Correction to Algebraic Topology by Allen Hatcher

The following corrects the last two paragraphs on page 335, Poincaré duality with local coefficients.

Cup and cap product work easily with local coefficients in a bundle of rings, the latter concept being defined in the obvious way. The cap product can be used to give a version of Poincaré duality for a closed *n*-manifold *M* using coefficients in a bundle of rings *E* under the same assumption as with ordinary coefficients that there exists a fundamental class $[M] \in H_n(M; E)$ restricting to a generator of $H_n(M, M - \{x\}; E)$ for all $x \in M$. By excision the latter group is isomorphic to the fiber ring *R* of *E*. The same proof as for ordinary coefficients then shows that $[M] \cap :H^k(M; E) \to H_{n-k}(M; E)$ is an isomorphism for all k.

Taking *R* to be one of the standard rings \mathbb{Z} , \mathbb{Q} , or \mathbb{Z}_p does not give anything new since the only ring automorphism these rings have is the identity, so the bundle of rings *E* must be the product $M \times R$. To get something more interesting, suppose we take *R* to be the ring $\mathbb{Z}[i]$ of Gaussian integers, the complex numbers a + bi with $a, b \in \mathbb{Z}$. This has complex conjugation $a + bi \mapsto a - bi$ as a ring isomorphism. If *M* is nonorientable and connected we can use the homomorphism $\omega : \pi_1(M) \to \{\pm 1\}$ that defines the bundle of groups $M_{\mathbb{Z}}$ to build a bundle of rings *E* corresponding to the action of $\pi_1(M)$ on $\mathbb{Z}[i]$ given by $\gamma(a + bi) = a + \omega(\gamma)bi$. The homology and cohomology groups of *M* with coefficients in *E* depend only on the additive structure of $\mathbb{Z}[i]$ so they split as the direct sum of their real and imaginary parts, which are just the homology or cohomology groups with ordinary coefficients \mathbb{Z} and twisted coefficients \mathbb{Z} , respectively. The fundamental class in $H_n(M; \mathbb{Z})$ constructed in Example 3H.3 can be viewed as a pure imaginary fundamental class $[M] \in H_n(M; E)$. Since cap product with [M] interchanges real and imaginary parts, we obtain:

Theorem 3H.6. If *M* is a nonorientable closed connected *n*-manifold then cap product with the pure imaginary fundamental class [M] gives isomorphisms $H^k(M; \mathbb{Z}) \approx H_{n-k}(M; \mathbb{Z})$ and $H^k(M; \mathbb{Z}) \approx H_{n-k}(M; \mathbb{Z})$.

More generally this holds with \mathbb{Z} replaced by other rings such as \mathbb{Q} or \mathbb{Z}_p . There is also a version for noncompact manifolds using cohomology with compact supports.