(X, B)⊕H∗(B)

]
⊗H∗(B)

[
H∗(Y , B)⊕H∗(B)

]

This last tensor product can be expanded out as the sum of four terms, and after

cancelling three of these we obtain

H∗(X ∧BY ,B) ≈ H
∗(X, B)⊗H∗(B)H

∗(Y , B)

In particular this applies to the products Kp = (Xp/B)×B , so the groups in the E1

page are obtained from the groups in the free resolutions by tensoring over H∗(B)

with H∗(Y , B) . The differentials d1 are obviously obtained by tensoring the boundary

maps in the resolutions with the identity map on the H∗(Y , B) factor, so the E2 page

consists of TorH
∗(B)
∗,∗

(
H∗(X, B),H∗(Y , B)

)
groups.

To make the indexing precise, we set E
p,q
1 = Hp+q(Kp ∧ BY ,B) . The nonzero

terms in the E1 page then all lie in the first quadrant. In the staircase diagram we

replace n by p + q , so q is constant on each column of the diagram. In the E1

page the differential d1 maps E
p,q
1 to E

p−1,q+1
1 , diagonally upward to the left, so the

diagonals with p + q constant form chain complexes with homology groups E
p,q
2 =

TorH
∗(B)

p,q

(
H∗(X, B),H∗(Y , B)

)
. Fixing p and letting q vary, the direct sum of the terms

in the p th column of the E2 page is TorH
∗(B)

p

(
H∗(X, B),H∗(Y , B)

)
.

The differential dr in the Er page maps Ep,qr to Ep−r ,q+1
r , going r units to the left

but only one unit upward. This means that it is no longer automatically true that the

sequence of groups Ep,qr for fixed p and q and increasing r stabilizes at some finite

stage, as the differentials mapping to Ep,qr could perhaps be nonzero for infinitely

many values of r . However, this does not actually happen since all the terms E
p,q
1

are finite-dimensional vector spaces over K , hence this is also true for Ep,qr , and each

nonzero differential starting or ending at a given term Ep,qr reduces its dimension by

at least one so this cannot happen infinitely often.

At the top of the qth A column of the staircase diagram we have the group

Hq(X∧BY ,B) . This is filtered by the kernels of the compositions of the vertical maps

downward from this group, with successive quotients the entries in the qth row of

the E∞ page. For the general convergence results at the beginning of the chapter to be

applicable we need the terms in the qth A column of the staircase diagram to be zero

sufficiently far down this column. We claim that this will happen in the situation of the

theorem where we assume that B is simply-connected. As a preliminary step to seeing

why this is true, recall that H∗(Kp, B) ≈ H
∗(Xp, B)⊗KH∗(B) and that H∗(Xp+1, B) is

the kernel of the map H∗(Xp, B)⊗KH∗(B)→H
∗(Xp, B) giving the module structure,
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so if H̃∗(B) vanishes below dimension 2 we see that H∗(Xp+1, B) will vanish in two

more dimensions than H∗(Xp, B) . By induction it follows that both Hi(Xp, B) and

Hi(Kp, B) are zero for i < 2p . (In particular, in the E1 page this means that E
p,q
1 = 0

for p > q , which gives a stronger reason for the terms Ep,qr to stabilize as r goes to

infinity.)

Now we can prove the claim about the A columns. In the situation of the theorem

we take Y to be of the form YB = Y∐B for a fibration Y→B with B simply-connected.

Then Xp∧BYB is Xp×BY with the subspace B×BY collapsed to B , so H∗(Xp∧BYB , B)

is H∗(Xp×BY ,B×BY) . Thus we are looking at the cohomology of the pullback of

the fibration Y→B over Xp and B . With B simply-connected we have seen that

Hi(Xp, B) = 0 for i < 2p so by the Serre spectral sequence the relative cohomology

of the pair (Xp×BY ,B×BY) vanishes in the same dimensions. The simple-connectivity

assumption guarantees that the action of π1 of the base on the cohomology of the

fiber is trivial for the fibration Y→B and hence also for the pullback. Thus we have

Hi(Xp×BY ,B×BY) = 0 for i < 2p , which implies that each A column of the staircase

diagram consists of zeroes from some point downward, as we claimed.

There is also a more elementary argument for this that does not use the Serre spec-

tral sequence. One proves inductively that (Xp, B) and (Kp, B) are (2p−1) connected

if B is simply-connected. Since the cohomology vanishes in this range with coefficients

in any field it suffices to show that Xp and Kp are simply-connected when p > 0, and

this can be done by a van Kampen argument after modifying the construction by at-

taching cones to subspaces rather than collapsing them to a point. Once one knows

that (Xp, B) is (2p − 1) connected, the homotopy lifting property then implies that

(Xp×BY ,B×BY) is also (2p − 1) connected. ⊔⊓
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