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Preface to the New Edition

This is a revised edition of my “Notes on Lie Algebras"” of 1969. Since
that time | have gone over the material in lectures at Stanford University
and at the University of Crete (whose Department of Mathematics | thank
for its hospitality in 1988).

The purpose, as before, is to present a simple straightforward introduc-
tion, for the general mathematical reader, to the theory of Lie algebras,
specifically to the structure and the (finite dimensional) representations of
the semisimple Lie algebras. | hope the book will also enable the reader to
enter into the more advanced phases of the theory.

I have tried to make all arguments as simple and direct as | could, with-
out entering into too many possible ramifications. In particular | use only
the reals and the complex numbers as base fields.

The material, most of it discovered by W. Killing, E. Cartan and H.
Weyl, is quite classical by now. The approach to it has changed over the
years, mainly by becoming more algebraic. (In particular, the existence
and the complete reducibility of representations was originally proved by
Analysis; after a while algebraic proofs were found.) — The background
needed for these notes is mostly linear algebra (of the geometric kind;
vector spaces and linear transformations in preference to column vectors
and matrices, although the latter are used too). Relevant facts and the no-
tation are collected in the Appendix. Some familiarity with the usual gen-
eral facts about groups, rings, and homomorphisms, and the standard basic
facts from analysis is also assumed.

The first chapter contains the necessary general facts about Lie algebras.
Semisimplicity is defined and Cartan'’s criterion for it in terms of a certain
quadratic form, the Killing form, is developed. The chapter also brings the
representations ef(2, C), the Lie algebra consisting of tl2ex 2 complex
matrices with tracé (or, equivalently, the representations of the Lie group
SU(2), the2 x 2 special-unitary matriced/, i.e. with M - M* = id and
detM = 1). This Lie algebra is a quite fundamental object, that crops up at
many places, and thus its representations are interesting in themselves; in
addition these results are used quite heavily within the theory of semisim-
ple Lie algebras.

The second chapter brings the structure of the semisimple Lie algebras
(Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram,...) and the
classification, as found by Killing and Cartan (the list of all semisimple Lie
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algebras consists of (1) ttepecial- linearones, i.e. all matrices (of any
fixed dimension) with tracé, (2) theorthogonalones, i.e. all skewsym-
metric matrices (of any fixed dimension), (3) thgmplecticones, i.e. all
matricesM (of any fixed even dimension) that satisfy.J = —JMT with

a certain non-degenerate skewsymmetric mattriand (4) five special Lie
algebrass,, Fy, Eg, E7, Eg, of dimensiond 4, 52, 78,133, 248, the “excep-
tional Lie algebras", that just somehow appear in the process). There is
also a discussion of the compact form and other real forms of a (com-
plex) semisimple Lie algebra, and a section on automorphisms. The third
chapter brings the theory of the finite dimensional representations of a
semisimple Lie algebra, with the highest or extreme weight as central
notion. The proof for the existence of representations is an ad hoc ver-
sion of the present standard proof, but avoids explicit use of the Poincaré-
Birkhoff-Witt theorem.

Complete reducibility is proved, as usual, with J.H.C. Whitehead'’s proof
(the first proof, by H. Weyl, was analytical-topological and used the exis-
tence of a compact form of the group in question). Then come H. Weyl's
formula for the character of an irreducible representation, and its conse-
quences (the formula for the dimension of the representation, Kostant's
formula for the multiplicities of the weights and algorithms for finding
the weights, Steinberg’s formula for the multiplicities in the splitting of
a tensor product and algorithms for finding them). The last topic is the
determination of which representations can be brought into orthogonal or
symplectic form. This is due to I.A. Malcev; we bring the much simpler
approach by Bose-Patera.

Some of the text has been rewritten and, | hope, made clearer. Errors
have been eliminated; | hope no new ones have crept in. Some new ma-
terial has been added, mainly the section on automorphisms, the formulas
of Freudenthal and Klimyk for the multiplicities of weights, R. Brauer’s
algorithm for the splitting of tensor products, and the Bose-Patera proof
mentioned above. The References at the end of the text contain a some-
what expanded list of books and original contributions.

In the text | use “iff" for “if and only if", “wr to" for “with respect to"
and “resp." for “respectively”. A reference such as “Theorem A" indicates
Theorem A in the same section; a reference 8m.n indicates section n in
chapter m; and Ch.m refers to chapter m. The symbol [n] indicates item n
in the References. The symbgl* indicates the end of a proof, argument
or discussion.

| thank Elizabeth Harvey for typing angeXing and for support in my
effort to learn 'EX, and | thank Jim Milgram for help with PicTeXing the
diagrams.

Hans Samelson, Stanford, September 1989



Preface to the Old Edition

These notes are a slightly expanded version of lectures given at the Uni-
versity of Michigan and Stanford University. Their subject, the basic facts
about structure and representations of semisimple Lie algebras, due mainly
to S. Lie, W. Killing, E. Cartan, and H. Weyl, is quite classical. My aim
has been to follow as direct a path to these topics as | could, avoiding de-
tours and side trips, and to keep all arguments as simple as possible. As an
example, by refining a construction of Jacobson’s, | get along without the
enveloping algebra of a Lie algebra. (This is not to say that the enveloping
algebra is not an interesting concept; in fact, for a more advanced devel-
opment one certainly needs it.)

The necessary background that one should have to read these notes con-
sists of a reasonable firm hold on linear algebra (Jordan form, spectral
theorem, duality, bilinear forms, tensor products, exterior algebra,...) and
the basic notions of algebra (group, ring, homomorphism,.. ., the Noether
isomorphism theorems, the Jordan-Hoelder theorem,...), plus some no-
tions of calculus. The principal notions of linear algebra used are collected,
not very systematically, in an appendix; it might be well for the reader to
glance at the appendix to begin with, if only to get acquainted with some
of the notation. | restrict myself to the standard fields= reals,C =
complex numbersa(denotes the complex-conjugatef Z denotes the
integers;Z,, is the cyclic group of orden. “iff” means “if and only if”;

“w.r.to” means “with respect to”. In the preparation of these notes, | sub-
stituted my own version of the Halmos-symbol that indicates the end of

a proof or an argument; | usg/. The bibliography is kept to a mini-
mum; Jacobson’s book contains a fairly extensive list of references and
some historical comments. Besides the standard sources | have made use
of mimeographed notes that | have come across (Albert, van Est, Freuden-
thal, Mostow, J. Shoenfield).

Stanford, 1969
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1

Generalities

1.1 Basic definitions, examples

A multiplication or producton a vector spac# is a bilinear map from
VxVtoV.
Now comes the definition of the central notion of this book:

A Lie algebraconsists of a (finite dimensional) vector space, over a field
F, and a multiplication on the vector space (denoted by, pronounced
“bracket”, the image of a paitX, Y) of vectors denoted bx Y] or [ X, Y]),
with the properties

@ [xx]=0,

(b) [X[YZ]+[Y[ZX]]+ [Z[XY]] =0

for all elementsX, respX,Y, Z, of our vector space.

Property (a) is called skew-symmetry; because of bilinearity it implies
(and is implied by, if the characteristic Bfis not2)

@  [XY]=-[vX].

(For= replaceX by X + Y in (a) and expand by bilinearity; fax put
X =Y in (a), getting2[ X X] = 0.)

In more abstract terms (a) says that[ ]is a linear map from the second
exterior power of the vector space to the vector space.

Property (b) is called thdacobi identity it is related to the usual asso-
ciative law, as the examples will show.

Usually we denote Lie algebras by small German letiens.. .., g, .. ..

Naturally one could generalize the definition, by allowing the vector
space to be of infinite dimension or by replacing “vector space” by “mod-
ule over aring”.

Note: From here on we use fronly the realsR, or the complexeg;.
Some of the following examples make sense for any field

Example O: Any vector space wifXY] = 0 for all X,Y’; these are the
Abelian Lie algebras.
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Example 1: Letd be an algebra ovéf (a vector space with an associa-
tive multiplication X - Y). We makeA into a Lie algebrad, (also called
A as Lie algebra)y defining[XY] = X - Y — Y - X. The Jacobi identity
holds; just “multiply out”.

As a simple casel;, is thetrivial Lie algebra, of dimension and
Abelian. For another “concrete” case see Example 12.

Example 2: A special case of Example 1: Take fothe algebra of
all operators (endomorphisms) of a vector spécéhe correspondingl
is called thegeneral Lie algebra of/, gi(V'). Concretely, taking number
spaceR™ asV, this is thegeneral linear Lie algebral(n,R) of all n x n
real matrices, withXY] = XY — Y X. Similarly gl(n, C).

Example 3: Thespecial linear Lie algebral(n, R) consists of alh x n
real matrices with trace (and has the same linear and bracket operations
asgl(n, R)—itis a “sub Lie algebra”); similarly fo€. For any vector space
V we havesl(V), the special linear Lie algebra of/, consisting of the
operators orv of trace0.

Example 4: Let be a vector space, and lelbe a non-degenerate sym-
metric bilinear form onV. The orthogonal Lie algebrao(V,b), or just
o(V) if it is clear whichb is intended, consists of all operatdfson V/
under which the fornd is “infinitesimally invariant” (see 81.3 for expla-
nation of the term), i.e., that satisbyTv, w) + b(v, Tw) = 0 for all v, w in
V, or equivalentlyb(Tv,v) = 0 for all v in V; again the linear and bracket
operations are as igi(V"). One has to check of course thaf| leavesb
infinitesimally invariant, ifS andT do; this is elementary.

ForV = F" one usually takes fd( X, Y) the formXz,;y; = X T - Y with
X = (z1,22, -, 2n), Y = (y1,Y2,---,Yn); ONE Writeso(n, ) for the cor-
responding orthogonal Lie algebra. The infinitesimal invariance property
reads nowX " (M T + M)Y = 0 and soo(n, F) consists of the matrice®/
overF that satisfyh/ " +M = 0, i.e., the skew-symmetric onés= R is the
standard case; but the ca&écomplex skew matrices) is also important.

Example 5: Let be a complex vector space, andddie a Hermitean
(positive definite) inner product ori. Theunitary Lie algebrau(V, ), or
justu(V), consists of the operatofson V' with the infinitesimal invariance
propertyc¢(TX,Y) + ¢(X,TY) = 0. This is a Lie algebra oveR, but not
over C (if T has the invariance property, so dods for real r, but not
iT—because is conjugate-linear in the first variable—unl&sss 0).

ForV = C™andc(X,Y) = Xz;-y; (the “~” meaning complex-conjugate)
this gives the Lie algebra(n), consisting of the matrice®/ that satisfy
M* + M = 0 (where* meanstranspose conjugater adjoint), i.e., the
skew-Hermiteamnes.

There is also thepecial unitary Lie algebrau(V') (or su(n)), consisting
of the elements of(V) (or u(n)) of trace0.
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Example 6: Le¥ be a vector space ovBrand let? be a non-degenerate
skew-symmetric bilinear form oli. Thesymplectic Lie algebrap(V, )
or justsp(V) consists of the operatofson V' that leave? infinitesimally
invariant:Q(TX,Y) + Q(X,TY) = 0.

One writessp(n, R) andsp(n, C) for the symplectic Lie algebras &*"
and C2™ with Q(X7Y) = T1Y2 — T2Y1 + T3Y4 — T4Y3 + -+ + Toap—_1Y2n —
Tony2n—1- (ILis well known that non-degeneracy @frequiresdim V' even
and that has the form just showsr to a suitable coordinate system.)

With J; = {_01 .

scribed as the set af. x 2n matrices that satisfy/ " .J + JM = 0.

The matrices simultaneously #p(n,C) and inu(2n) form a real Lie
algebra, denoted bsp(n). (An invariant definition foesp(n) is as follows:
Letc andQ be defined as in Examples 5 and 6, on the same vector gpace
of dimensior2n. They define, respectively, a conjugate-linear riagnd
alinear mapl of V to its dual spac& . ThenJ = L~! - C is a conjugate-
linear map ofV to itself. If J?2 = —id, then(c, Q) is called a symplectic
pair, and in that case the symplectic Lie algefyr@a, 2) is defined as the
intersectionu(c) Nsp(Q).)

} andJ = diag(Jy, J1,...,J1) this can also be de-

We introduce the classical, standard, symbols for these Lie algebras:
sl(n + 1,C) is denoted byA,,, forn = 1,2,3,...; o(2n + 1,C), forn =
2,3,4,...,isdenoted byB,,; sp(n,C), forn = 3,4,5,..., is denoted by’,;
finally o(2n,C), forn = 4,5,6,..., is denoted byD,,.(We shall use these
symbols, in deviation from our convention on notation for Lie algebras.)
The same symbols are used for the daseR.

The A, By, Cy, D; are thefour familiesof theclassicalLie algebras. The
restrictions om are made to prevent “double exposure”: one has the (not
quite obvious) relation®; ~ C; ~ A;;Cs ~ By: D3 ~ A3; Dy = A; @

A1; Dy is Abelian of dimension 1. (See 81.4 fsrand®.)

Example 7: We describe the orthogonal Lie algediga in more detail.
Let R,, R,, R. denote the three matrices

00 0 00 1 0 -1 0
00 -1/, 000/,|1 00
01 0 -1 0 0 0 0 0

(These are the “infinitesimal rotations” around theor y- or z-axis, see
81.3.) Clearly they are a basis faf3) (3 x 3 real skew matrices); they are
also a basis, ovet, for o(3, C). One computes

Example 8:su(2) in detail 2 x 2 skew-Hermitean, trac®. The follow-
ing three matrices,, S,, S, clearly form a basis (about the reasons for
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choosing these particular matrices see §1.4):

0 1 0 -1 ) 0

i 0} 172 [1 0] 172 [0 J

One verifiegS,S,] = S., [SyS.] = Sz, [5.5:] = S,. Note the similarity to
Example 7, an example of an isomorphism, cf. 81.4.

Example 9: The Lie algebra(2, C) (or 4;), 2 x 2 matrices of tracé. A
basis is given by the three matrices

1 0 0 1 0 0
R e S
One compute$H X, ]| = 2X,, [HX_] = —2X_, [X, X_] = H. This Lie
algebra and these relations will play a considerable role later on.

1/2

The standard skew-symmetric (exterior) fod|[X,Y]| = z1ys — 2211
onC? is invariant undes!(2, C) (precisely because of the vanishing of the
trace), and sel(2, C) is identical withsp(1,C). ThusA; = C;.

Example 10: ThaffineLie algebraof the ling aff(1). It consists of all
real2 x 2 matrices with second ro®: The two elements

1 0 0 1
xi=ly o) =0
form a basis, and we hav&, X5] = X,. (See “affine group of the line”,
81.3))

Example 11: The.orentzLie algebrao(3,1;R), or [3; in short (corre-
sponding to the well known Lorentz group of relativity).I, with vec-
tors written a = (z,y, z,t), we use thd.orentz inner productv,v); =
z? + 9% + 2% — ?; putting I3 ; = diag(1,1,1,—1) and considering as col-
umn vector, this is alse' I5 ;v. Now I3 ; consists of those operatdfson
R* that leave(-, ), infinitesimally invariant (i.e.{Tv,w), + (v, Tw) = 0
for all v, w), or of the4 x 4 real matrices\/ with MTIM + 131 M =0.

Example 12: We consider the algelifaf thequaternionsoverR, with
the usual basis, i, j, k; 1 is unit,i> = j2 = k2 = —1 andij = —ji = k,etc.
Any quaternion can be written uniquely in the fomn- jb with a,b in C.
Associating with this quaternion the matrix

a —b
b
sets up an isomorphism of the quaternions with Rhealgebra of2 x 2
complex matrices of this form.
Such a matrix in turn can be written in the forrh+ M with realr and
M skew-Hermitean with trace. This means that the quaternions as Lie

algebra are isomorphic (see §1.4) to the direct sum (see §1.4 again) of the
Lie algebrasR (i.e.R;) andsu(2)(Example 8).
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1.2 Structure constants

Let g be a Lie algebra and take a baéis,, X,,..., X, } for (the vector
space)g. By bilinearity the[ ]-operation ing is completely determined
once the value§X, X,| are known. We “know” them by writing them as
linear combinations of th&,. The coefficientsfj in the relationgX,; X;] =
cijk (sum over repeated indices!) are called gheicture constantsf

g (relative to the given basis). [Examples 7—10 are of this kind; e.g., in
Example 10 we have}, = 0, ¢?, = 1; for i = j one getd of course.]
Axioms (a) and (b) of §1.1 find their expressions in the relatigps: —c%,

(= 0,if i = j) andcjiely, + el + ¢iiel; = 0. Under change of basis the
structure constants change as a tensor of {gpB: if X = a}X;, then
c’fj cal =cl-al - as.

We interpret this as follows: Letim g = n, and letF be the field under
consideration. We consider thé-dimensional vector space of systems
cfj, with 7,5,k = 1,...,n. The systems that form the structure constants
of some Lie algebra form an algebraic setdefined by the above linear
and guadratic equations that correspond to axioms (a) and (b) of 81.1. The
general linear groug7L(n, F), which consists of all invertible x n matri-
ces ovell, operates or$, by the formulae above. The various systems of
structure constants of a given Lie algebra relative to all its bases form an
orbit (set of all transforms of one element) under this action. Conversely,
the systems of structure constants in an orbit can be interpreted as giving
rise to one and the same Lie algebra. Thus there is a natural bijection be-
tween orbits (of systems of structure constants) and isomorphism classes
of Lie algebras (of dimension); see 81.4 for “isomorphism”. As an ex-
ample, the orbit of the system?; = (0 foralli, j, k", which clearly consists
of just that one system, corresponds to “the” Lie algebra (of dimengion
with [XY] =0 for all X,Y, i.e., “the” Abelian Lie algebra ofimn.

1.3 Relations with Lie groups

We discuss only the beginning of this topic. First we look at the Lie groups
corresponding to the Lie algebras considered in §1.1.

Thegeneral linear groug7 L(n, F) consists of all invertible: x n matri-
ces ovelr.

The special linear groupSL(n,F) consists of the elements 6fL(n,F)
with determinant 1.

The (real)orthogonal groupO(n,R) or just O(n) consists of the real
n x n matricesM with M T - M = 1; for the complex orthogonal group
O(n,C) we replace “real” by “complex” in the definition.
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Thespecial (real) orthogonal grougO(n,R) = SO(n) isO(n)NSL(n,R);
similarly for SO(n, C).

Theunitary groupU (n) consists of all the (complex) matricés with
M* - M = 1; thespecial unitary grougpU (n) isU(n) N SL(n,C).

The symplectic grougbp(n,F) consists of albn x 2n matrices oveir
with M T.J-M = J (see §1.2 forJ); such matrices automatically have
det = 1 (best proved by considering the elemg@fitin the exterior algebra,
with the of §1.2). Thesymplectic grougp(n) is Sp(n,C) N U(2n). (All
these definitions can be made invariantly, as in 81.2 for Lie algebras.)

Theaffine group of the lineAf f(1), consists of all reab x 2, invertible
matrices with second roy, 1), i.e., the transformations = ax + b of the
real line witha # 0.

Finally the Lorentz groupconsists of all reall x 4 matricesM with
M I3 M =1Is;.

The set of alh x n matrices oveF has an obvious identification with the
standard vector space of dimensighoverF. Thus all the groups defined
above are subsets of various spak&sor C™, defined by a finite number
of simple equations (like the relationg™-M = I for O(n,F)). In fact, they
are algebraic varieties (except fofn) andSU(n), where the presence of
complex conjugation interferes slightly). It is fairly obvious that they are
all topological manifolds, in fact differentiable, infinitely differentiable,
real-analytic, and some of them even complex holomorphic. (Ais0,
SO(n), U(n), SU(n), Sp(n) are easily seen to be compact, namely closed
and bounded in their respective spaces.)

We now come to the relation of these groups with the corresponding Lie
algebras.

Briefly, a Lie algebra is the tangent space of a Lie group at the unit
element.

For gl(n,F) we take a smooth curv& (¢) in GL(n,F) (so eachM () is
an invertible matrix ovef) with M (0) = I. The tangent vector at= 0,
i.e., the derivativel/’(0), is then an element gfi(n, F). Every element of
gl(n,F) appears for a suitably chosen curve. It is worthwhile to point out a
special way of producing these curves:

Given an elemenk of gl(n,F), withF = R or C, i.e., ann x n matrix, we
take a variable in F and formesX = ¥s'X?/i! (also written asxp(sX);
this series of matrices is as well behaved as the usual exponential function.
For each value of it gives an invertible matrix, i.e., one 6 L(n,F); one
hasexp(0X) = exp(0) = I andesX - ¢5'X = ¢(5+)X Thus the curve
exp(sX), with s running oveiR, is a group, called thene-parameter group
determined byX. (Strictly speaking the one-parameter group isriep
that sends to exp(sX).) We getX back from the one-parameter group by
taking the derivativevr to s for s = 0.
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For O(n,F) we take a curve consisting of orthogonal matrices, so that
MT(t)- M(t) = I for all t. Differentiating and putting = 0, we find
(M'(0))" + M'(0) = 0 (rememberV (0) = I); so ourX = M’(0) lies in
o(n,F). Conversely, tak&X with XT + X = 0; form exp(sX ") - exp(sX)
and differentiate it. The result can be writtereag(sX ")- X T -exp(sX) +
exp(sX ") X -exp(sX), which on account ok " + X = 0 is identically0.
Thusexp(sX ")-exp(sX) is constant; taking = 0, we see that the constant
is I, meaning thatxp(sX) lies inO(n,F) for all s.

Similar considerations hold for the other groups. In particutahas
trace0 (i.e., belongs tal(n,F)), iff detexp(sX) = 1 for all s (because
of detexp X = exp(trX)). X is skew-Hermitean (belongs tdgn)), iff all
exp(sX) are unitaryX satisfiesX ' - J + J - X = 0 (it belongs tosp(n, F)),
iff the relationexp(sX ") - J - exp(sX) = J holds for alls (all theexp(sX)
belong toSp(n, F)). Etc.

As for the “infinitesimal invariance” of §1.2, it is simply the infinites-
imal form of the relation that define8(n,F): With the formb of §1.1,
Example 4, we leg(¢) be a smooth one-parameter family of isometries
of V, so thath(g(t)v, g(t)w) = b(v, w) for all ¢, with g(0) = id. Taking the
derivative fort = 0 and puttingg’(0) = T, we geth(Tv, w) + b(v, Tw) = 0.

(As we saw above, in matrix language this says+ X = 0.)—Similarly
for the other examples.

This is a good point to indicate some reasons whyXoY" in gl(n,F),
the combinationXY] = XY — Y X is important:

(1) Putf(s) = exp(sX) - Y - exp(—sX); i.e., form the conjugate df by
exp(sX). The derivative off for s = 0 is thenXY — Y X (and the Taylor
expansion off is f(s) =Y + s[XY] +...).

(2) Letg(s) be the commutatarxp(sX)-exp(sY)-exp(—sX)-exp(—sY).
One findsg(0) = I, ¢’(0) = 0, ¢”(0) = 2(XY — Y X) = 2[XY]; the Taylor
expansion ig(s) = I + s*[XY] + ...

In both cases we see tHalY'| is some measure of non-commutativity.

1.4 Elementary algebraic concepts

Let g be a Lie algebra. For two subspacgésB of g the symbol/AB] de-
notes the linear span of the set of @1Y] with X in A andY in B; occa-
sionally this notation is also used for arbitrary subsets. Similarly, and
more elementary, one defindst B.

A sub Lie algebraof g is a subspace, say of g that is closed under
the bracket operation (i.€qq] C q); g becomes then a Lie algebra with the
linear and bracket operations inherited frgn(Examples #3—6 in §1.1 are
sub Lie algebras of the relevant general linear Lie algebras.)
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A sub Lie algebray is anideal of g if [gq] C q (if X € gandY € g
implies [XY] € q). By skew-symmetry (property (a) in 8§1.1) ideals are
automatically two-sidedfgq] = [qg]. If g is an ideal, then the quotient
spacegy/q (whose elements are the linear cosgEts q) carries an induced
[ ]-operation, defined byX +q,Y +q] = [XY]+q; as in ordinary algebra
one verifies that this is well defined, i.e., does not depend on the choice of
the representative®, Y. With this operatiory/q becomes a Lie algebra,
the quotient Lie algebraof g by q. For a trivial example: every subspace
of an Abelian Lie algebra is an ideal.

A homomorphismsay ¢, from a Lie algebrg to a Lie algebray; is a
linear mapy : g — g1 that preserves brackets([XY]) = [p(X), o(Y)].

(If g = g1, we speak of amndomorphism.A homomorphism is afmso-
morphism(symbol=), if it is one in the sense of linear maps, i.e., if it is
injective and surjective; the inverse map is then also an isomorphism of
Lie algebras.

Implicitly we used the concept “isomorphism” already in 81.2, when
we acted as if a Lie algebra were determined by its structure constants
(wr to some basis), e.g., when we talked about “the” Abelian Lie algebra
of dimensionn; what we meant was of course “determined up to isomor-
phism”.

An isomorphism of a Lie algebra with itself is @automorphism

A not quite trivial isomorphism occurs in 81.1, Examples 6 anei2)

ando(3) are isomorphic, via the map. — R, etc. (After complexifying -
see below - this is the isomorphis#tn ~ B; mentioned in §1.2.)

It is interesting, and we explain it in more detail: Consider the group
SO(3) of rotations ofR? or, equivalently, of the 2-sphei#?. By stereo-
graphic projection these rotations turn into fractional linear transforma-
tions of a complex variable, namely those of the form

, az+b

A —
—bz+a

witha-a+b-b= 1. The matrices

5

with |a|? + |b]? = 1 occurring here make up exactly the grotip(2). How-

ever the matrix is determined by the transformation above only up to sign;
we have a double-valued map. Going in the opposite direction, we have
here a homomorphism &fU(2) onto SO(3), whose kernel consists df
and-—I. This is a local isomorphism, i.e., it maps a small neighborhood of
I in SU(2) bijectively onto a neighborhood dfin SO(3). There is then

an induced isomorphism of the Lie algebrasténgent spaces at the unit
elements); and that is the isomorphism frem®) to o(3) above.
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We take up one more example of an isomorphism, of interest in physics:
The Lorentz Lie algebra; ; (see Example 11 in §1.1) is isomorphic to
sl(2,C)r (the latter meaningl(2,C) considered oveR only—the reali-
fication(see below)). Actually this is easier to understand for the corre-
sponding groups. L&t be the 4-dimensional real vector space consisting
of the2 x 2 (complex) Hermitean matrices. The functidet (= determi-
nant) fromU to R happens to be guadraticfunction onU; and with a
simple change of variables it becomes (up to a sign) equal to the Lorentz
form (-,-); : with M = {ﬂ am 5;”} we puta =t —=x,0 =t + =,
B=y,v=zandgetdet M = t> — 2% — 3% — 22. Now SL(2,C) acts on/
in a natural way, viaWl — AMA* for A € SL(2,C) andM € U. Because
of the multiplicative nature of det and the given faet A = 1 we find
det AM A* = det M, i.e., A leaves the Lorentz inner product invariant, and
we have here a homomorphism 8f.(2,C) into the Lorentz group. The
kernel of the map is easily seen to consist of id and. The map is also
surjective—we shall not go into details here. (Thus the relation between
the two groups is similar to that betwe®®(3) and SU(2)—the former
is quotient of the latter by @/2.) Infinitesimally this means that the Lie
algebras ofSL(2,C) and the Lorentz group are isomorphic. In detail, to
X in sl(2,C) we assign the operator dhdefined byM — X*M + M X
(put A = exp(tX) above and differentiate); and this operator will leave the
Lorentz form (i.e.det M) invariant in the infinitesimal sense (one can also
verify this by an algebraic computation, basedtak = 0).

A representatiorof a Lie algebrgy on a vector spac¥ is a homomor-
phism, sayp, of g into the general linear algebgg(V) of V. (We allow
the possibility ofg real, butV’ complex; this means that temporarily one
considergl(V) as areal Lie algebra, by “restriction of scalarg’ 3ssigns
to eachX in g an operatorp(X) : V — V (or, if one wants to use a basis
of V, a matrix), depending linearly ok (so thatp(aX + bY) = ap(X) +
bp(Y)) and satisfyingo([XY]) = [¢(X), o(Y)] (= ¢(X)o(Y) = ¢(Y)p(X))
(“preservation of brackets”). [One often writ&S- v or X. v or simply Xv
instead ofp(X)(v) (the image of the vector under the operatop(X));
one even talks about the operafoy meaning the operatof(X). Preser-
vation of bracket appears then in the fofKY]v = XYv — Y Xv.] One
says thaly actsor operateson V, or thatV is a g-space (org-module).
Note that Examples 2—-11 of 81.1 all come equipped with an obvious
representation—their elements are given as operators on certain vector
spaces, andlXY] equalsXY — Y X by definition. Of course these Lie
algebras may very well have representations on some other vector spaces;
in fact they do, and the study of these possibilities is one of our main aims.

Thekernelof a homomorphisny : g — g, is the setp=1(0) of all X in
g with p-imageo; it is easily seen to be an ideal gnwe write kery for it.
More generally, the inverse image ungeof a sub Lie algebra, resp. ideal
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of g1, is a sub Lie algebra, resp. ideal@fTheimagey(g) (also denoted
by im ¢) is a sub Lie algebra af;, as is the image of any sub Lie algebra
of g.

Conversely, ifq is an ideal ofg, then the natural map of g into the
quotient Lie algebray/q, defined byX — X + q, is a homomorphism,
whose kernel is exactly and which is surjective. In other words, there
is a natural “short exact sequenc@™— q — g — g/q — 0. If y isa
homomorphism ofy into some Lie algebrg; that sends; to 0, then it
“factors throughr”: There is a (unique) homomorphisgit : g/q — g1
with ¢ = ¢’ o m; the formulay’(X + q) = ¢(X) clearly gives a well-
defined linear map, and from the definition of [ ]dpy it is clear that)’
preserves|[ ].

There is thdirst isomorphism theoreifanalogous to that of group the-
ory): let q be the kernel of the homomorphism: g — g;; the induced
mapy’ sets up an isomorphism @fq with the image Lie algebra(g).

For the proof we note that cleary ¢ = im ¢’ so that the map in ques-
tion is surjective; it is also injective since the only cosej @fith o-image
0 is clearlyq itself. An easy consequence of this is the following: ket
andb be ideals ing, with a C b; then the natural maps give rise to an
isomorphismyg/b =~ (g/a)/(b/a).

Next: if a andb are ideals ofy, so arex + b and|ab]; if a is an ideal and
b a sub Lie algebra, then+ b is a sub Lie algebra. The proof fert b is
trivial; that for [ab] uses the Jacobi identity.

The intersection of two sub Lie algebras is again a sub Lie algebra, of
course; ifa is a sub Lie algebra andis an ideal ofg, thena N b is an ideal
of a. Thesecond isomorphism theoresays that in this situation the natural
map ofa into a + b induces an isomorphism afa N b with (a + b)/b; we
forego the standard proof.

Two elementsX andY of g are said t&¢ommuteif [XY]is 0. (The term
comes from the fact that in the cage- gl(n,F) (or any A;) the condition
[XY] = 0just means{Y = Y X itis also equivalent to the condition that
all exp(sX) commute with alkxp(tY") (see §1.3 for exp).) Theentralizer
gs of a subsefS of g is the set (in fact a sub Lie algebra) of thasdn g
that commute with alt” in S. For S = g this is thecenterof g. Similarly
thenormalizerof a sub Lie algebra consists of theX in g with [Xa] C a;
it is a sub Lie algebra of, and contains as an ideal (and is the largest
sub Lie algebra of with this property).

The (externalfirect sumof two Lie algebrag, go, writteng; @ g», has
the obvious definition; it is the vector space direct sum, with [ ] defined
“componentwise” (X1, 1), (X2, Y2)] = ([X1X2], [Y1Y2]). The two sum-
mandsg; andg; (i.e., the(X,0) and(0,Y)) are ideals in the direct sum
that have intersectiomand “nullify” each othel([g;, g2] = 0). Conversely,
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if a andb are two ideals iry that spary linearly (i.e.,a + b = g) and have
intersectiorn, then the mapX,Y) — X + Y is an isomorphism of & b

with g (thusg is internal direct sum ofa andb). (This uses the fact that
[ab] is contained im N b, and so i in the present situation.) One calls

a andb complementary ideals. An idealis direct summandf there ex-

ists a complementary ideal, or, equivalently, if there exists a “retracting”
homomorphisnmp : g — a with poi = id, (herei : a C g).

We make some comments change of base fieldA vector spacé/,
or a Lie algebra, overC can be regarded as one oWeby restriction of
scalars this is thereal restrictionor realification indicated by writinglz
or gr. In the other direction & or g overR can be made into (or, better,
extended to) one ovét by tensoring withC overR; or, more elementary,
by considering formal combinations+ iw and X + Y (with ¢ the usual
complex unit) and defininga + i) - (v + iw), (a + ib) - (X + 1Y), and
[X +4Y, X’ +iY’] in the obvious way. This is theomplex extensioor
complexificationwe write Vi andgc. We call V' areal formof V. (A
basis forl” overR is also one foll: overC; same forg.)

A simple examplegl(n, C) is the complexification((n, R)c of gl(n,R).
All this means is that a complex matrid¢ can be written uniquely as
A + 1B with real matricesA, B.

For a slightly more complicated examplg(n, C) is also the complexi-
fication of the unitary Lie algebra(n). This comes about by writing any
complex matrix)/ uniquely asP + i@ with P, Q skew-Hermitean, putting
P =1/2(M — M*) and@ = 1/2i{(M + M*). (This is the familiar decom-
position into Hermitean plusHermitean, because of “skew-Hermitean
i-Hermitean”.)

Something noteworthy occurs when one complexifies a real Lie algebra
that happens to be the realification of a complex Lie algebra:

Let g be a Lie algebra ovet. We first define theonjugateg of g; it
is a Lie algebra that is isomorphic gooverR, but multiplication by: in
g corresponds to multiplication by in g. One could takgg = g over
R; we prefer to keep them separate, and denote(hihe element ofy
corresponding td in g. The basic rule is the@uX) = a - X.

(It happens frequently thatis isomorphic tgy, namely whery admits a
conjugate-linear automorphisire., an automorphism overR such that
p(aX) = a- ¢(X) holds for alla and X. E.g., fors((n,C) such a map is
simply complex conjugation of the matrix.)

In the same vein one defines the conjugate of a (complex) vector space
V, denoted by It is R-isomorphic tol” (with v in V' corresponding to in
V), and one ha§ - v) = —i - v. (ForC" one can take “another copy” af*
as the conjugate space, witlbeing “the conjugate” of, i.e., obtained by
taking the complex-conjugates of the components.) And—naturally—if
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is arepresentation gfon V' (all overC), one has the conjugate representa-
tion ¢ of g onV, with ¢(X)(v) = ¢(X)(v). Finally, conjugation is clearly
of order two;V =V, g = g, andp = .

We come to the fact promised above.

PROPOSITIONA. grc IS isomorphic to the direct sum® g. The
isomorphism sendX in g to the pain X, X).

Proof: There are two ways to multiply elements @f- = g ®r C by
the complex unit, “on the left” and “on the right”; they are not the same
since the tensor product is ovRr (The one on the right defines the struc-
ture of grc as complex vector space.) In terms of formal combinations
X + iY—which, to avoid confusion with the product bandY in g, we
write as pairs{ X, Y }—this amounts ta - {X,Y} = {iX,:Y} (whereiX
is the product ofi and X in g) and{X,Y} -i = {-Y, X}. We consider
the two subspaces;, consisting of all elements of the forgX, —i X},
andU,, all {X,iX}. They are indeed complex subspaces; ¢, —iX} -
equals{:X, X}, which can be writter{iX, —i - iX}, and is thus inU;.
They spanggc as direct sum; namely one can writ&, Y’} uniquely as
1/2{X +1iY,—iX + Y} 4+ 1/2{X —iY,iX + Y}. One verifies that/; and
U, are sub Lie algebras; furthermore the brackets between them soe
that they are ideals and produce a direct sum of Lie algebras. The maps
X — 1/2{X,—iX}, respX — 1/2{X,iX}, show that the first summand
is isomorphic tgy and the second tg one checks that the maps preserve
brackets; moreover under the first map we have— 1/2{iX, X}, which
equalsl/2{X,—iX} - i, so that the map is complex-linear, and similarly
the second map turns out conjugate-linear.

Finally, for the second sentence of Proposition A we note thatéairy
g appears as the pdiX, 0} in grc, Which can be written as/2{ X, —iX } +
1/2{X,iX}. /

1.5 Representations; the Killing form

We collect here some general definitions and facts on representations, and
introduce the importaradjoint representation. As noted before, a repre-
sentationy of a Lie algebrgy on a vector spacg assigns to eacl in g an
operatory(X) onV, with preservation of linearity and bracket. Roe= F”
the p(X) are matrices, and we get the notiomadtrix representation.

A representatior is faithful if ker o = 0, i.e., if the onlyX with p(X) =
0 is 0 itself. If ¢ has kernel, it induces a faithful representation gfq
in the standard way. Theivial representationis the representation on
a one-dimensional space, with all representing operatoes a matrix
representation it assigns to each elementtbie matrix[0).



1.5 REPRESENTATIONS THE KILLING FORM 13

Let ¢1, 02 be two representations gfon the respective vector spaces
V1, Va. A linear mapT : V; — V; is equivariant(wr to o1, ¢2)), or inter-
twinesy; and s, if it satisfies the relatiof” o 1 (X) = ¢o(X) o T for
all X in g. If T is an isomorphism, thep; andy, areequivalentand we
haveps(X) = T o ¢1(X) o T~! for all X in g. Usually one is interested in
representations only up to equivalence.

Let g act onV via . An invariant or stablesubspace is a subspace,
sayW, of V with o(X)(W) c W for all X in g. There is then an obvious
induced representation gfin W. Furthermore, there is an induced repre-
sentation on the quotient spakgiV (just as for individual operators—see
Appendix), and the canonical quotient midp— V/W is equivariant.

¢ andV areirreducible or simpleif there is no non-trivial (i.e., differ-
ent from0 andV) invariant subspace: andV arecompletely reducible
or semisimplgif every invariant subspace &f admits a complementary
invariant subspac¥ or, equivalently, ifi” is direct sum of irreducible sub-
spaces (in matrix language this means that irreducible representations are
“strung along the diagonal”, with everywhere else).

Following the physicists’s custom we will often write rep and irrep for
representation and irreducible representation.

If © is reducible (i.e., not simple), 18 = 0, V; = a minimal invariant
subspacet 0, V>, = a minimal invariant subspace containivigproperly,
etc. After a finite number of steps one arrived/afsincedim V' is finite).
On each quotieny;/V;_; there is an induced simple representation; the
Jordan-Hdélder theorem says that the collection of these representations is
well defined up to equivalences. Jfis semisimple, then of course each
V;—1 has a complementary invariant subspacg;itand conversely).

Let o1, ¢ be two representations, &, V,. Theirdirect sump; @3, On
V1 @ Vs, is defined in the obvious way; @ p2(X)(v1,v2) = (91(X)(v1),
v2(X)(v2)). There is also theensor producty; @ ¢2, on the tensor product
Vi®Vs, defined byp1 ®<p2(X)(U1 ®U2) = 801(X)(U1)®'U2 +v1 ®(p2(X)(UQ).
(This is the infinitesimal version of the tensor product of operators: let
T,, T, be operators orvy, Vs; then, taking the derivative afxp(sT;) ®
exp(sTy) ats = 0, one gets; ® id + id ® T». Note thatp; ® p2(X) is
not the tensor product of the two operaterg X) and ¢,(X); it might
be better to call it thénfinitesimal tensor produabr tensor sunand use
some other symbol, e.gp; #¢2(X); however, we stick with the conven-
tional notation.) All of this extends to higher tensor powers, and also to
symmetric and exterior powers of a representation (and to tensors of any
kind of symmetry).

Finally, to a representatignonV is associated theontragredientstrictly
speaking thenfinitesimal contragredieitor dual representatiop”™ on
the dual vector spacg ", given byp®(X) = —p(X)". This is a repre-
sentation. The minus sign is essential; it corresponds to the fact that for
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the contragredient of a representation of a group one has to take the in-
verse of the transpose, since inverse and transpose separately yield anti-
representations. And the derivativesat 0 of exp(s7 ")~ 1is —T".

The notions of realification and complexification of vector spaces and
Lie algebras (see §1.5) extend in the obvious way to representations: From
v : g — gl(V) overR (resp.C) we getyc : gc — ol(Ve) (resp.¢r :
gr — gl(Vk)). To realify a complex representation amounts to treating a

A —
B A
complexify a (real) representation of a rgaln a real vectorspace amounts
to considering real matrices as complex, Ria C.

complex matrixA + ¢ B as the real matri of twice the size. To

The important case is that of a representaiaf a realg on a complex
vector spac®’. Here we exteng to a representation @t onV' by putting
(X +1Y) = o(X) + ip(Y). This process sets up a bijection between the
representations af on complex vector spaces (or by complex matrices)
and the (complex!) representationsgef (Both kinds of representations
are determined by their values on a basig.ofhose ofgc are easier to
handle because of the usual advantages of complex numbers.)

A very important representation gfis the adjoint representation, de-
noted by “ad”. It is just the (left) regular representationgoflhe vector
space, on which it operates, gstself; the operatoad X, assigned taX,
is given byad X(Y) = [XY] forall Y in g (“ad X = [X—]"). The repre-
sentation conditioad[XY] =ad X cadY —adY oad X forany X,Y in g
turns out to be just the Jacobi condition (plus skew-symmetry). The kernel
of ad is the center ofj, as one sees immediately. Idealgjafre the same
asad-invariant subspaces.

Let X be an element of, and leth be a sub Lie algebra (or even just
a subspace), invariant undet X. The operator induced anby ad X is
occasionally writternd, X; similarly one writesad,,, X for the induced
operator ory/h. These are called thHe- andg/h— parts ofad X.

Remark:ad X is the infinitesimal version of conjugation leyp(sX),
see comment (3) at the end of 8§1.3.

We write ad g for the adjoint Lie algebrathe image ofg underad in
al(g).

From the adjoint representation we derive ®i#ing form x (named
after W. Killing; in the literature often denoted ky) of g , @ symmetric
bilinear form ong given by

K(X,Y)=tr(ad X oadY),

the trace of the composition afl X andad Y'; we also write( X, Y') for this
and think of(-, -) as a—possibly degenerate—inner producgoattached
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to the Lie algebra structure gn(in the important case of semisimple Lie
algebras—see 8§1.7—it is non-degenerate). (The symmetry comes from
the relationir (ST') = tr (T'S) for any two operators.)

Similarly any representatiop gives rise to the symmetric bilinerace
form¢,, defined by

to(X,Y) = tr(p(X) o p(Y)) .

The Killing form isinvariantunder all automorphisms @f Let « be an
automorphism; then we have

{a(X), a(Y)) = (X,Y)

for all X,Y in g. This again follows from the symmetry property tf,
and the relationd a(X) = aoad X o a~! (notead a(X)(Y) = [a(X)Y] =
a([X,a" (Y)])).

The Killing form of an ideal of g is the restriction of the Killing form

of g to q as one verifies easily. This does not hold for sub Lie algebras in
general.

Example 15((2,C). We write the elements @ = a X, +bH +cX_ (see
81.1; but we write the basis in this order, to conform with §1.11). From the
brackets between the basis vectors one finds the matrix expressions

0 0 O
-1 0 0
0 20

and then the values (ad H o ad H) etc. of the coefficients of the Killing
form, with the result

2 0 0
0 0 0
0 0 -2

0 -2 0
ad H = ,ad Xy = |0 0 1], adX_ =
0 00

K(X,X) =8(b* +ac) (=4trX?).

The bilinear formx(X,Y) is then obtained by polarization.

If we restrict tosu(2), by puttingb = ia anda = 8 +iy,c = —( +iv, the
Killing form turns into the negative definite expression(a? + 32 + ~?).
For the general context, into which this fits, see §2.10.

Example 2: We consider(3) (Example 4 in 81.1), and its natural action
onR3 (we could also use(3,C) andC?). We write the general eleme#t
asaR, + bR, + cR,, with a,b, c € R3, thus setting up an isomorphism, as
vector spaces, af(3) with R?. Working out the adjoint representation, one
finds the equations

adR; = R;,adR, = Ry,ad R, = R,
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for the matrices. (In other words, the adjoint representation is equivalent
to the original representation.) Computing the trace®of R, etc. one
finds the Killing form as

K(X, X) = —2(a® +b* + ).

Surprisingly (?) the quadratic form that defined the orthogonal Lie algebra
in the first place, appears here also as the Killing form (up to a factor).

Example 3: The general linear Lie algeltén, F). Given an element
of it, the map(ad 4)? (acting on the space of allx n matrices) sends any
MtoA%2-M —2A-M-A+ M - A%. One reads off from this that the Killing
form, the trace of the map, is

k(A, A) = 2ntr (A%)  —  2(tr A)2.

For the special linear Lie algebra, which is an ideal in the general one,
the Killing form is obtained by restriction. Thus one gets here simply
2ntr (A2).

A derivationof a Lie algebrgy is an operatoD : g — g that satisfies
DIXY]=[DX,Y]+ [X,DY]forall X,Y in g.

This is the infinitesimal version of automorphismalfs) is a differen-
tiable family of automorphisms with(0) = id, one finds on differenti-
ating (using Leibnitz’s rule) the relatiof(s)([XY]) = [a(s)(X)a(s)(Y)]
thato/(0), the derivative at O, is a derivation. In other words, the first order
term in the expansion(s) = id + sD + - - - is a derivation. Conversely, if
D is a derivation, then alixp(sD) are automorphisms, as one sees again
by differentiating.

An important special case: East X is a derivation ofy; this is just the
Jacobi identity; thesd X’s are theinner derivationsof g, analogs of the
inner automorphisms of a group.

The Killing form is (infinitesimally) invariant under any derivatian
of g, i.e., we haves(DX,Y) + x(X,DY) = 0 for all X,Y. (This is the
infinitesimal version of invariance of under automorphisms—consider
the derivative, at = 0, of (a(s)(X), a(s)(Y)) = (X,Y).)

The proof uses the easily verified relati@hDX = Doad X —ad X o D,
and symmetry ofr.

Specialized to an inner derivation, this becomes the important relation

(%) K(XY],2) +k(Y,[XZ]) =0

forall X,Y, Z. l.e.,ad X is skew-symmetric wr ta.

Similarly any trace forny,, associated to a representatipnis ad-
invariant:t, ([XY], Z) + t,(Y, [ X Z]) = 0.
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1.6 Solvable and nilpotent

Thederivedsub Lie algebrg’ of the Lie algebra is the idealgg], spanned

by all [ XY7]; it corresponds to the commutator subgroup of a group. The
quotientg/g’ is Abelian, andg’ is the unique minimal ideal of with
Abelian quotient; this is immediate from the fact that the imagexdf|

in g/qis 0 exactly if( XY] is in q. Clearlyg’ is acharacteristicideal of g,

that is, it is mapped into itself under every automorphism @ fact even
under any endomorphism and any derivation).

We form thederived seriesg,g’.g” = (¢/),....g",... (e.g.,g" is
spanned by al[[XY][UV])). All theseg(") are ideals ing (in fact char-
acteristic ones); clearly™ > g(*+1), One callsg solvable,if the derived
series goes down 1@ i.e., if g is 0 for larger. If g is solvable, then the
last non-zero ideal in the derived series is Abelian. Nai®’ = o(3), thus
0(3) is not solvablepjf(1)"” = 0, soaff(1) is solvable. The prime example
for solvability is formed by the Lie algebra of upper-triangular matrices
(aij =(fori > j)

The lower central seriesg, g*,g%,...,g",... is defined inductively by
gt =g,9""! = [g,9"]; thusg” is spanned bjteratedor long brackets
[X1[X2]. .. Xrt1] - .. ] (which we abbreviate t0X; X, ... X,14]). Again the
g are characteristic ideals, and the relatign' c g” holds. One calls
g nilpotent if the lower central series goes downapi.e., if g” is 0 for
larger. The standard example for nilpotence are the upper supra-triangular
matrices, those with,; = 0 for ¢ > j. (This is the derived Lie algebra of
the upper-triangular one.)

One sees easily that the derived and lower central series of an idgal of
consists of ideals af.

Nilpotency implies solvability, because of the relatigh c g” (easily
proved by induction); the converse is not true—considgn). It is also
fairly clear that a sub Lie algebra of a solvable (resp nilpotent) Lie algebra
is itself solvable (resp nilpotent), and similar for quotients. For solvability
there is a “converse”:

LEMMA A. Leto — q — g — p — 0 be an exact sequence of Lie
algebras. Theg is solvable iff bothy andp are so.

In one direction we have seen this already. For the other, notg(that
maps intop(™); the latter is0 for larger, and sog”) is contained in the
image ofq. Theng("*+*) is in the image of*); and the latter i® for large

s/

We show next thaf contains a unique maximal solvable ideal (i.e.,
there is such an ideal that contains all solvable ideals)rabeal + of
g; similarly there is a unique maximal nilpotent ideal, occasionally called
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thenilradical n. This is an immediate consequence of the following

LEMMA B. If a andb are solvable (resp. nilpotent) idealsgothen
so is the idead + b.

Proof: For the solvable case we have the exact sequéneen — a +
b — (a+0b)/a — 0; the third term is isomorphic th/a N b and so solvable,
and we can apply Lemma A. For the nilpotent case one verifies that any
long bracket withs + 1 of its terms ina lies in a®; for examplefa, [asb]] is
in a', becauséu»b] is in a. Therefore all sufficiently long brackets oft b
are0, since they belong either td with larges or to b? with larget. \/

The nilradical is of course contained in the radical.

We come to a fundamental definition, singling out a very important class
of Lie algebras: A Lie algebrgis calledsemisimplgif its radical isO and
its dimension is positive. (Since the last term of the derived series is an
Abelian ideal, vanishing of the radical amounts to the same as: if there is
no non-zero Abelian ideal.)

From Lemma A it follows that the quotiegl/t of g by its radicalr is
semisimple; thus in a sense (i.e., upetdensions semisimple and solv-
able Lie algebras yield all Lie algebras (see the Levi-Malcev theorem be-
low). The quotient ofg by its nilradicaln may well have a non-zero nil-
radical; exampleaff(1).

The importance of semisimplicity comes from its equivalence (81.10,
Theorem A) with the non-degeneracy of the Killing formgof

One more basic definition: A Lie algebgas simple if it has no non-
trivial ideals (different fromD or g) and is not of dimensiof or 1.

[The dimension restriction only excludes the rather trivial Abelian Lie
algebra of dimension one; it is actually equivalent to requigingt Abelian,
or to requiringg semisimple: Ifg has dimension greater thanit is not
Abelian (otherwise it would have non-trivial ideals). If it is not Abelian, it
is not solvable (the absence of non-trivial ideals would make it Abelian);
thus the radical is a proper ideal (i.,g) and so equal t0, makingg
semisimple. And ifg is semisimple, it must be of dimension more than
anyway.]

We shall soon prove the important fact that every semisimple Lie algebra
is direct sum of simple ones, and we shall later (in Ch.2) find all simple Lie
algebras (ovet). As for solvable Lie algebras, although a good many gen-
eral facts are known, there is no complete list of all possibilities. For the
“general” Lie algebra, we have the exact sequaneer — g — g/t — 0,
with ¢ solvable angj/t semisimple. Furthermore there is the Levi-Malcev
theorem (which we shall not prove, although it is not difficult) that this
sequence splits, i.e., thatontains a sub Lie algebra complementary to
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(and so isomorpic tg/t). Thus every Lie algebra is put together from a
solvable and a semisimple part. We describe how the two parts interact:

If one analyzes the brackets between elementsanids, one is led to
the notion ofsemidirect sumLet a, b be two Lie algebras, and let there
be given a representatignof a on (the vector space)by derivationsof
b (i.e., everyp(X) is a derivation of). We make the vector space direct
sum ofa andb into a Lie algebra, denoted hy®,, b, by using the given
brackets in the two summandsandb, and by definingdXY] = ¢o(X)(Y)
for X in aandY in b. This is indeed a Lie algebra (the derivation property
of thep(X)’s is of course essential here), and there is an exact sequence
0—b—ad,b— a— 0,whichis in fact split, via the obvious embedding
of a as the first summand af® b. (Forp = 0 this gives the ordinary direct
sum.) In these terms then, the gengrad semidirect sum of a semisimple
Lie algebras and a solvable Lie algebkaunder some representationsof
ont by derivations.

1.7 Engel’s theorem

We begin the more detailed discussion of Lie algebras with a theorem that,
although it is rather special, is technically important; itis knowknagel's
theorem It connects nilpotence of a Lie algebra with ordinary nilpotence
of operators on a vector space.

THEOREM A. LetV be a vector space; lgtbe a sub Lie algebra
of the general linear Lie algebrd(V'), consisting entirely of nilpotent
operators. Theg is a nilpotent Lie algebra.

Second form of Engel’s theorem:

THEOREM A, If g is a Lie algebra such that all operataisX,
with X in g, are nilpotent, theg is nilpotent.

For the proof we start with

PROPOSITIONB. Let the Lie algebrg act on the non-zero vector
spacév/ by nilpotent operators; then the nullspace

N={veV:Xv=0forall X ing}

is noto.

We prove this by induction on the dimension g@{most theorems on
nilpotent and solvable Lie algebras are proved that way). Thedtage=
0 is clear. Suppose the proposition holds for all dimensioms and take
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g of dimensionn (> 0). We may assume the representatipmat hand
faithful, since otherwise the effective Lie algelyéker ¢ has dimension
< n. Thus we can considegras sub Lie algebra gfi(V). Now g operates
on itself (actually on all o§((V")) by ad; and all operatorsd X, for X in g,
are nilpotent: We haved X.Y = XY - Y X, (ad X)2.Y = X?Y —2XY X +
Y X2, ..., and the factorsy pile up on one side or the other. (§* = 0,
then(ad X)?* = 0.) Letm be a maximal sub Lie algebra gtlifferent from
g (sub Lie algebragt g exist, e.g.0; take one of maximal dimensiona
operates om by restriction ofad.

This operation leaves invariant, sincen is a sub Lie algebra, and so
there is the induced representationgjfm. This representation is still by
nilpotent operators, and thus the null space is non-zero, by induction hy-
pothesis. A non-zero element in this subspace is represented by an element
Xy not inm. The fact thatX, is nullified modulom by m translates into
[mXy] € m. Thus((m, Xy)) is a sub Lie algebra af, which by maximality
of m must be equal tg.

By induction hypothesis the nullspateof m in the originalV is non-
zero; and the operator relationX, = XY + [V X] shows thatX, maps
U into itself (if v is nullified by allY in m, so is Xyu: apply both sides
of the relation tou and note thafY" X,] is in m). The operatorX| is still
nilpotent onU and so has a non-zero nullvectoand thernv is a non-zero
nullvector for all ofg. /

We now prove Theorem A. We apply Proposition B to the contragredient
action ofg on the dual vectorspadé’ (see §1.5); the operators are of
course nilpotent. We find a non-zero linear functioon v that is annulled
by g. It follows that the spacé(g - V)), spanned by allXv with X in
g andv in V, is a proper subspace &f; namely it is contained in the
kernel of )\, by A(Xv) = X "A(v) = 0. Since((g - V)) is of course invariant
underg, we can iterate the argument, and find that, with dim V, all
operators of the fornX; - X, - --- - X, vanish, since eacli; decreases the
dimension by at least. This implies Engel’'s theorem, once we observe
that any long brackéfX; X, ... X;] expands, byXY] = XY — Y X, into a
sum of products ok X's. The second form of Engel’'s theorem, Theorem
A, follows readily: takingg asV and lettingg act byad, we just saw that
ad X;-ad Xg----- ad X, is 0 (with n = dimg), and sgX1 X5 ... X, 41] =0
for all choices of theX'’s. (We remark that Engel’'s theorem, in contrast to
the following theorems, holds for fields of any characteristig.)

1.8 Lie’'s theorem

There are several equivalent forms of the theorem that commonly goes by
this name:
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THEOREMA. Letg be a solvable Lie algebra, acting on the vector
spacée/ by a representatiop, all overC. Then there exists a “joint eigen-
vector”; i.e., there is a non- zero vectgrn V that satisfie vy = A\(X)wvy,
where)(X) is a complex number (depending &r), for all X in g.

A(X) depends of course linearly o1y i.e., A is a linear function orv.

THEOREMA'. A complex irreducible representation of a complex
solvable Lie algebra is of dimensiani.

THEOREMA”. Any complex representation of a complex solvable
Lie algebra is equivalent to a triangular one, i.e., to one with all matrices
(upper-) triangular.

It is easily seen that the three forms are equivalent. Note that every repre-
sentation of positive dimension has irreducible stable subspaces (those of
minimal positive dimension), and sd Anplies A. By considering induced
representations in quotients of invariant subspaces one gets A

There is also a real version; we state the analog’of A

THEOREM B. A real irreducible representation of a real solvable
Lie algebra is of dimension 2, and is Abelian (all operators commute).

This follows from the complex version by complexification. An eigen-
vectorv + iw gives rise to the real invariant subspate w)); the Abelian
property comes from the fact that one-dimensional complex representa-
tions are Abelian.

For the proof of Lie's theorem we start with a lemma (Dynkin):

LEMMA C. Letg be a Lie algebra, acting on a vector sp&cdet a
be an ideal of, and let\ be a linear function on. LetW be the subspace
of V spanned by all the joint eigenvectorsaofiith eigenvalue: (i.e., the
v With Xv = X\(X)v for X in a). ThenW is invariant (under all of).

Proof: Forv in W, A in a, andX in g we have
AXv=XAv + [AX]v = MA)Xv + AM[AX])v .

(Note that[AX] is in a.) Thus to show thaKwv is in W, it is sufficient to
show\([AX]) = 0. With fixed X andv we form the vectorsy = v,v; =
Xv,v5 = X?v,...,v; = X',... and the increasing sequence of spaces
U, = ((vo,v1,...,v;)) fori > 0. Let k be the smallest of thewith U; =
U,+1 (this exists of course). We show inductively that@llare invariant
under everyA in a, and that the matrix oft on U, is triangularwr to the
basis{vo, v1, ..., v}, with all diagonal elements equal }¢A4). Fori = 0

we haveAv, = A\(A)vg by hypothesis. For > 0 we have
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Av; = AX'w = XAX "+ [AX] X7 v = X Av;_1 +[AX]v;_1. The second
term is inU;_; by induction hypothesig4X] is in a). For the first term
we haveAdv;_; = M A)v;—1 modU,_», and thusX Av;_; = A(A)v; mod
U;_;. Altogether,Av; = A\(A)v; mod U;_4, which clearly proves our claim.
Taking trace orU;, we findtr A = (k + 1) - A(A); in particulartr [AX] =
(k+1)-A([AX]). ButUy is clearly also invariant undet, and sar [AX] =
tr (AX — X A) = 0. With £ + 1 > 0 this shows\([AX]) = 0. (Note: the fact
that the characteristic of the field(ds crucial here.),/

The proof of Lie’s theorem proceeds now by induction on the dimension
of g, the caselimg = 0 being obvious. Consider @of dim = n(> 1),
and suppose the theorem true for all dimensians In g there exists an
ideal a of codimensionl (since any subspace containiggis an ideal,
by [ag] C [gg] C a, with, incidentally, Abelian quotierng/a). By induction
hypothesis has a joint eigenvector ivi, with eigenvector a linear function
A. By Dynkin’s lemma the spac®’, spanned by all eigenvectors oto
A, is invariant undeg. Let X, be an element of not in a; we clearly
havea + ((Xo)) = g. SinceX,W c W and we are ovef, X, has an
eigenvectomr, in W, with eigenvalue\, (note that by its constructioWw
is not0). And nowuwy is joint eigenvector fog, with eigenvalue\(A) +rg
forX =A+rXy.

1.9 Cartan’s first criterion
This criterion is a condition for solvability in terms of the Killing form:

THEOREM A. A Lie algebrag is solvable iff its Killing form k
vanishes identically on the derived Lie algelra

It is easy to see that both solvability and vanishing:@n g’ remain un-
changed under complexification for a rgathus we may takg complex.
We begin with a proposition that contains the main argument:

PROPOSITIONB. Letg be a sub Lie algebra af(V) for a vector
spaceV with the propertyr (XY) = 0 for all X,Y in g. Then the derived
Lie algebray' is nilpotent.

Note that the combinatioNY’, and nof XY, appears here. The proof uses
the Jordan form of operators. Takein g’; we haveX = S+ N with SN =
NS, N nilpotent, andS diagonal= diag (), ..., \,) relative to a suitable
basis ofi/. (We consider all operators dhas matrices:r to this basis and
take the usual matrix units, ;, with 1 asij-entry and) everywhere else, as
basis forgl(V).) PutS = diag(\, ..., \,) (i.e., the complex conjugate of
S); thenS can be written as a polynomial iy by Lagrange interpolation
(since); = ), implies\; = \;, there is a polynomial(x) with p()\;) = A;).
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Now consider the representatian of gl(V), restricted tog. We have
adX = adS + adN. Here[SN] = 0 implies [ad Sad N] = 0 (ad is a
representation!}id N is nilpotent (as in the proof of Engel’s theorem); and
finally, ad S is diagonal, with eigenvalug — \; on E;;, and so semisimple.
Thusad S + ad N is the Jordan decomposition afl X; and soad S is a
polynomial inad X. Furthermoread S is also diagonal, with eigenvalue
A\i — A; on E;;; therefore againd S is a polynomial inad S, and then also
one inad X. This finally impliesad S(g) C g, or: [SY]isingfor Y in g.

From S = p(S) we infer thatS and N commute, and so the product
SN is nilpotent, and in particular has trageTherefore we have SX =
tI‘gS = Z)\ZS\Z

On the other hand we havé = X[A,.B,] with A, B, in g, sinceX is
in g’; for each term we haver S[AB] = tr (SAB — SBA) = tr SAB —
tr ASB = tr[SA]B, and, sincéSA] is in g as shown above, this vanishes
by hypothesis og. Thus we have )\, \; = 0, which forces all\; to vanish,
so that finallyS is 0. We have shown now that aK in g’ are nilpotent;
Engel's theorem tells us that theghis nilpotent. /

Now to Cartan’s first criterion: Consider the representatiorof g on
g. The image is a sub Lie algebnraof gl(g), and there is the exact se-
quence) — 3 — g — q — 0, with 3 the center ofg (which is solvable,
even Abelian). The vanishing of the Killing form gfon g’ translates into
tr AB = 0 for all A, B in ¢'. Proposition B gives nilpotence @f, which
makesq’ andg solvable. From Lemma A, 81.6, on short exact sequences
of solvable Lie algebras we find thagis solvable.,/

For the converse part of Theorem A we apply Lie’s theorem to the ad-
joint representation. The matrices for th&X are then triangular. Fax
in g’ all diagonal elements cfd X are therD (clear for anyad A - ad B —
ad B -ad A); the same is then true farl X - ad Y with X, Y in ¢/, and thus
the Killing form (the trace) vanishes, in fact “quite strongly”, gin /

1.10 Cartan’s second criterion

This describes the basic connection between semisimplicity and the Killing
form:

THEOREM A. A Lie algebrag is semisimple iff its dimension is
positive and its Killing form is non-degenerate.

(x non-degenerate means: If for soiigin g the valuex(X,,Y) is 0 for
all Y in g, thenX, is0.)

Just as for the first criterion we may assume tha complex, since
both semisimplicity and non-degeneracyxadre unchanged by complex-
ification (the radical of the complexification is the complexification of the
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radical; one can describe non-degeneracyas: If { X1, ..., X,,} isa basis
for g, then the determinant of the matfix X;, X;)] is not0).

Proof of Theorem A(1) Supposg not semisimple. It has then a non-
zero Abelian ideah. TakeA in a, not0, and take any in g. Thenad A -
ad X - ad A mapsg into 0 (namelyg — a — a — 0), andad A - ad X is
nilpotent (of order 2). Sa(A4, X), the trace ohd A - ad X, is 0, andx is
degenerate.

(2) Suppose: degenerate. Pyt- = {X : k(X,Y) = 0 for all Y in g}; this
is thedegeneracy subspaceradical of «; it is not0, by assumption. It is
also an ideal, as follows from the (infinitesimal) invariance: ¢fve have
k(X,[YZ]) = s([XY],Z), by (*) in 81.5), and sdXY] is in g*, if X is.
Obviously the restriction of to g* is identically0. Since the restriction
of the Killing form to an ideal is the Killing form of the ideal, the Killing
form of g+ is 0. Cartan’s first criterion then implies that is solvable, and
S0g is not semisimple.,/

There are three important corollaries.

COROLLARY B. A Lie algebrag is semisimple iff it is direct sum
of simple Lie algebras.

Let g be semisimple, and let be any (non-zero) ideal. Then =
{X : k(X,Y) = 0forallY ina} is also an ideal, by the invariance of
x, as above. Non-degeneracy ofimplies dima + dimat = dimg. (If
{%1,...,Y.}isabasis of, then the equationg X,Y;) =0, ...,x(X,Y,) =
0 are independent). Furthermare) a* is also an ideal o, with vanish-
ing Killing form (arguing as above), therefore solvable (by Cartan’s first
criterion), and therefore by semisimplicity ofg. It follows thatg is the
direct sum ofa anda' (note[a,a'] is 0, as sub Lie algebra af N at).
Clearlya andat must be semisimple (they can’t have solvable ideals, or,
their Killing forms must be non-degenerate). Thus we can use induction
on the dimension of. /

The argument in the other direction is simpler: semisimplicity is pre-
served under direct sum, and simple implies semisimple.

COROLLARY C. A semisimple ideal in a Lie algebra is direct sum-
mand.

The proof is substantially the same as that for Corollary B. The com-
plementary ideal is found as the subspace orthogonal to theideal
the Killing form. The intersection of the two & since by Cartan’s first
criterion it is a solvable ideal in the given idea).
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COROLLARY D. Every derivation of a semisimple Lie algebra is
inner.

Let g be the Lie algebra antl the derivation. In the vector spageFD,
spanned by and the abstract “vectorD, we define a[ ]-operation by
[DD] = 0,[DX] = —[XD] = DX (i.e., equal to the image of underD),
and the given bracket withig One checks that this is a Lie algebra, and
that it hasg as an ideal. By Corollary C there is a complementary ideal,
which is of dimension 1 and is clearly spanned by an element of the form
—Xo + D, with someX, in g. Complementarity implies- X, + D, X] = 0,
i.e.,,DX = ad X,.X forall X in g; in short,D = ad X;. /

1.11 Representations ofi;

From 81.1 we recall that,, = sl(2,C), is the (complex) Lie algebra with
basis{H, X, X_} and relations

[HX,]=2X, [HX_ ] =—2X_,[X.X_] = H.

(Incidentally, this is alsosu(2)c, the complexifiedsu(2), and therefore
alsoo(3)c. Indeed,H, X, X_ are equal to, respectively,2:S,, —iS, —
Sy, —iSy + Sy, with the S’s of §1.1, Example 9.)

Our purpose in this and the following section is to describe all repre-
sentations of4;. We do this here, in order to have something concrete to
look at and also because the facts are of general interest (e.g., in physics,
in particular in elementary quantum theory); furthermore, the results fore-
shadow the general case; and, finally, we will use the results in studying
the structure and representations of semisimple Lie algebras.

Let then an action off; on a (complex) vectorspadé be given. The
basis of all the following arguments is the following simple fact:

LEMMA A. Letv be an eigenvector of (the operator assigned to)
H, with eigenvalue\. ThenX_ v and X _v, if different from0, are also
eigenvectors ofi, with eigenvalues + 2 and) — 2.

Proof. We are givenHv = Mv. In the language of physics, we “use the
commutation relations”, i.e., we note tHatX | actsasf o X, — X, o H.
Thuswe havéi X v = X  Ho+ [HX Jv = A X v +2X v = (A +2) X v;
similarly for X_. /

To analyze the action of;, we first note that eigenvectors &f exist,
of course (that is the reason for usifiy. Take such a one;, and form
the sequence, X v, (X )%v,... (iterating X,). By Lemma A all these
vectors are eithed or eigenvectors ofi, with no two belonging to the
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same eigenvalue. Siné¢g€has only a finite number of eigenvalues, we will
arrive at a non-zero vectay, that satisfiesHvy = \vg for some) and

X vg = 0. With this vy we definev; = X_vg,vo = X_wvy,... (iterating
X_); we also definev_; = 0. Let v, be the last non-zero vector in the
sequence.

By Lemma A we haveiv; = (A — 2i)v; for all i > —1. Next we prove,
inductively, the relationX , v; = p;v;—1 with p; = i-(A+1—1), foralli > 0.
The case = 0 is clear, withy, = 0. The induction step consists in the
computationX ,v;11 = X4 X_v; = X X v; + [X; X_Jv; = pv; + Ho; =
(i + A — 2i), which showsu; 1 = p; + A — 2i; with the initial condition
o = 0 this gives the claimed value far,. Now we takei = r + 1, so that
v, # 0, butv,,; = 0. From0 = X, v, = pro1v,. we read offy,.; = 0;
this gives) = r.

The vectorsy, v1,.. ., v, are eigenvectors dff to different eigenvalues
and so independent. The formulae for the actioxfand X_ show that
the spacé(vg, v1,...,v,.)) is invariant under the action of;. [In fact, the
action is very simpleX . moves the; “down”, X_ moves them “up”, and
the “ends” go ta.] In particular, ifV irreducible, this space is equal ¥o
Thus we know what irreducible representations must look like.

It is also clear that irreducible representations of this type exist. Take
any natural number > 0. Take a vector space of dimensienr- 1, with
a basis{vg, v1,...,v.}, and define an action of; by the formulae above:
Hv;, = (7“ — Qi)Ui,X,Ui = Vji+1 (and: 0 fori = 7"), XJrUi = UiVi—1 with
w; = i(r+1—1) (@and= 0 for i = 0). It should be clear that this is indeed a
representation ofl,, i.e., that the relationg\, X_]v = Hv, etc., hold for
all vectorsv in the space.

Furthermore, this representation is irreducible: From any non-zero lin-
ear combination of the; one gets, by a suitable iteration®f_, a non-zero
multiple of vy, and then, with the help of _, all thev,. /

It is customary to put = 2s (with s = 0,1/2,1,...), and to denote the
representation just described by. It is of dimension2s + 1. We write
out the matrices fof, X, , X_ under D, wr to the v;-basis. They;, =
i(2s + 1 — 1), strictly speaking should cargyas a second index.

H — diag(2s,2s — 2,...,2 — 25, —25s)

0 0 0 0
0 po 1 0
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We emphasizef (i.e., the matrix representing it iR,) is diagonal; the
eigenvalues are integers; they range in steps of 2 froto —2s. As for
X, and X_, the shape of the matrix (off-diagonal) is fixed; but the en-
tries (in contrast to those fdi) change, in a simple way, if one modifies
the v; by numerical factors. The following normalization is fairly com-
mon in physics: The basic vectors are callegd with m running down
in steps of one fromy to —s with Hv,, = 2m - v,,. The two other op-
erators are defined by, v,, = \/S(s +1)—m(m+1) - vpmy1, Xty =
Vs(s+1) —m(m — 1) -v,—1. (The values(s + 1) — m(m + 1) corresponds
to our earlieri(2s + 1 —14).)

We have established tldassificationresult (W. Killing):

THEOREMB. The representatioris,, withs = 0,1/2,1,3/2, ..., of
dimensiores + 1, form the complete list (up to equivalence) of irreducible
representations of;.

We note:D, is thetrivial representation of dimensioni (all operators
are0). Dy, is the representation of; in its original formsi(2,C). D,
is the adjoint representation (see the example in 81.5, ¥ithH, X_ as
Vo, V1, V2).

There is a simple and concrete model for all ihe(as reps of((2,C),
and also of the groug'L(2, C)), starting withD, /, as the original action
on C2. Namely, D, is the induced rep in the spa&@sC? of symmetric
tensors of ranRs (a subspace of thzs-fold tensor power of2) or equiv-
alently the2s-fold symmetric power ofC2. Writing « andwv for the two
standard basis vecto(s,0) and (0,1) of C2, this is simply the space of
the homogeneous polynomials of degieen the two symbols:, andv.

Here the elemeny = [‘; Z} of SL(2,C) acts through the substitu-
tion v — au + cv,v — bu + dv, and the elemenk = {: _ﬁ of

sl(2,C) acts through thelerivation(i.e..X(p - q) = Xp-q+ p - Xq) with

Xu = au+vv, Xv = fu—av. This action okl(2, C) can be described with
standard differential operatorH: acts as.0, — vd,, X, asud,, andX_ as

vd,. TO show that this is indeed the promised rep, one verifies that these
differential operators satisfy the commutation relation&/ofx , , and X _

(so that we have a rep), that the largest eigenvalué isf2s (operating on

12%), and that the dimension of the space is correct, namely1.
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(Warning: Theu andv are not the components of the vectors@t
These components, sayandy, undergo the transformation usually writ-

T e o el 2]

i.e.,r — ax +by,y — cx + dy, respx — ax + By, y — yr — ay. With z

andy interpreted (as they should be) as the dual basis of the dual space to
C?, this describes the transposed action of the original one, with the trans-
posed matrix. Thus we are in the wrong space (although it is quite natu-
rally isomorphic toC?) and we don’t have a representation (but an anti-
representation). The second trouble can be remedied by using the inverse,
resp negative, and thus getting the contragredient representatioAnd

it so happens thab, is equivalent to its dual (it is self-contragredient, see
83.9), so that the trouble is not serious.)

There is another classical model for the with integrals, which is of
interest; we describe it briefly. As noted above, we may tékeC) instead
of s1(2,C) or, even simpler, the real Lie algehrg).

We writeR? with the three coordinates y, z, and consider the (infinite-
dimensional) vectorspade of polynomials inz, y, 2 with complex coef-
ficients. There is a natural induced actiorno@) on this space (and more
generally on the space of all complex-valu@d-functions) adifferential
operators R,, R,, R, act, respectively, as

L, = 20,—y0,
L, = 20,— 20,
L, = y0,—x0y.

(Verify that the L'’s satisfy the correct commutation relations. Physicists
like to take instead the operatofs = i-L,, etc., theangular momen-

tum operatorsbecause these versions are self-adjoint wr to the usual inner
product between complex-valued functions.) There is alsbaipéace op-
erator A = 92 + 02 + 92; the polynomials (or functions) annulled by it are
the harmonicones.A commutes with the.'s. It is easy to see (e.g., using
the coordinatew, w, ~ defined below) thath maps the spacg; of poly-
nomials of degree onto P,_»; one computes then the dimension of the
harmonic subspadg, of P, as2s + 1.

Now to our representations: The harmonic specés invariant under
the L's. We claim that the induced representation is exaftly To es-
tablish this , we note that the operator corresponding tathe s((2, C)
is —2iR, (see above); thus we have to find the eigenvalues2f... To
this end we introduce the new variables= z + iy andw = z — iy,
so that we write our polynomials as polynomialsifw, . There are
the usual operator8, = 1/2(9, — i9,) anddg = 1/2(9, + i9,) with
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Opw = Opw = 1,0, w = Ogzw = 0. They commute with each other, and

we haveA = 49,05 + 0?2 andH = 2(wdy — wd,,). We see that® - @’ - 2¢

is eigenvector off with eigenvalue2(b — a). In V* the maximal eigen-
value of H is 2s; it occurs only once, for the element, which happens

to be harmonic. Thus the harmonic subspace has the dimension and the
maximal eigenvalue ab, and is therefore equivalent to iy

For s = 0 the harmonic polynomials are just the constantssferl we
havez,y andz, for s = 2 we findyz, 2z, andzy and theaz? + by? + c2?
with a + b + ¢ = 0, a five-dimensional space.

The restrictions of the harmonic polynomials (as functionsRépto
the unit sphere(defined byz? + y2 + 22 = 1) are the classicadpherical
harmonics Also note that our operators above are real and we could have
worked with real polynomials; i.e., the real spherical harmonics are a real
form of the space of spherical harmonics, in each degree.

1.12 Complete reduction forA4,
We prove thecomplete reductiotheorem:

THEOREM A. Every representation of, is direct sum of irre-
ducible ones (i.e., ab’s).

We give a special, pedestrian, proof, although later (83.4) we shall bring
a general and shorter proof. Our method is a modification of Casimir and
van der Waerden’s original one [4]. (This paper introduced what is now
known as theCasimir operator which turned out to be a very important
object. In particular it leads to the simple general proof for complete re-
ducibility alluded to above. It is interesting to note that Casimir and van
der Waerden used the Casimir operator only for certain cases; the major
part of their paper uses arguments of the kind described below.)
First we consider a representation on a vector spaceith an invari-
ant irreducible subspadé€ and irreducible induced action on the quotient
W = V/V'. (The general case will be reduced to this one by a simple
argument.) We writer : V — W for the (equivariant) projection. Let
the representation i’ be Dy, with basisvg,vy,...,v, asin §1.11 (here
r = 2s) and let the representation W be D,, with basisw, w1, ...,w,
(andp = 2¢). We must produce an invariant complemé&ntio V'’ in V.

The eigenvalues aff onV (with multiplicities) are those ob, together
with those ofD,. But it is not clear tha#{ is diagonizable. In fact, that is
the main problem. There are two cases.

(1) The easy case > s, or 2s and2q of different parity. Letuy be an
eigenvector ofH in V with eigenvalue2q. Clearly v, is not in V’'. By
Lemma A of 81.11 we hav& ,uq = 0, since2q + 2 is not eigenvalue of
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H. But then, as described in 81.14i, generates an invariant subspédcte
of type D,, which is obviously complementary 0.

(2) ¢ < s, and2s and2q have the same parity. Pdt= 2e = r — p,
and noteHwv, = 2qu., by r — 2e = 2q. We show first that there is another
eigenvector off to this eigenvalue.

If not, then there exists a vectoy, notinV’, with Hug = 2qug+v. (namely
a vector annulled byH — 2¢)?, but not byH — 24 itself); we may arrange
m(ug) = wo. We formuy = X_ug,us = X_uq,... and prove inductively
(usingHX_ = X_H —2X_) the relationHu; = (2q — 2i)u; + vey;. We
now distinguish the cases< s andq = s.

(@) If ¢ < s, thenu,;, liesinV’, since by equivariance we haw@u, ;1) =
X_w, = 0. But nov in V' can satisfy the relatioflv = (2¢ — 2p — 2)v +
Vetpt1 (Write v asXa,v; and apply the diagonal matridf). So this case
cannot occur.

(b) If ¢ = s (i.e.,e = 0), we find Hu, 1 = (—2s — 2)u,41, SINCEV,41 IS
0; this impliesu,..; = 0, since—2s — 2 is not eigenvalue off on V. We
prove now, by induction, the formul®, u; = p;u;—1 +7v;_1 (with p; asin
81.11): FirstX ug = 0. This follows fromH X, ug = Xy Hug + 2X 1 up =
(2s+2) X 1 up (becauseX vy = 0); but2s + 2 is not eigenvalue off . Next,
Xiuy = X1 X ug = X_X,up + Hug = 2sug + vo, etc. (For the factop;
note X, u; = p;u;—1 mod V', by applyingr.) Fori = » + 1 we now get a
contradiction, since,.,; andu,., vanish, but, does not.

Thus H has a second eigenvector to eigenvalyein addition towv,.
In fact there is such a vectou,, that also satisfieX,uq = 0. This is
automatic ifg = s; in the casey < s it follows from Lemma A in 81.11,
since the eigenvalugy + 2 of H has multiplicityl. And now the vector,
generates the complementary subsgacteat we were looking for/

We come now to the general case. l4atact onV, and letV; be an
irreducible invariant subspace (which exists by the minimal dimension
argument); let agaimr be the quotient map of onto W = V/V;. By
induction over the dimension we may assume the actioty @n W com-
pletely reducible, so tha&v’ is direct sum of irreducible invariant subspaces
W, with i = 2,... k. PutW/ = =—1(W,). We have the exact sequences
0 -V, - W/ - W; — 0, with irreducible subspace and quotient. As
proved above, there exists an invariant (and irreducible) complement
to V1 in W/. It is easy to see now thaf is direct sum of the/; with
i=1,...,k; complete reduction is established.

The number of times a giveb, appears in the complete reduction of
a representatiorp is called themultiplicity n, of D, in ¢. One writes
¢ = > _nsD,. (Of course usually one lists only the—finitely many—non-
zeron,’s.) The whole decomposition (i.e., thg's) is determined by the
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eigenvalues off (and their multiplicities). For instance, the for the
largests is equal to the multiplicity of the largest eigenvaluerbf

In particular, it is quite easy to work out the decomposition of the tensor
product of twoD,'s (the definitionH (v®@w) = Hv®@w+v® Hw shows that
the eigenvalues aff are the sums of the eigenvalues for the two factors).
The resultis

D, ® Dy = Ds+t + Ds+t—1 + Ds+t—2 +F D\sfﬂ .

(Verify that the eigenvalues df, including multiplicities, are the same on
the two sides of the formula.)

This relation is known as th€lebsch-Gordan seried plays a role in
quantum theory (angular momentum, spin, ...).

We add two more remarks about the, namely about invariant bilinear
forms and about invariant anti-involutions on their carrier spaces.

As noted earliersl(2,C) is alsosp(1,C) — there is the invariant skew-
symmetric forme,y, — 2291 Or det[XY] onC2. This form induces invariant
bilinear formsg, on the symmetric powers @f, i.e., on the carrier spaces
of the D,. For half-integrals (even dimensior2s + 1) the form turns out
skew-symmetric, and sD; is symplectic (meaning that all the operators
are in the symplectic Lie algebra wr ¢g). For integrals (odd dimension
2s-+1) the form turns out symmetric, and 8 is orthogonal (all operators
are in the orthogonal Lie algebra @f). Explicitly this looks as follows:

For the representation space of we take the physicists’ basis,, }
withm = —s, —s+1,—s+2,...,s—1,s. Theng, is given byg, (v, v_) =
(—1)*=™ and byg,(v;,v;) = 0if i # —j. (This is skew for half-integrad
and symmetric for integral.) Invariance undef is clear, since,,, and
v_, are eigenvectors with eigenvalues and—2m. Invariance undek |
and X _ takes a little more computation.

Now to the second topic: Aanti-involutionon a complex vector space
V is a conjugation (afR— linear operator orV (i.e.,onV%), sayo, with
o(iv) = —io(v)) that satisfies the relationo o = +id.

In the casetid (first kind) the eigenvalues aof are+1. Let V., respV_,
be the+1-, resp—1-, eigenspace of. ThenV_ isi-V, andVk is the direct
sum ofV, andV_.

In the case-id (second kinjlone can maké& into aquaternionicvec-
torspace, by defining multiplying by the quaternion uynés applyings.
(Usually one lets the quaternions actW@rirom the right side.)

On C? there is a familiar anti-involution, of the second kind, say
namely “going to the unitary perpendicular”: In terms of the bdsis}
defined earlier we have(u) = v ando(v) = —u, and generallyr(au +
bv) = —bu + av.
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Next we recall that, as noted at the beginning of this sectiosi{2nC)
we find the real sub Lie algebga(2) . It is geometrically clear, and easily
verified by computation, that commutes with the elements@f(2). Thus
according to what we said above, we can redaids (one-dimensional)
gquaternion space, and the actiorsof2) is quaternion-linear.

This extends in the obvious way to the other. as described earlier,
the carrier spaces are spaces of homogeneous polynomials (of degree
in « andv, and sor induces anti-involutions in them. These are of the first,
resp second, kind whenis integral, resp half-integral. Of coursestill
commutes with the action efi(2) (via D).

Thus for half-integrals we have quaternionic spaces, on whigii2)
acts quaternion-linearly.

For integrals the repD; (restricted tosu(2)) is real in the sense that
the +1-eigenspace of is a real form of the carrier space, invariant under
the operators ofu(2). (Thus in a suitable coordinate system all the repre-
senting matrices will be real.) It also turns out that the fggns positive
definite there. All this becomes clearer if we remember $hét) is iso-
morphic too(3). So we found that th@®, for integrals, as representation
spaces o6(3), are real; but we know that already from our discussion of
the spherical harmonics. In particulBf |o(3) is the representation of3)

“by itself” on R?, with ¢; corresponding ta? + 2 + 22.
We discuss these matters in greater generality in 83.10.
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Structure Theory

In this chapter we develop the structure theory of the general semisim-
ple Lie algebra oveC (the Weyl-Chevalley normal forjrand bring the
completeclassification of semisimple Lie algebréfter W. Killing and

E. Cartan). — Throughouj is a complex Lie algebra, of dimension
semisimple from 82.3 on. The concepts from linear algebra employed are
described briefly in the Appendix.

2.1 Cartan subalgebra

A Cartan sub Lie algebrgcommonly calledCartan subalgebraC'S A in
brief, and usually denoted ks is a nilpotent sub Lie algebra that is equal
to its own normalizer iry. This somewhat opaque definition is the most
efficient one. We will see later that for semisimple Lie algebras it is equiv-
alent toh being maximal Abelian withd H semisimple (diagonizable) for
all # in 5. (Remark, with apologies: the arbitrafyin b that appears here
and will appear frequently from here on has to be distinguished from the
specific elementl of sl(2,C) (see §1.1).) Fogl(n,C) aCSA is the set of
all diagonal matrices—clearly an object of interest.

We write ! for the dimension of); this is called theank of g, and we
shall see later that it does not depend on the choige of

We establish existence and develop the important properties:

Let X be an element of. Thenad X is an operator on the vector space
g, and so there is the primary decompositipa |, g»(X), where\ runs
through the eigenvalues afl X andg, (X) is the nilspace ofd X — \. (We
recall thatg, (X) consists of all elements of g that are nullified by some
power ofad X — \. This makes sense for anybut is different fron0 only
if \is an eigenvalue ofd X.)

The special nature of the operatorsaihg finds its expression in the
relations

(1) [0x(X), 9, (X)] C gagpu(X).

(The right-hand side i8, if A + p is not eigenvalue oid X; i.e., in that
caseg,(X) andg,(X) commute.)
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They follow from the identitylad X — (A + ) - [YZ] = [(ad X — A) -
Y, Z]+[Y, (ad X —p)- Z] (the Jacobi identity) and the expression (fat X —
(A4 )" - [Y Z] that results by iteration. In particulag (X) is a sub Lie
algebra; it containg, by ad X - X = [XX] = 0.

The elementX is regular if the nility of ad X (the algebraic multiplic-
ity of 0 as eigenvalue) is as small as possible (compared with all other
elements ofg); and singular in the contrary case. For any in g, the
coefficients of the characteristic polynomiak(ad X — t) = (=1)"(t" —
D1 (X)t" '+ Dy(X)t"2—...) are polynomial functions o . HereD,,(X ), =
det X, is identically, sincé is eigenvalue oid X, by [ X X] = 0. Let D, (X)
be the last (i.e., largest index) of the not identically zero coefficients. Then
an elemeniX is regular precisely iD,.(X) is not0. The regular elements
form the algebraic set of zeros of.. (E.g., if g is Abelian, all elements
are regular.)

The next proposition shows that CSA's exist and gives a way to construct
them.

PROPOSITIONA. If X is regular, then the sub Lie algebyd X) is
a Cartan subalgebra.

We first show nilpotence:

For anyY in go(X) (in particular forX itself) we haveadY.g)(X) C
gx(X), by formula (1), for any\. For a) # 0 the operatord X, restricted
to gx(X), is non-singular (all eigenvalues of X on g,(X) equal)). By
continuity there is a neighborhoadof X in go(X) such that for any” in
U the restriction ofd Y to g, (X) is also non-singular. It follows that the
restriction ofad Y to go(X) is nilpotent; otherwise the nility ofd Y would
be smaller than that efd X. But thenad Y is nilpotent ong,(X) for all Y
in go(X) by “algebraic continuation™: nilpotence amounts to the vanishing
of certain polynomials (the entries of a certain power of the restriction of
adY to go(X)); and if a polynomial vanishes on an open set, likeit
vanishes identically o, (X). Engel's theorem now shows that( X) is a
nilpotent Lie algebra.

Next we show thag,(X) is its own normalizer iy: ad X is non-singular
on eachg, (X) with X # 0; thus if [XY], = ad X.Y, belongs tagy(X), so
mustY. /

We note: The results of the next two sections will imply thatfemisim-
pleg aCSA can be defined as a sub Lie algebra that is maximal Abelian
and hasid X semisimple (diagonizable) gnfor all its elementsx.
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2.2 Roots

Leth be aCSA. Nilpotence implies thaj is contained iy, (H) (as defined
in 81.1) for any elemen# of . (For anyH’ in h we have(ad H)".H' =
[HH...HH'] = 0 for larger.) Thus, if H and H' are two elements df,
all g, (H) are invariant undexd H’, by formula (1) in 82.1, and it follows
that eachy,(H) is direct sum of its intersections with th (H’). (This
is simply the primary decomposition efl i’ on g, (H).) Furthermore, all
these intersections are invariant undép, again by (1) in 82.1.

Iterating this process with elememt®’, H'”,... of b (we look for ele-
ments, under whose primary decomposition some subspace of the previous
stage decomposes further; for dimension reasons we come to an end after
a finite number of steps) we see thiatan be written as direct sum of sub-
spaces invariant unded h with the property that on each such subspace
each operatosid H, for any H in § , has only one eigenvalue. It follows
from Lie’'s Theorem (81.8) that for each of these subspaces the (unique)
eigenvalue okd H, as function ofH, is a linear function ory . (This is
clear in the triangularized form of the action.)

As an example: The subspaggecorresponding to the linear function
i.e., the intersection of the nilspaces @of all ad H with H in § (which
containgh) is j itself: Apply Lie's Theorem to the action @f on the quo-
tientgy/h; all eigenvalues (= diagonal elements) aré g, were different
from p, one could then find a vectaf, not inf, with [HY] in § for all H
in b; buth is its own normalizer iry.

We restate all this as follows: For each linear functiaon § (= element
of the dual spacg’) denote byg, the intersection of the nilspaces of all
the operatorsd H — A\(H) ong, with H running ovety. Those)\, different
from 0, for whichg, is not 0, are called theoots of g wr to b; there are
only finitely many such, of course; they are usually denoted, sy, . ...
The subset of " formed by them is denoted hy. To eachw in A there is
a subspace,, of g, invariant undend b , called theroot spaceto «, such
that

(a) g is direct sum ofy and theg,,, for a in A,

(b) for eacha in A and eachH in h the operatornd H has only one
eigenvalue on,, namelya(H), the value of the linear functiomon H.

(As a matter of fact, for each all thead H on g, have a simultaneous
triangularization, witho(H) on the diagonal, by Lie’s Theorem.) Occa-
sionally we writeA, for A U 0. We note thatA is not a subgroup of ":
it is after all a finite subset; in generak‘andg in A” neither implies nor
excludes & + 3 in A”. Clearly (1) of 81.1 implies

(2)  [gx 8u) C Oatu (=0, if \+pisnotinAg) forall A\, uinp’.



36 2 STRUCTURETHEORY

We recall the Killing formx or (,) (see §1.5). We call two elements
Y of g orthogonalto each other, in symbols L Y, if (X,Y) is 0. We have

(3) gx Lg,, unless\ +p =0, forall A\, uinp’.

Proof: By (2) we havega[g,.9.]] C gruro forallvin Aji.e., for X in g,
andY in g, the operatoad X -ad Y sendsy, into gy ,.. Sinceg is direct
sum of theg, with v in A, we see by iteration thatl X -ad Y is nilpotent,
if A4+ pisnot0; and so(X,Y) =tr(ad X -adY) =0. /

In particulary is orthogonal to all the rootspacgsfor a in A, andx is
identically0 on eachy,, .

Finally, since all thead X on eachg, can be taken triangular, we have
the explicit formula

(4) k(H,H') = no-a(H) afH'), for H H inh, with n = dim g,.

(For nilpotentg we haveh) = g. Foraff(1) (see 81.1) we can takeX,
asCSA)

2.3 Roots for semisimplegy

From here for the rest of the chapter we tgkeemisimple, so that the
Killing form is non-degenerate. This has many consequences:

(a) If all roots vanish on an elemeftof i , thenH is 0.
Proof: H is orthogonal to alt” in b , by (4) of 82.2. As noted after (3) in

§2.2,H is orthogonal to all,, for «in A. Thus(H,Y) = 0 for all Y in g.
Non-degeneracy now impligg = 0.

(b) ((A)) = . Le., the roots span’; there ard linearly independent
roots.

This follows by vector space duality from (a).
(c) b is Abelian.

Proof: ad Y on anyg,, is (or can be taken) triangular for &flin b . Then for
H in [ph] the eigenvalue op,, i.e., the valuex(H), is 0. Now (a) applies.

(d) The Killing form is non-degenerate ¢n

This follows from the non-degeneracy giiogether with the fact that
is orthogonal to alp,, for o in A (see (3) in §2.2).
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(e) For everyH in b the operatond H ong is semisimple. Equivalently:
For each rootv we havead H. X = a(H) - X for H in h andX in g,.

(Put differently:ad H reduces on,, to the scalar operataer(H).)

Proof: Letad H = S + N be the Jordan decomposition. One shows first
that S is a derivation ofg: Namely S on g, is multiplication bya(H).
For X in g, andY in gg, with «, 8 in Ay, we have[SX,Y] + [X,SY] =
[a(H)X,Y]+[X,8(H)Y] = (a+3)(H)[XY]; and the latter i$[XY] by (2)
of 82.2. By 81.10 there isH in gwith S =adY. SinceS-Z =0 for all Z
in b, Y isin the centralizer of and so actually ify. Alsoad(H -Y),= N,
has only0 as eigenvalue op ; i.e., all roots vanish o/ — Y. By (a) we
haveH — Y = 0, and then als&v = 0. /

HA=-A.le.,ifaisinA, sois—a.

Proof: By (3) of §2.2 allgs , except possibly_,, and alsd) are orthog-
onal tog,,. By non-degeneracy afthe spacg_, cannot be. /

2.4 Strings

PROPOSITIONA. For eacha in A the subspac@.,g_.] of b has
dimension 1, and the restriction a@fto it is not identically O.

Proof: For any X in g, the operatond X is nilpotent ong , since by
(2) of 82.2 it mapgys to gs+. (here, as ofterg, means ); iterating one
eventually gets t@. If Y is in g_, and [XY] is 0, thenad X - adY is
nilpotent (since thead X andad Y commute), and s@X, Y') vanishes. By
(3) of 82.2 and non-degeneracy:othere existX; in g, andYj in g, with
(Xo,Yy) # 0, and thus also withX,Yy] # 0. Sodim[g,, g—a] > 0.

For the remainder of the proof we need an important definition:aFor
andgin A thea —string ofg is (ambiguously) either the set of those forms
B+ ta with integralt that are roots o0, or the direct sum, over all integral
t, of the spaceg, 5. We denote the string hyf; of course only theg +ta
that are roots or 0 actually appear). (Actuallgccurs only if3 equals—a
(see 82.5); and in that case we modify the definition of string slightly at
the end of this section.)

By (2) of 82.2 clearlyy§ is invariant undend X, respad Y for X in g,,
respY in g,. It follows that for suchX andY the trace ohd[XY] (i.e., of
ad X -adY —adY -ad X) ongg is 0. Now for Z in h the trace ohd Z on
g, isn,-y(Z) (see (4) in 82.2 for, ), and so the trace qgf; is of the form
pB(Z) + qa(Z) with p = dim g§ andgq integral. Taking XY] (which is inf
by (2) of §2.2) aszZ, we see: ilv([XY]) is0, soisp([XY]) for all 5in A; but
then[XY] is 0 by (a) in 82.3. In other words, the intersection[gf, g_.]
and of the nullspace af is 0. Clearly this establishes the propositign.
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Sincex is non-degenerate oy we have the usual isomorphism Ipf
with its dual; i.e., to each in hT (in particular to each root) there is a
unique element,, in h with (hy, Z) = A\(Z) for all Z in h. Theh,, for o in
A (calledroot vectors) spang, by (b) of 82.3. We claimi,, is an element
of [gaa g—a]-

PROPOSITIONB. ForX in g, andY ing_, with (X,Y) = 1 the
elementXxy| equalsh,,.

Proof: ((XY],Z) = —(Y,[XZ]) = (Y, [ZX]) = (Y,a(Z2)X) = a(Z). Here
the first = comes from invariance of the Killing form, and the third from
(e)in 82.3.

By Prop. A we haveh,, h,) = a(hy) # 0 (sinceh,, is of course not
0). We introduce the important elemeris, = (2/(ha, ha)) - ha, fOr ain
A; they are thecoroots(of g wr to h) and will play a considerable role.
They spany (just like theh,) and satisfy the relations(H,) = 2 and
[0a, 9—a] = Cha(= Ch_,). More is true about thg,,.

PROPOSITIONC. For eachy in A the dimension of,, is1, andg;.,
isofort=2,3,... (i.e., the multiplegc, 3a, ... are not roots ).

Proof: By Prop. B there exist root elements, in g, andX_, ing_, so
that[X,X_,] = H,. Using (e) of 82.3 and(H,,) = 2, we sedH,X,| =
2X,and[H,X_,]=-2X_,. Letq, be the subspace gispanned by _,,,
H,, and all theg,, fort =1,2,3....

Proposition A of 82.4, (e) of §2.3 and (2) of §2.2 imply thatis invari-
ant under the three operataks,, X_, and H,,. It follows from ad H, =
ad[X,, X_,] = [ad X,,ad X_,] that the trace of{, on g, is 0. From the
scalar nature o/, on g, we see that this trace §—1 + n, + 2n2, +
3nsq + ... ) (recallng = dim gg). Therefore we must have, = 1 (and so
Ja = CX, ) andnm =Nge = - = 0.

We modify the definition of the:-string of 3 for the case3 = —a by
putting g = ((Xa, Ha, X-a)).

Note that (4) of 82.2 now becomes

(4') (X,Y) =) a(X)-o(Y)forall X,Yinp

2.5 Cartan integers

The bracket relations between tlig,, X, X_,, introduced above show
that these three elements form a sub Lie algebggawk shall denote it by
g, (NoteH_,, = —H, andg(—® = g(®)). Quite clearlyy® is isomorphic
to the Lie algebrad; that we studied in the last chapter, with,, X,,
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and X_, corresponding, in turn, té/, X, and X_. This has important
consequences. Namely from the representation theory; ¢81.11) we
know that in any representation the eigenvaluedioére integers, and
are made up of sequences that go in steps fobm a maximum+r to

a minimum-—r, one such sequence for each irreducible constituent. Now
in the proof for Proposition A of §2.4 we saw in effect that the stiifig

is g(*)-stable (even for the modified definition in case= —a); thus we
have a representation there. The eigenvaluesl &f, on gj are precisely
the values3(H, ) + 2t, for those integers for which 3 + ta is a root or

0 (recalla(H,) = 2), and the multiplicities aré ( we havedim gg; o =

1 by Prop.B, §2.4). It is clear then that is irreducible undeg(® and
the representation is one of tlig’s; in particular, these-values occupy
exactly some interval itZ (one describes this by saying that strings are
unbroken). We have:

PROPOSITIONA. The valuesi(H,), for « andg in A, are integers
(they are denoted by;, and called the&artan integersof g). For anya
andg there are two non-negative integers= p(«a, 3)) andq (= q(«, ),
such that the.... that occur ingj (i.e., that are not 0) are exactly those
with —qg <t < p.

There is the relation

(5) aga =q — P

(For 3 = —a the string consists of ., ((H,)), andg,, and one has

Qoo = —Qq,—a = 2.)

(In the literature one also finds the notatiexy for the valueg(H,),
instead ofug,.)

Relation (5) follows from the fact that the smallest eigenvall{&,,) —
2¢q, must be the negative of the largest ofi@,) + 2p. (And the represen-
tation ong is the D, with 2s = p + q.) — We note that from the definition
we haveug, = B(Hy) = 2(hg, ha)/{ha, ha) @NAage = 2.

ag can be different froma,z. We shall see soon that only the numbers
0,£1,£2,£3 can occur agg,. We develop some more properties.

PROPOSITIONB. For any two roots., 3 the combinatio—ag,-« IS
aroot. In fact, withe = sign ag, allthe termss, f—ca, —2¢cq, ..., B—aga
are roots again (ar).

This follows from the fact thatg, lies in the interval—p, ¢], by (5).
(Here0 can occur in the sequence onlysit= —«, by Prop.C. ) We note a
slightly different, very useful version.
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PROPOSITIONB'. For two rootsx andg with o # 33, if 3 — « is not
aroot (3 is “a-minimal"), then one hasg,, < 0.

Proof: ¢ in (5) is nowo.

There is an important strengthening of Proposition B of §2.4.

PROPOSITIONC. A multiple c - o of a roota with c in C is again a
root iff c = &1.

Proof: The if-part is (f) in 82.3. For the only if, suppoge= ca is also
a root. Evaluating o, and onHg we getag, = 2c and2 = ¢ - a,g.Thus
by Prop. A both2c and2/c are integers. It follows that must be one of
+1,+2,+1/2. Prop. C of 82.4 forbids-2 and then als&-1/2. /

GeneratorsX,, of g,, always subject toX,X_,] = H,, will be called
root elementgto be distinguished from the root vectadrs of §2.4). One
might say thag is constructed by putting together a number of copies of
A; (namely theg(®)), in such a way that th&,’s and X_’s are indepen-
dent, but with relations between tli€s [they all lie in b, and there are
usually more that (= dim h) roots].

Integrality of theag, and formula (4 of §2.4 imply that all inner prod-
ucts(H,, Hg) are integers.

2.6 Root systems, Weyl group

Let ho be the real subspace pformed by the real linear combinations of
the H,, for o in A; we refer toh, as thenormal real formof f. The values
of the 3(H,) being integral, the roots af are (or better : restrict to) real
linear functions o .

PROPOSITIONA. The Killing form «, restricted tah,, is a (real)
positive definite bilinear form .

Proof: The Killing form is non-negative by (#of 82.4, and an equation
(X, X) = 0 implies that allo(X) vanish: this in turn impliest = 0, by (a)
of §2.3. In the usual way, this defines the ndai = (X, X)'/2 onhy.

The formula(H,, H,) = 4/{ha, ha), €asily established, shows that the
(has he) , and then also allh,,, hg) are rational numbers, so that theare
rational multiples of thed,,, and theh,, also spar,. Furthermore:

PROPOSITIONB. ho Is a real form o#.
This means that an¥ in h is uniquely of the formX’ + i X" with X’

and X" in b, or thathg (i.e., h with scalars restricted t&) is the direct
sum ofhg andihg, or that any basis df, overR is a basis of) overC.
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Proof: We haveCh, = § (since theH,, spanh), and so) is at any rate
spanned by, andiby (over R). For any X in the intersectiorh, N iho
we haveX = iY with X andY in bho; therefored < (X, X) (by positive
definiteness)y —(Y,Y) (by C-linearity of k) < 0 (positive definiteness
again). So X, X) = 0 and then als& = 0. /

We consider the isomorphism gfwith its dual space ", defined by
the Killing form (A < hy, as in 82.4). Clearly the real subspdgegoes
over into ((A))r, the R-span ofA, which we denote by ; and clearly
this is a real form of)". We transfer the Killing form tg" (and toh])
in the standard way, by puttin@\, x) = (hy, h,); the isomorphism (of
h with b7 and of b, with b]) is then an isometry. (E.g., the definition
age = B(H,) of the Cartan integers translates intg, = 2(3, «)/(«, a).)

It is fairly customary to identifyh andh’ under this map; however we
prefer to keep space and dual space separate.

We collect some properties df into an important definition. Let” be
a Euclidean space, i.e., a vector space &veith a positive-definite inner
product(, ).

DEFINITION C. An (abstract) root system (i, wr to (,) ) is a
finite non-empty subset, sdy, of V, not containing, and satisfying

(i) Fora, 3 in R, 2(8,a)/{ca, «) IS @n integer (denoted hys,,)
(i) For o, 3 in R, the vector — aga,, - « iS also inR,
(i) If o and a multiple- - « are both inRr, thenr = +1.

(Strictly speaking this is aeducedroot system; one gets the slightly
more general notion afnreducedoot system by dropping condition (iii).
The argument for Proposition C in §2.5 shows that the additienadlues
allowed then are-2 and+1/2.)

Clearly the properties of the satof roots ofg wr to ), developed above,
show that it is a root system iy .

Note thata,. equals2, and that (i) and (ii) imply that-« belongs taRr
if « does. Thaank of a root systenR is the dimension of the subspace
of V spanned byR. (Thus the rank ofA equals the rank of as defined in
§2.1.) We shall usually assume thaspans/.

Condition (ii) has a geometrical meaning: For ann V', # 0, let S, be
the reflection of” wr to the hyperplane orthogonal gqthis is an isometry
of V with itself; it is the identity map on that hyperplane and semdsto
—u). Itis a simple exercise to derive the formula

(7) Sp(N) =X =2(\, 1)/, 1) -, forall Xin V.

We see that condition (ii) can be restated as
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(i)’ If « andp are inR, so isS,(3). Equivalently, the seR is
invariant under alb.,.

Similarly, (i) can be restated as
@)’ The differences,,(3) — 3 is an integral multiple o&.

The S,, for a in R, generate a group of isometriesiof called theweyl
groupW of R (or of g, wr to b, if R is the setA of roots ofg wr to b ).
The S, are theWeyl reflections

Clearly anyS in W leavesR invariant. It is also clear that each sugh
is completely determined by the permutation of the elemeni? déter-
mined by it (and thaft is the identity on the orthogonal complement of
((R)) in V). This implies thadV is a finite group.

Two root systems?; and R, areequivaleni if there exists aimilarity
( = isometry up to a constant factor) (fR,)) onto ((R:)) that sends the
setR; onto the setR,. A root system issimple if it is not union of two
non-empty subsets that are orthogonal to each othedermmposabli
the opposite case. Obviously any root system is union of simple ones that
are pairwise orthogonal, and the splitting is unique.

Conversely, given two root systenis and @, there is a well-defined
direct sumP ¢ @, namely the union of and@ in the direct sum of the
associated vector spaces, with the usual inner product. We note that the set
{h} of root vectors ofy wr to j is a root system iy, equivalent and even
isometric to the root system of roots ofgwrtoh,inh'.

We interpolate a simple geometric observation.

PROPOSITIOND. The Weyl group of a simple root systemacts
irreducibly on the vector spadé of R.

In particular, the/-orbit of any non-zero vector spakis

Proof: A subspacéV of V is stable under a reflectidf),, for some\ in
V, iff it is either orthogonal to\ or contains\. Thus, ifW is stable under
the Weyl group, in particular under all th#g, for the« in R, it divides R
into two sets: thex orthogonal tolW and thea in W. By simplicity of R
one of these two sets is empty, which implies thats either0 or V. /

With every root systenk = {«} there is associateddual or reciprocal
root systemR’ = {«’} in the same vector space, definedddy= 2/{«, «) -
a. (Except for the facto? this comes from the “transformation by recipro-
cal radii": we havea/| = 2 - |a|~!.) One computeé/, /) = 4/{a, a); and
the Cartan integers at’ are related to those at by ag v = ans. Thus
condition (i) holds. Condition (ii), in the form (i) invariance ofR un-
der the Weyl reflections,,, is also clear, once one notics = S, (i.e.,
W = W’). Condition (iii) is obvious. Thug’ is a root system. Clearly we
haveR” = R.
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The importance of the process of assighing to each semisimple Lie al-
gebrag the root system\ of its roots wr to a Cartan sub Lie algebra lies
in the following three facts (to be established in the rest of the chapter):

A. The whole Lie algebra (in particular the bracket operation) can be
reconstructed from the root systein(Weyl-Chevalley normal form).

B. To each (abstract) root system there corresponds a semisimple Lie
algebra.

C. The root systems are easily classified.

In other words: there is a bijection between the set of (isomorphism
classes of) semisimple Lie algebras and the set of (equivalence classes of)
root systems, and the latter set is easily described. That giveZattten-

Killing classificationof semisimple Lie algebras.

We begin with A.

2.7 Root systems of rank two

We determine all root systems of rank two (and also those of rank one),
as examples, but mainly because they are needed for later constructions.
Clearly there is only one root system of rank one; it consists of two non-
zero vectorsy and—a; the Cartan integers arg, = a_q,—a = —Ga,—q =
—a_q, = 2. We denote this system by;. It is indeed the root system

of the Lie algebrad; (= sl(2,C)). Here((H)) is aCSA4; the rank isl; the
equationdH, X1| = +2X, mean that there is a pair of roats—a with
ta(cH) = +2¢; in particular,+a(H) = +2, so that+H is the coroot to

+a, and the real formy, of theCSA isRH.

Let now R be any root system, and consider two of its elemengsdg.
From the definition we hawe, 5-ag, = 4(, 8)?/|a|?|3|* = 4cos*6, whered
means the angle betwearandg in the usual sens@® < 6 < 7). Thea,s's
being integers, the possible valuesugf - ag, are thern, 1,2, 3,4 (this is
a crucial point for the whole theory!). The valdaneans dependence of
the two vectorsdps = +1), and soa = 443, by condition (iii) for root
systems. For the discussion of the other cases we assyme 0 (i.e.,

6 > m/2); for this we may have to replageby S, (3); it is easily seen that
this just changes the signs®fs andags,. The valug corresponds ta and

(3 being orthogonal to each other ( 3,0 = «/2); or, equivalentlya,s =

age = 0. For the remaining three cases integrality of &reeimplies that
one of the two is-1, and the other is-1 or —2 or —3; the corresponding
anglesd are2r/3,3r /4,57 /6. In these three cases we also git/|a|?> =
aga/aas =1 0r2 or 3 or their reciprocals (whereas in the case of 0 we get
no restriction on the ratio gk and|3|). We see that there are very few
possibilities for the “shape" of the pait 3. We arrange the facts in a table
and a figure, taking to be the shorter of the two vectors:
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Case aqa3 Ggq 0 18|/
(i) 0 0 w/2 7
() -1 -1 27/3
(i) -1 -2 37/4
(iv) -1 -3 b57/6

v

S

P P N N

0] (ii) (iii) (v)

Figure 1

The change needed for the casg > 0 is the removal of all minus-
signs and the replacementdlby = — 6 ; the only acute angles possible are
/6, 7/4,7/3 (andx/2).

We come now to the root systems of rank 2.

PROPOSITIONA. Any root system of rank two is equivalent to one
of the four shown in Figure 2 below:

’ﬁ alp
() A1 @ Ay - any ratiolal : ||
l permissible

all vectors of the same

\/ S norm; angle between ad-
/\ jacent vectors= /3

(i) Az
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B
\ Ratio|d| : |a| =
(i) B, o) V/2; angle between
adjacent vectors
\ =x/4

Ratio|3| : |a| = V/3;
angle between adjacent
vectors= /6

(iv) G»

Figure 2

(The usual metric in the plane is intended.)

Comment: The names for these figures are chosen, because these are
the root systems of the corresponding Lie algebras in the Cartan-Killing
classification @G, refers to an “exceptional” Lie algebra, see §2.14.)

Proof: Type A; & A, clearly corresponds to the case of a decomposable
(not simple) root system of rank 2. We turn to the simple case. One verifies
easily that figures (ii), (iii), (iv) above are root systems, i.e., that conditions
(i), (i), (i) of 82.6 are satisfied. The Weyl groups are the dihedral groups
D3, D4, Dg. In each case the reflectiofs and Sg, for the givena andg,
generate the Weyl group; also, the whole system is generated by applying
the Weyl group to the two vectorsand3. — We must show that there are
no other systems:

Let a simple root system of rank two be given. Choose a shortest vec-
tor «, and let3 be another vector, independent of, but not orthogonal to
a (this must exist). Applyings,,, if necessary, we may assume §) <
0,i.e.,ago < 0. We then have the possibilities in Fig.1 for the pails.

In cases (iii) and (iv) we know already that the reflections S w« #nd
3 will generate the systemB, andG,; and it is clear that there can’t be
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any other vectors in the system because of the restrictions on angles and
norms from the table above. In case {iandg generated,; and the only

way to have more vectors in the system is to g@-t@ again because of

the restrictions on angles and norms.

The importance of the rarikcase stems from the following simple ob-
servation: IfR is a root system in the spa&e andW is a subspace df,
thenR N W, if not empty, is a root system iW. Thus, ifo andg are any
two independent vectors iR, the intersection of the plar(éx, 5)) with R
is one of our four types. (In casty @ A1, i.e.,a orthogonal tg3 anda + 3
not in R, one callsr andg3 strongly orthogona)

A glance at figures (i) - (iv) shows

PROPOSITIONB. Let o andp be two elements of a root system
(with 5 # 1«), and put = signag,. Then all the elements, 3 — ca, 3 —
2eq, ..., — ago - o belong toR; in particular, if(a, 3) > 0, theng — «
belongs taR.

Note: Thesey, 3 don’t have to correspond to theandg in the figures,
but can be any two (independent) vectors. For the roots of a Lie algebra we
met this in Prop. B and Bof §2.5. Note that the axioms for root systems
require only that the ends of the chain in Prop. B belong.tdhe dots ..
in the chain are of course slightly misleading; it is clear from the figures
that there are at most four terms in any chain. In fact, one reads off: The
a-string of 5 (defined as in §2.4 as the set of elementfadf the form
B+ta with integralt) is unbroken, i.e 4 runs exactly through some interval
—q < t < p with p, ¢ non-negative integers; and it contains at most four
vectors.

2.8 Weyl-Chevalley normal form, first stage

We continue with a semisimple Lie algebgawith C'SAbh, root system

A, etc., as described in the preceding sections. Our aim is to shov that
determineg. Roughly speaking this amounts to showing the existence of
a basis forg, such that the corresponding structure constants can be read
off from A; this is theWeyl-Chevalley normal forrfiTheorem A, §2.9).

The present section brings a preliminary step.

For each rootx choose a root elemeii, in g, subject to the condition
[XoX_o] = H, (see 82.5); these vectors, suitably normalized, will be part
of the Weyl-Chevalley basis. For any twos in A with 5 # +a we have
[XoX35] = NuopXatp, With some coefficientV,s in C, by g, = ((X4))
(Prop. A of 82.4) and (2) of §2.2. We also p¥ij, = 0, if A is an element
of 7 notin A; and we putV,, = 0 for A andy in h" and at least one of
A, b, A+ not a root. Our aim is to get fairly explicit values for thig s by
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suitable choice of th&l,,. The freedom we have is to change eachby

a factore,, (as long as we have , = 1/c,, to preserveX,X_,| = H,).
Let o, 8 be two roots, withs £ +a. Let thea-string of 3 go from g — g

to 5 + pa (see 82.4). The main observation is the following proposition,

which ties down theV,; considerably.

PROPOSITIONA. Nag-N_a,—p=—(q+1)? ifa+ g isaroot.

For the proof we first develop two formulae.
(1) Nog = —Ng, for any two rootsy, 3.
This is immediate from skew symmetry [of.

(2) Nag/(7v,7) = Nay/{a,a) = N,o/(B, 3) for any three pairwise inde-
pendent roots, 3,y with a + 3 +~v = 0.

Proof of (2): From the Jacobi identityX,[XzX,]] + --- = 0 we get
Ng Hy + NyoHp + NogH, = 0 (note[X3X.,] = Ng, X_, and[X, X _,] =
H, etc.). On the other hand, the relatior- 3 + v = 0 implies the relation
ho+hg+h, =0, and this in turn becomes, o) H,+ (3, B)Hz+ (v, v)Hy =
0. The coefficients of the two relations between #iie must be propor-
tional, because of the pairwise independence ofilse

We now prove Proposition A. Consider the representatibof g(») =
((Ha, Xo, X—o)) On the stringg3. As noted after Prop. A in 82.5, this is
equivalent to the representatidn of A; with 2s = p + ¢. One verifies
that X3 corresponds to the vectoy in the notation of 81.11. Recalling the
formulaeX  v; = pv;—1, With u; = i(2s +1 —4), andX_v;_; = v;, we get
ad X_,o0ad X (Xp) = pupXs = p(g+1)Xg. The left-hand side of this equa-
tion transforms (with the help of (1) and (2) above) iNQz[X_, Xo+ 5] =
NapNa,a+5Xs = —NapgNa+p,—aXp =
—NogN_qa,—5 - (8, 8)/{a+ B,a+ ) Xs.

Thus we have

NaﬂN*a’*ﬁ = _p(q + 1)<O¢ + 67(1 + ﬁ)/(ﬁaﬁ>

To get the value in Prop.A, we have to sheye + 3,a + 3) = (¢ +
1)(s, 8). As noted beforg,(«, 5))NA is a rank two root system, necessarily
simple in our case since + 3 belongs to it. Thus we only have to go
through the three root systems, B,, G5 and to take forr and3 any two
vectors whose sum is also in the figure and check the result. We can of
course work modulo the symmetry given by the Weyl group. We shall not
go into the details. As an example take Q3 the vectors so named &
in Prop.A of §2.7. We seg = 0,p = 3, and(3, ) = 3(a + 3, + 3) (see
the table in 82.7 for the last equation).

We note an important consequence.

COROLLARY B. If a + 3 is a root, therN, 5 is noto.
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2.9 Weyl-Chevalley normal form

The result we are getting to is a choice of tkig for which theN,; take

quite explicit values. Historically this came about in steps, with Weyl [25,
26] and others proving first existence of réals;’s and eventually narrow-

ing this down to values in an extension of the rationals by square roots
of rationals, and with Chevalley [6] taking the last big step, which made
them explicit and showed them to be integers. We state the result as the
Weyl-Chevalley normal form

THEOREM A. Let g be a complex semisimple Lie algebra, with
CSAWY, root system\ in ], etc., as in the preceding sections.

(i) There exist root elements,, (generators of the,,), for all o in A,
satisfying(X., X_.] = H,, such thatX,Xs] = + (¢ + 1) Xa+5-

(i) The +-signs in (i) are well-determined, up to multiplication by fac-
tors
uauguat g, Where theu, are+l, arbitrary except foti_,, = u.

(iii) The X, are determined up to factors, arbitrary except for the
conditionsc,, - c_o, =1 andc, - cg = *ca1 5.

Property (i), in detail, says that we haes = +(¢ + 1) for any two
roots o, 3 with o + 3 also a root, withg the largest integet such that
B — tais a root.

COROLLARY B. There exists a basis fg such that all structure
constants are integersg has az.-form).

COROLLARY C (THE ISOMORPHISMTHEOREM). Letg, andg, be
two semisimple Lie algebras ovér; with root systemsg\, andA,. If A,
and A, are weakly equivalent, in the sense that there exists a bijection
v : A1 — A, that preserves the additive relations (i) = —¢(a),
and wheneveti, 3, anda + 3 belong toA,, thenp(a + ) = ¢(a) + ¢(8),
and similarly forp=1), theng, andg, are isomorphic.

We shall comment on the corollaries after the proof of the main result.
We begin by noting that by Prop.A in §2.8 for any pai in A with o+
also a root the relatioiV, s = £(¢ + 1) is equivalent to the relation

(*) Naog = —N_q,—p.

For the proof of Theorem A we shall show that one can adjust the origi-
nal X, so that(x) holds for alla andg. This will be done inductively wr to
a (weak)orderin b4, defined as follows: Choose an eleméfgtin b, with
a(Hp) # 0 for all rootsa (this clearly exists) and for any, 2 in b define
A > p to mean\(Hy) > u(Hp), and also\ > p to mean\(Hy) > u(Hy).
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Clearly the relation> is transitive (and irreflexive); but note that> .
and )\ < pu together do not imply = p. We use obvious properties such
as: IfA > 0, thenA+ > . We describe\ > 0 as “) is positive”, etc. (One
can and often does refine this weak order to a total ordey,pdefined
by lexicographical order of the components wr to some basis.) We write
AT for the set of positive roots, i.e.those roots that:are in this order;
similarly A~ is the set of negative roots. Cleady is simply —A*, and
A is the disjoint union oA+ andA~.

We first reduce the problem to the positive roots.

LEMMA D. (i) If relation (x) holds wheneves: andj3 are positive,
then it holds for albe and;

(i) Let )\, iny", be positive. If(x) holds for all positiven andj with
a+ (8 < A, then it also holds for all negativeands with o+ 8 > —\ and
for all o« andp with0 < o < X and0 > 3 > —\.

We prove (ii); the proof for (i) results by omitting all referencesito
The case whera andg are both negative follows trivially. Let themand
(3 be given as in the second part of (ii), and put —a— 3. Sayy < 0; then
we haved > v+ 5 = —a > —\. From the hypothesis and §2.8, (1) and (2),
we find Naﬁ/<7”7> = Nﬁ’y/<a’ Oé> = _N—B7—’Y/<a’ Oé) = N_»Y,_ﬁ/<()é, Oé) =
N_g _o/{7,7) = —N_a,—5/{7,7), .., (x) holds fore andg.

Note that(«) holds trivially for N, with A or . or A + x not a root.

The induction step for the proof of (*) is contained in the next compu-
tation.

LEMMA E. Letn be a positive root, and suppose thatholds for
all pairs of positive roots with sum n. Let~, §, ¢, (, be four positive roots
with v + 6 = € + ¢ = n. Then the relation

Ny /N—vy,~5 = Ne¢/N—c,—¢

holds.
For the proof we may assume> ¢ > ¢ > 6. We write out the Ja-
cobi identity for X, X5, X_.: 0 = [X,[XsX_c]] + ... = (Ns—cN,cs) +

Nfs,'yNé,Cfﬁ + Nfs,eJrCN'yﬁ)Xn-
Using 82.8, (1) and (2), we get the relation

() Ns,—eNyc—y + NocyNsc—5 = NysNc—¢ - ((, Q) /{n,m) -

This relation also holds, of course, with all roots replaced by their neg-
atives. Now under our induction hypothesis this replacement does not
change the left-hand side 0fx). Namely, first we haveV; _. = —N_;.
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andN_. ., = —N. _, by Lemma D (ii); secondly, it — v is a root at all,
then it is clearly< 0 and Lemma D (ii) applies again; similarlys ._; =
—N_;s—¢. Therefore the right-hand side Gf«) is also invariant under the
change of sign of all the roots involved, and Lemma E follows.

Given rootsy, v, § with n = v + ¢ as in Lemma E (i.e., witlix) holding
“below n"), we can multiplyX,, by a suitable factoe, (andX_,, by 1/¢,)
so that(x) holds with~,§ for «, 5 (so thatN,s = +(¢ + 1); we can even
prescribe the sign). It follows from Lemma E that thehholds automati-
cally for all pairse, ¢ with € + ¢ = . This is the induction step. (We induct
over the finite setv(Hy), o in A™, whereH,, in b, defines the order ify.
The induction begins with the lowest positive roots; they are not sums of
two positive roots.) This establishes part (i) of Theorem A.

Regarding the ambiguity of signs for thé,; we note the following:
suppose we choose for each positive ipaspecific paifty, 6 with y+6 = 5
(if such pairs exist) and we choose a signfag arbitrarily; then the signs
of the otherV,., for ¢, ¢ with e+-( = ), are determined bix«) (inductively;
note that the “mixedN’s, with one root positive and the other negative, in
(xx) are already determined, as in the proof of Lemma D, by (2) in §2.8).
We refer to such a choice (of thed and the signs) asr@ormalization

As for part (i) of Theorem A, the statement about tkig should be
clear: since thev,; are determined (up to sign), the freedom in the choice
of the X, amounts to factors, as indicated. For the signs of th&; it is
clear that multiplyingX,, by u, results in multiplyingN, s by uaugtass.
In the other direction, le{X’,, N’',3} be another set of quantities as in
Theorem A. Using a normalization, with the givafis, and arguing as in
Lemmas D and E, one constructs the factorsnductively. At the “bot-
tom" one can take them as 1; afek) implies that adjustingV’,; for
the chosen paiy, 6 automatically yields agreement for the otlhef with

e+(=7+0./

We come to Corollary B. We choose as basisxheof the normal form,
together with any independent ones of th&,. We then havéHd , Hs] = 0,
[HoXp] = agaXp, [XaXp] = NapXais. v/

Next the important Corollary C. Note that the mapthe weak equiv-
alence ofA; andA., is not assumed to be a linear map, but only a map
between the finite sets; andA,, preserving the relations of the two types
a+ 3 = 0andy = a + 8. Now the Cartan integers are determined by
these relations, through the notion of strings and formula (5) of 82.5; thus
we havea,; = a? s for all rootsa and 3. The Cartan integers in
turn determine the inner produdtf,,, Hs), by a.s = a(Hg) and formula
(2.4) of 82.4 for(.,-); these in turn determine the;, 8) (= (ha, hg)) by
(Ho, Ho) = 4/(ha,ha) andage, = 2(hg, ha)/(ha, ha). Thus the mapy
from A; to A, is an isometry. It therefore extends to a (linear) isometry of
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hag to by, (the linear map that sends som@dependent ones of thés
to theirp-images is an isometry, and thus sends eweryy(«)). This map
extends to &-linear map off, to b, whose transpose in turn is an iso-
morphism, again denoted by of h; andhs,; it clearly preserves the Killing
form and sends the corooi$ , to the coroots7, ). We now takeg,
andg, in Weyl-Chevalley normal form. Then Theorem A implies that the
N1 .o €qual theN; ) (3), Provided one is careful about the signs. That
this is correct up to sign follows from the fact that th®alues entering
into theN’s are determined by the additive relations between the roots, and
these are preserved kpy To get the signs to agree, we choose the weak
order and normalization fdy, as thep-images of those fa;. Finally we
define a linear mag from g, to g> by ®|h; = ¢, and® (X, o) = X5 ,(a)-
Itis clear that this is a Lie algebra isomorphism, since it preserves,the
and theN, s (see the formulae in Corollary B)/

To put the whole matter briefly: The normal form descripa® explic-
itly in terms of the set of roota (up to some ambiguity in the signs) that a
weak equivalence af; and A, induces (although not quite uniquely) an
isomorphism ofy; andg..

Examples for the isomorphism theorem, with= g, = g:

(a) The map — —a is clearly a weak equivalence afwith itself; “the"
corresponding automorphism gfs —id onh and send«(, to - X_,. One
can work this out from the general theory, or, simpler, verify directly that
this map is an automorphism. Note that it is an involution, i.e., its square is
the identity map. It is related to the “normal real form"gafsee §2.10. We
call it the (abstractrontragredienceor duality and denote it by?'V; it is
also called the&Chevalley involutionFor 4,, = sl(n + 1, C), with a suitable
b, it is the usual contragredienéé — X = —X .

(b) Takeg in A, and letSs; be the corresponding Weyl reflection in
W. SinceSy is linear, it defines a weak equivalence/dfwith itself. The
corresponding automorphisdy will send X, to +X,/, with o/ = Ss(«).
There are likely to be some minus signs, sisgewill not preserve the
weak order.

2.10 Compact form

A real Lie algebra is calledompactif its Killing form is definite (auto-
matically negative definite: invariance efmplies that thexd X are skew-
symmetric operators and have therefore purely imaginary eigenvalues; the
eigenvalues and the trace®f X o ad X are then real and 0).

Areal Lie algebrgy is is called aeal formof a complex Lie algebra,
if g is (isomorphic to) the complexification gf.

Note thatg may have several non-isomorphic (owrreal forms. Ex-
ample: The real orthogonal Lie algebr@) = o(n,R) is compact (verify
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thatad X is skew-symmetric on(n) wr to the usual inner produet M " N
on matrix space, or work out the Killing form). It is a real form of the or-
thogonal Lie algebra(n, C); every complex matrin/ with M T +M = 0is
uniquely of the formd + i B with A andB in o(n), and conversely. Now let
I, , be the matrix dia@l, ...,1,—1,...,—1) with p1's andg(= n—p) —1's.
Then theo(p,q) = {M : M"1,,+ I,,M = 0} are other real forms of
o(n,C).

o(p, q) consists of the operators " that leave the indefinite form? +

-+ x) — a2, — - —x} invariant (infinitesimally). Actually this is an

abstract real form oﬁ(n C),i.e.,0(p, q) ® C isisomorphicto o(n, C), but

o(p,q) is notcontainedin o(n,C) as real sub Lie algebra. To remedy this
we should apply the coordinate transformation= 2/, forr = 1,...,p
andz, = ia’, forr = p+1,...,n. This changes our quadratic form into
the usual sum of squares, and transfosipsg) into a real sub Lie algebra
0o Of o(n, C), which is a real form in the concrete sense d{atC) equals
09 + i0g (OverR).)

As a matter of fact, the(p, ¢q) together with one more case represent
all possible real forms af(n,C). The additional case;*(2n), exists only
for even dimension and consists of all matricess{2n,C) that satisfy
M*J + JM = 0 (where* means transpose conjugateadjoint, andJ is
the matrix of §1.1).

We come to an important fact, discovered by H. Weyl (and in effect
known to E. Cartan eatrlier, via the Killing-Cartan classification; we might
note here the peculiar phenomenon that many facts about semisimple Lie
algebras were first verified for all the individual Lie algebras on the list,
with a general proof coming later).

THEOREMA. Every complex semisimple Lie algebra has a compact
real form .

The proof is an explicit description of this form, starting from the Weyl-
Chevalley normal form; we use the notation developed above. (For an al-
ternate proof without the normal form see R. Richardson [21].)

Let u be the real subspace gfspanned byh, and the element§,, =
i/2(Xo — X_o) andV, = 1/2(X, + X_,) with o running over the positive
roots (for the given choice of). We see at once thatmg u < dim¢ g, and
thatu spansg overC (we get all ofh = hg + iho, and we can “solve"” for
the X, andX_,); this shows that at any ratels a real form ofy as vector
space.

Thatu is a sub Lie algebra (and therefore a real forng a§ Lie algebra)
is a simple verification. For exampl&HU,| = «(H)V, and [iHV,] =
—a(H)U, (notea(H) is real forH in by); for [U,Vg] one has to make use
of Nog = —N_,, _g. In particular[U,, V.| = i/2H, (cf. p. 4, . 2).

Finally, the Killing form: We have(X,, X _,) = 2/{a,a) (see end of
82.4 and recallX,X_,] = H,). From this and from{X,, X3) = 0 unless
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B = —a (see (3) in 82.2) one computes: f@r=iH + > 7 Uy + . saVa
with H in ¢ andr,, s,, real one has

(X, X) = _ZQ(H)2 - Z(Ti +Si)/<0¢,a>.

A A+
(The first sum over all roots, the second one over the positive ones.)

Clearly the form is negative definite, and sds a compact real form.
We will see soon that up to automorphismgahere is only one compact
real form.

(The importance of the compact form comes from the theorem of H.Weyl
that any Lie group to this Lie algebra is automatically compact. This makes
integration over the group very usable; it is the basis of Weyl's original,
topological-analytical proof for complete reducibility of representations
(83.4).)

The next theorem shows how to construct all real formg fobm facts
about the compact real form. The main ingredient are involutory automor-
phisms ofu.

THEOREMB. Letu be a compact form gf. (i) Given an involutory
automorphism of u, lett andp be the+1 — and—1 — eigenspaces of.
Then the real subspate- ip of g is a real form ofy. (i) Every real form
of g is obtained this way, up to an automorphisnyof
(which can be taken of the foragp(ad X,) with someX, in g).

Thus, in order to find the real forms @f one should find the involutions
of u — usually a fairly easy task.

Proof: Let A be an involution ofu. The equatiord? = id implies by
standard arguments that the eigenvalued a@fre +1 and —1, and thatu
is direct sum of the corresponding eigenspaicasdp. From A[XY] =
[AX, AY'] one reads off the important relations

(1) [ee] C &, [ep] Cp, [pp] C L

In particular,t is a sub Lie algebra.

Now ¢+ ip is a real form ofy as vector space, since it spaisverC just
as much as does and it®— dimension equals that af(noteu N iu = 0).
From (1) one concludes that+ ip is a (real) subalgebra: besideg c ¢
we havelt, ip] = i[tp] C ip and[ip,ip] = —[pp] C &. (Itis important thaf ]
is C-linear.) This establishes patrt (i) of Theorem A.

We note that the step from the involutidrto the direct sum decomposi-
tionu = £+ p with relations (1) holding is reversible: If one has such a de-
composition ofi, one definest by Ajt = id andA|p = —id. This is clearly
an involutory linear map, and (1) implies immediately that it preserves
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brackets. Thenl preserves the Killing form, and it follows thaandp are
orthogonal to each other (Vi ,Y) = (AX, AY) = (X,-Y) = —(X,Y)
for X in ¢ andY in p).

The proof of part (ii) is more complicated. First we introduce the notion
of (complex)conjugation (Cf.81.4.) LetV, be a real form of the (com-
plex) vector spac® (so that every vectok of V is uniquely of the form
X'+ X" with X', X" in V4). Then the conjugation of wr to V; is the
conjugate-linear map of V to itself given bys (X’ +iX") = X' —iX".
(*Conjugate-linear" means(a - v) = @ - v for a in C, v in V.) Note thats
is of order two, i.e.g? = id, oro = o~ 1.

Let nowg, be a real form of our Lie algebra Let o andr be the con-
jugations of (the vector spacg)wr to its real formgy, andu respectively.
Both ¢ and 7 are R-automorphisms of (they areR-linear and preserve
brackets, as immediately verified usiig= X’ +iX" etc.). The two com-
positionss o 7 andr o o are agairC-automorphisms.

The following observation is crucial: ¥ andr commute, then is o-
invariant, and conversely.

Indeed, ife o 7 = 7 0 0, theno preserves the1-eigenspace of , which
is preciselyu. Conversely, ifo(u) = u, then alsos(iu) = 4u, sinces is
conjugate linear. Now|u = id andr|iu = —id, and so clearly andr
commute on: and oniu, and so ory.

Our plan is now to replacg), via an automorphism af, by another (iso-
morphic) real formy;, whose associated conjugati@ncommutes withr.
And then the compositios; o 7 will function as the involutiond of The-
orem B.

The definition of real form implies that the Killing formof g is simply
the extension to complex coefficients of the Killing form of eithgor u;
in particularx is real ong, and onu. One concludes

(2) k(cX, oY) =xr(7X,7Y)=x(X,Y)” forall X,Y ing,

by writing X = X' +:X",Y =Y’ +:Y"”, and expanding. We introduce the
sesquilinear formr(X,Y) = x(7X,Y) ong (it is linear inY and conjugate
linear in X) and prove that it is negative definite Hermitean:

First, by (2) we haver(Y, X) = x(7Y, X) = x(X,7Y) = x(X,72Y)” =
k(rX,Y)” =x(X,Y)~. Second, writing agaiX asX’ +:X" with X', X"
inu, we haver(X, X) = #(X’' —iX", X' +iX") = s(X', X') + s(X", X")
(recall thatx is C-bilinear); andx is negative definite on.

The automorphisn® = ¢ o 7 of g is selfadjoint wr tor, by 7(PX,Y) =
k(torX,Y) = k(o7X,Y)” = k(7X,07Y) = n(X, PY), using (2) twice.
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Therefore the eigenvalues of P are real (and non-zero), agds the di-
rect sum of the corresponding eigenspakesFrom P[XY] = [PX, PY]
one concludes

(3)  a, V] CVan, (or=0,if X; - \; is not eigenvalue oP).

We introduce the operat@p = |P|~'/?; that is,Q is multiplication by
|I\:|~%/2 on Vj,. P and Q commute, of course. From (3) it follows that
Q is aC-automorphism ofy. From A\/|A| = |A|/\ for real A # 0 we get
P-Q>=pP71.Q2

We are ready to construct the promised real fgirof g , R-isomorphic
and conjugate to (i.e., image under an automorphism pfi,: We put
g1 = Q(go)- The conjugatiomr; of g wrto g, is clearlyQ-o-Q~*. We want
to prove thatr; andr commute. We have - P -0 ! =og-0-7-07! =
7.0 = P~!, so thatr mapsV,, into V;,,,. Thisimplieso - Q™' - 07! = Q
(check the action on eadh,,). Then we haver; -7 =Q -0- Q! -7 =
Q* 0-7=Q> P=P 1. Q?2=7-0Q2%2=7-Q-0-Q ' =71-0q;l.€,
o1 andr commute./

As indicated above, this means thas stable undes,, and so the invo-
lutory automorphisna; - T of g restricts to an (involutory) automorphism,
that we callA, of u. We splitu into the+1 — and—1 — eigenspaces of,
ast + p. Sinced = o; onu and sincey; is the+1 — eigenspace af; ong
, it follows that we havet C g, (in factt = ung;). Sincep lies in the—1 —
space of, the spacep lies in the+1— space ob; so it too is contained
in g;. The sumt + ip is direct (sincet andp areC-independent). For di-
mension reasons it must then eqyal this establishes Theorem B, with
Q as the automorphism gfinvolved, except for showing tha} is of the
form exp(ad Xj), an “inner" automorphism. To this end we note that the
operator power§P|t are defined for any real(they are multiplication by
[X:|t onVy,; for t = —1/2 we getQ); they form a one-parameter subgroup,
and are thus of the forrxp(¢D) with some derivatiorD of g , which by
Cor.D, 81.10, is of the formd X, with someXj in g.

There are several important additions to this.

COROLLARY C. Any two compact forms aof areR-isomorphic and
conjugate iry.

For the proof we note that the Killing form is positive definite orip
(since it is negative definite as). Thereforegy, andg,, are compact iff
p =0, thatis iff g, = uandu = Q(go). — One speaks therefore of “the"
compact form.

For a real forny, of g a decompositiop, = £+p, satisfying the relations
[eE] C &, [tp] C p, [pp] C € and with the Killing form negative definite an
and positive definite op, is called &Cartan decompositioof g, (note that
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we have absorbed the earlier factamto p). We restate part of Theorem B
as follows.

THEOREMDB'. Every real form ofy has a Cartan decomposition.

There is also a uniqueness statement. Suppose); andg, + p, are
two Cartan-decompositions of the real fogg corresponding to the two
compact formsi; = £ + ip; anduy = €5 + ips.

PrROPOSITIOND. There exists an automorphigrof g, of the form
exp(ad Xo) with someXj in g,, that sendsg, tot, andp; top..

Proof. Let s, 71, 2 be the associated conjugations. As noted in the proof
of Cor.C, the automorphismi = |7, - 7»|~/? sendsa, to u;. Now o com-
mutes withr; andr,, and so withR, and soR mapsg, to itself. We have
R(£2) = R(goNua) = R(go)NR(u2) = goNuy = €1, and similarlyR(p2) = p;.

The statement about the form Bffollows similarly to the corresponding
statement in Theorem B (ii), by considering the powersn|t. /

Clearly two involutions ofu that are conjugate in the automorphism
group ofu give rise to twoR-isomorphic real forms of . The converse
“uniqueness" fact also holds. Ldt, A, be two involutions of., with de-
compositions: = ¢;+p; = €;+po, and suppose the real forms= €, +ip1,
g2 = & + ipo areR-isomorphic.

PROPOSITIONE. There exists an automorphismof g that sends
t, to €, andyp, top, (and SOBA,B~! = Aj).

Proof: Let E be an isomorphism af; with g,. ThenE(¢,) + iE(p,) is a
Cartan decomposition @f,, with associated compact forg¢,) + E(p1).
By Corollary C there is an automorphigpnof g that send€(¢;) to ¢; and
E(p;) to po. We can now takeé) - F asB (regardingE as automorphism of
g by complexification),/

Altogether we have a bijection between the involutions ¢fip to au-
tomorphisms ofr) and real forms of (up to isomorphism, or even conju-
gacy ing).

To look at a simple example, we lei(n) be then x n special-unitary
(skew-Hermitean, trace 0) matrix Lie algebra (see §1.1). By explicit com-
putation one finds that the Killing form is negative definite, so we have
a semisimple compact Lie algebra. l.ebe the automorphism “complex
conjugation”; it is involutory. Thet+1 — eigenspace consists of the real
skew-symmetric matrices (this is the real orthogonal Lie algebt3).
Denoting the space of real symmetric matrices of ttatemporarily by
s(n), we can write the-1 — eigenspace of asis(n). Thus we have the de-
compositionsu(n) = o(n) + is(n). The corresponding real form, obtained
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by multiplying thep— part bys, iso(n) + s(n). This is precisely the Lie al-
gebrasi(n,R) of all realn x n matrices of trace (it being well known that

any real matrix is uniquely the sum of a symmetric and a skew-symmetric
one).

On the other hand, any complex matrix is uniquely of the fotrm B
with A and B Hermitean; we have therefore the direct sum decomposition
sl(n,C) = su(n) + isu(n). Thus, finally, we can say that(n) is “the"
compact real form ofl(n, C) and thatsl(n, R) is a real form (there are still
other real forms).

Areal Lie algebra, equipped with an involutory automorphism, is called
asymmetric Lie algebrdt is calledorthogonal symmetridf in addition it
carries a definite quadratic form that is invariant (infinitesimally) under the
ad X and under the involution. This is the infinitesimal version of E. Car-
tan’s symmetric spaces and in particular Riemannian symmetric spaces.
(See, e.g., [11,12,18].)

As an application of existence and uniqueness of compact real forms we
prove

THEOREMF. Any two Cartan sub algebras of a complex semisim-
ple Lie algebray are conjugate i (under some inner automorphism of

g)-

There exist more algebraic proofs, see [13, 24]. It is also possible to
classify the Cartan sub algebras of real semisimple Lie algebras.

(We give G. Hunt's proof.) Lefj; andh, be twoCSAs of g. Each deter-
mines a compact form; of g as in Theorem A. By Corollary C we may
assumeay; = up, = u say (replacing); by a conjugate”SA). One veri-
fies from the formulae after Theorem A thagt , andih,, are maximal
Abelian sub Lie algebras af. In fact, let H be an element ofj;  such
that no root wr toh; vanishes orH (one calls such elementegular or
genera); then the centralizer off in u is exactlyib; .

The Killing form x of g is negative definite on. Therefore the groug
of all those operators on (the vector spact)at leave: invariant (a closed
subgroup of7L(u)) is compact; it is just the orthogonal groagu, «).

For X in uthe operatorsxp(¢-ad X ) are inG, by infinitesimal invariance
of x and the computation of §1.3. L&Y be the smallest closed subgroup
of G that contains all thexp(ad X); it is compact and all its elements are
automorphisms af (andg). Now take general elements andH; of b o
andhz . On the orbit ofiH; underG, (i.e., on the sefg(iH:) : g € G1})
there exists by compactness a point with minimal distance (in the sense
of x) from iH,. Since all theg in G; are automorphisms af, we may
assume thatH, itself is that point (this amounts to replacityg by its
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transform under some in G;). For any X in u the curvet — exp(¢ -
ad X)(iH,),=Y; say, is then closest tdl, for t = 0. From|Y; — iH,|*> =
|Y;|? — 2(Y;,iHs) + |iH2|?> and|Y;| = |iH;| one sees that the derivative of
(exp(t-ad X (¢H,)), iH>) vanishes for = 0, so that we havg{ X H,], Hs) =
0forall X inu (and then evenig). From([X H,], H2) = (X, [H1, H»]) and
non-degeneracy df, -) we get[H; H,] = 0. This implies by the centralizer
property above thatH is contained irih, o and likewiseiH; in ih2 o, and
theni")Lo =1hayo and alsdy; = ha. v/

We still have to show that the elemegtused above is amner au-
tomorphismi.e., a finite product ofxp(ad X)'s. This needs some basic
facts about Lie groups that we shall not prove here: et O(u, ), be
the group of all automorphisms af and letA, be theid-component of
A, a closed subgroup of course. Thép is a Lie group; its Lie algebra
(=tangent space dtl) consists of the derivations af which by §1.10,
Cor.D are all inner. This implies tha, is generated by thexp(ad X)
(with X in u) in the algebraic sense (i.e. the set of finite products is not
only dense ind,, but equal to it). Thus the grouw, used above is identi-
cal with Ay, and the elementis an inner automorphism/

The argument proves in fact that all maximal Abelian sub Lie algebras
of u are conjugate in, and that these sub Lie algebras are precisely the
CSA’s of u, i.e., the sub Lie algebras afthat under complexification
produceCSA’s of g .

The definition of the rank of is now justified, since alC’'SA’s clearly
have the same dimension.

Another real form that occurs for every semisimglie thenormal real
form; it is defined by the requirement that for some maximal Abelian
sub Lie algebra all operatorsl X are real-diagonizable. In the Weyl-
Chevalley normal form it is simply given by, + >~ \ RX,. (Forsl(n,C)
this turns out to bel(n,R).)

For any real form one defines tleharacter as the signature of the
Killing form (number of positive squares minus of negative squares in the
diagonalized form). One can show that the character always lies between
I (=rankofg)and—n (= — dimc g).

The compact form is the only real form with character—n and the
normal real form the only one with character. (That these are the right
values for the compact and normal real forms can be read off from the
Weyl-Chevalley form ofg.) We describe the arguments briefly. Given a
Cartan decompositiofy-p of a real formg, (with the corresponding com-
pact formu = ¢ + ip and the involutionA of u or g) one finds a maxi-
mal subspace of pairwise commuting elements pf(by [pp] C ¢ this is
the same as a maximal sub Lie algebrgpfOne extends it to a max-
imal Abelian sub Lie algebrg, (= CSA) of u; it is of the formt + ia
with t an Abelian sub Lie algebra ¢f One also introduces the centralizer
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m={X € t:[Xa] =0} of ain t. Using the roots of wr to (the complexi-
fication of) by, one finds that hasgeneralelements, i.e., elementssuch
that for anyX in g the relation XY] = 0 implies[Xa] = 0. (The fundamen-
tal relations (1) fok andp show that thé — andp — components of such an
X commute separately witti.) The relationad Y.U, V) + (U,ad Y.V) = 0
shows that the linear transformatiankY |t and— ad Y |p are adjoint wr to
(-,-), and therefore have the same rank.

Thus we haveim p —dim a = dim £ —dim m. It follows that the character
of gg, = dim p —dim ¢, equalslim a —dim m. Therefore it is at most equal to
dim by, = [; that it is at least equal ten is clear anyway. For the extreme
case character [ we have to have = h, andm = 0 (i.e., p contains a
CSA of gg). One can thus assume that the preggtid the sub Lie algebra
of the Weyl-Chevalley normal form that there is call#d, and that the
presentu is theu there. Sincedll is —id, we haveAdX, = c,X_, (with
c_o = 1/c, Of course); in the plane spanned by andV, (overR) A
induces a reflection. Conjugating with a suitable inner automorphism
one can arrange all the to equal-1; then A is the “contragredience" of
§2.9, andy is the real formhy + >"RX,. /

The other extreme, character—n, is simpler. We must hawe= 0 (and
m = u). But thenp is 0 (any non-zeraoX in p spans a commutative sub Lie
algebra), and sgy = u. /

2.11 Properties of root systems

We come to part C of our program (see 82.6).

Let R be a root systenfa, 3,...} (see 82.6), in the (real) vector space
V (with inner product(-, -)); for simplicity assume&(R)) = V. (ThusV
corresponds ta] .) As in the case of the root system gfin §2.9, we
introduce a weak order in V by choosing an elemeny, of the dual
spacel’ " that doesn't vanish at anyin R, and for any two vectors, u
defining\ > p (resp.A > p) to meanvy(\) > (resp>) vo(r). This divides
R into the two subset®&™ and R~ of positive and negative elements. We
define a rooty, i.e., a vectory in R to besimpleor fundamentalf it is
positive, but not sum of two positive vectors. (Note that this definition and
all the following developments depend on the chosen ordering.)

Let FF = {ay,a9,...,o;} be the set of all simple vectors iR; this is
called thesimple or fundamental systemr alsobasisof R (wr to the
given order inV). (In the case of the root systefmof g wr to h we use¥
to designate a fundamental system.) We derive some elementary, but basic
properties off".

PROPOSITIONA.
(a) For distincty andg in F one hasa, 3) < 0;
(b) F is a linearly independent set;
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(c) every positive element @t is linear combination of the fundamental
vectors with non-negative integral coefficients;

(d) every non-simple vector iR can be written as sum of two positive
vectors of which at least one is simple.

Proof:

(@) If («, B) is positive, thery — 3 and — o belong toR (see §2.7); say
a — 3 belongs tokR*. Thena = 3 + (a — 3) contradicts simplicity ofv.

(b) A relation_ z;a; = 0 can be separated in{g y;a; = > z;; with
all coefficients non-negative. Calling the left sideand the right side.,
we getd < (A, \) = (A, u) < 0 (the last step by (a) upon expanding); thus
A = p = 0. But thenvy(X) = vo(p) = 0 implies that ally; andz; vanish.

(c) If ain RT is not simple, it is, by definition, sum of two vectors
in R*. If either of these is not simple, it in turn splits into two positive
vectors. This can be iterated. Since thevalues clearly go down all the
time, eventually all the terms must be simple.

This shows that’ spansV and thatl (= #F) equalsdim V. It is also
fairly clear from (b) and (c) that’ can be characterized as a linearly inde-
pendent subset dgf™ such that?™ lies in the cone spanned by it.

(d) By (c) there is an equatiam = >~ n;a; with non-negative integral
coefficients. From < (a,a) = > n;{a,q;) it follows that some(a, ;)
must be positive. Then — «; belongs taR, by Proposition B of §2.7, and
so eithera — «; or a; — o is in RT. But the latter can’t be ikt, since
a; = a+ (a; — «) contradicts simplicity oty;. /

Conversely, a subsét of R is a fundamental system & wr to some
order if it has the properties:

(i) linearly independent

(ii) every vector inR is integral linear combination of the elementsif
with all coefficients of the same sign (or 0).

A suitable order is given by any in the dual space which is positive at
the elements of;.

Note: Any two simple roots; and«; determine a root system of rank
two in the plane spanned by them. By 82.7 it is of one of the four types
A1 ® A1,A5,B2,G,. It follows easily from Proposition A (c) there that the
two roots correspond to the vectaerss of Proposition A (in some order),
and that for thex;-string of o; one has; = 0 and the associated Cartan
integer (written as;;) is —p (Prop.A, §2.5).

It follows from (b) and (c) of Proposition A that the subgroup (N.B.: not
subspace) o generated by (formed by the integral linear combinations
of the vectors inkR and called theoot lattice R) is alattice, i.e., a free
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Abelian group, discrete i, of rank dim V' and spanning/ as vector
space; it is generated by the bagisf V.

We interpolate an important fact.

Let A = {«a,5,...} and¥ = {ay,as,...,} be the root system and
fundamental system (wr to some orderof our semisimple Lie algebra
wr to aCSA h. To shorten the notation, we wrifé; for the fundamental
corootsH,, andX; andX _, for the root elementX,, andX _,, associated
with the elements of'. Prop.A (c), the non-vanishing &, if o« + gis a
root (82.8, Cor.B), and the relatioi; X ;] = H; imply the following:

PROPOSITIONB. The elements(; andX_; generatgy (as Lie al-
gebra, i.e. under the]-operation).

We come to some new geometric concepts.

To eacha in R we associate the subspaceloforthogonal toq, i.e.,
the set{\ € V : (a,\) = 0}; it is called thesingular planeof « (of
height O; later we shall consider other heights) and denotedd)9).
Note (—a,0) = (a, 0). The Weyl reflectiors,, leaves«, 0) pointwise fixed
and interchanges the two halfspace$’aletermined by, 0). The union
Ug(a,0) (or Ug+ (o, 0)) of all the singular planes is th@artan-Stiefel di-
agramof R; we denote it byD’(R) or just D’ (more precisely this is the
infinitesimalC-S diagram; later we will meet a global version).

The complement — D’ is an open set. Its connected components are
open cones in the usual sense (see Appendix), each bounded by a finite
number of (parts of) singular planés, 0), its walls. These components
are called théVeyl chambersf R (and their closures are tlodosed Weyl
chambersg. We will see below that the number of walls of any chamber is
equal to the rank of.

TheC — S diagram is invariant under the operation of the Wey! griwip
of R (becauser is invariant and the group acts by isometries). Therefore
W permutes the Weyl chambers. We note an important fact.

PrRoOPOSITIONC. The Weyl group acts transitively on the set of
Weyl chambers.

Proof: Given two chambers, take a (piece-wise linear) path from the
interior of one chamber to that of the other, through the interiors of the
walls (i.e., avoiding the intersections of any two different singular planes);
each time the path crosses a plaéng0) use the Weyl reflectioss,,. (We
complement this in Proposition E)

Let F be a fundamental system as above. The{set V : (a;,\) >
0,1 < <1} isthen aWeyl chambetr or C (called thefundamentabne,
for F), as follows at once from Proposition A (c): the inner product of any
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of its points with any element at cannot vanish; but for each boundary
point some(a;, ) is 0. We also see that every Weyl chamber is linearly
equivalent to the positive orthant &f (the set with all coordinates posi-
tive). More important, it follows that the Weyl group acts transitively on
the set of fundamental systems, since it is transitive on the set of Weyl
chambers. As a consequence, any two fundamental systemarefcon-
gruent, and the Basic Isomorphism Theorem, Cor.C of §2.9 shows that
there is an automorphism gfthat sends one to the other. Together with
conjugacy ofC'SA’s (Theorem F of §2.10) this yields

PROPOSITIOND. Any two fundamental systems of a complex semi-
simple Lie algebra are congruent (i.e., correspond to each other under an
isometry of their carrier vector spaces); in fact, there is an automorphism
of g sending one to the other.

It also follows that every element of R belongs to some fundamental
system: pick a Weyl chamber that has the plan®) for one of its walls
and lies on the positive side of the plafie : («, \) > 0}. The elements
of R corresponding to the walls of that chamber, with suitable signs, form
the desired fundamental system. To put it differently, the orbit ohder
W is R; we haveW - F = R.

Another simple consequence is the fact thais generated by the Weyl
reflectionsS;, 1 > i > I, corresponding to the simple roatsin F: Indeed,
for any two rootsy andg one sees easily from geometry that the conjugate
Se-Sa- S, listhe reflectionSs with 5 = S, (5) (one shows that’ goes
to — 3’ and that any orthogonal tg3’ goes to itself, by using the analogous
properties ofS,, ). Therefore, if the subgroup generated by sheontains
the reflections in the walls of any given Weyl chamber, it also contains
the reflections in the walls of any adjacent chamber (i.e., one obtained by
reflection across a wall of the first one). Starting from the fundamental
chamber we can work our way to any chamber; thus we can generate all
S,, and so all ofy.

Although we need it only much later, we prove here that the action of
W on the set of Weyl chamberssanply transitive

PROPOSITIONE. If an element ofv leaves a Weyl chamber fixed
(as a set), then it is the unit elementorid).

By the discussion above this is equivalent to the statement: If an element
leaves a fundamental systénfixed (as a set), or leaves the positive subset
RT fixed (as a set), then it is

We first prove a lemma that expresses a basic property.

LEMMA F. Considern in Rt ando; in F, with a # «;; thenS;(«)
is also inR™.
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(HeresS; is the Weyl reflection associated with; note S;(«;) = —a;.)
In words:S; sends only one positive element to a nhegative one, namely

Proof: By (c) of Proposition A the element is of the form}_ n,a;,
with all n; > 0 and somez,,, with k& # 4, different from0. The formula
Si(a) = a — ana,; o Shows that they,-coefficient ofS;(«) is still n, and so
still positive. It follows from (c) of Proposition A thefi;(a) isin RT. \/

For S in W we denote bys the number of positive elements &fthat
are sent to negative ones I8y this is called thdengthof S (wr to the
given order). There is a geometric interpretation for the length:\Ls¢
any point in the fundamental Weyl chamber; thenequals the number
of planes in the Cartan-Stiefel diagram that are met (and traversed) by the
segment from\ to S(\). (N.B.: the planega, 0) and(—«, 0) count as the
same.) Reason: We hayg&()\), o) = (A, S7!(«a)) (sincesS is an isometry);
clearly we have's = rg-1. Since(\, «) is positive for all positiver, we
see thatS()\), ) is negative for exactlys positivea. /

COROLLARY G. For anysS in W we haveg—1)"s = det S.

Proof: An elementary argument shows thatis additive mod. Thus
bothdet S and(—1)"s are homomorphisms of the Weyl group irtg2. By
Lemma F they agree on the gebf generators oV. /

We come to the proof of Proposition E. Supp@s&vith a representation
Si Si - S;, sendsF to itself. To showsS = 1, we proceed by
induction onm. Form = 0 we have indeed = 1. With S as given we
apply the reflections;, , S;, , ...in succession to the roat,. The first
step yields-«;,, which lies inR~. Let S;, be the first one that brings us
back toR™ (this exists by hypothesis!). Denoting the prodfict , - S;, , -

Si, by T, we conclude from Lemma F th&t - S;, («;,) must be

-y, 1.e., we havel'(«;, ) = «;, . As above, elementary geometry implies

1S, T =8, (the left-hand side is a reflection and it sends to

—a;,). We writeS ass,,, - -+ -S;,,,-T-T~-S,, -T-S;,, which equals
thens;, - -+ -Si,,-T-S:Si, =5i,- - SZM-S% o S,
(recaIIS“ Si, = 1), WhICh is shorter t by two factors; this is the mductlon

step./

One sees easily that Prop.E can be restated as sayifidhd$ a fixed
point in (the interior of) a Weyl chamber, then it is the identity. We prove
a consequence:

PROPOSITIONH. For anyp inV the orbitwy-p under the Weyl group
meets every closed Weyl chamber in exactly one point.
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(Thus the space of orbits or equivalence classes under the Weyl group
can be identified with any given Weyl chamber; usually one takes the fun-
damental one as set of representatives for the orbits.)

We prove first that the stability grouw, of p, i.e., the subgroup of the
Weyl group consisting of the elements that keefixed, (a) is generated
by the reflectionss,, for those rootsy that are orthogonal tp, and (b)
is simply transitive on the set of Weyl chambers that congain their
closures.

For this purpose consider the g&tof all of those rootsy for which p
lies in the singular plané&,0), i.e., which are orthogonal t@ The space
((R")) = V' is the orthogonal complement, in, of the intersection of the
singular planes for the roots i®; the setr’ is a root system ¥’ and so
defines Weyl chambers . Their translates by are the intersections of
the linear varietyy”’ + p with those Weyl chambers dt whose closures
containp (let us write temporarily¥, for the set of these). Then the Weyl
groupW’ of R’ (which is a subgroup ofV in a natural way) is transitive
(in fact, simply transitive) oriV,. This impliesW’ = W, (the elements
of W’ clearly keepp fixed; in the other directiorV, clearly permutes the
elements ofV,, and using Prop. E we see that each of its elements is an
element ofV'.

Prop.H follows now by counting: There ape’'|/|W,| points in the orbit
W - p, each point belongs toV,| closed Weyl chambers, and each closed
Weyl chamber contains at least one point (by transitivity\gf /

The number of singular planés, 0) that contairp is called thedegree
of singularityof p. Elements of” that lie on no singular plane, i.e., points
in the interior of a Weyl chamber, are callestjular.

We insert a geometric property, related to our order

PROPOSITIONI. Let ), 1 be two elements of the closed fundamental
Weyl chamber’ "~ of b . Theny lies in the convex hull of the orby - A
of X iff the relation\(H) > p(H) holds for allH in the fundamental Wey!
chamber ofy,.

First a lemma.

LEMMA J. Let X be an element af T—. Then any\’ in W - X is of
the formx —>" ., co - with all ¢, > 0.

Proof: Take a\ in W - ), different from\. By Prop.H we know that
XN is notinCT—, and so there is a positive roetwith \'(H,) < 0. Thus
we havesS, (), = X — XN (Hy)a, > X.

After a finite number of steps we must arrivejdtself. /

COROLLARY K. ForXinCT—, Sinw with S\ # X\, andH in C,
we have\(H) > SA(H)(= A(S7'H)) (and\(H) > SA\(H) for H inC~).
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Proof: Immediate from Lemma J, since we havg?) > 0, if « > 0./

We now prove Prop. .
(@) Suppose =}, rs - SAwith rg > 0 and)_rg = 1. By Cor. K we
haveu(H) = > rgSANH) <Y rgA(H) = XH) for HinC~.

(b) Suppose: is not in the convex hull ofV - A. Then there exist& in
ho with u(H) > SA(H) for all S in W (separation property of convex sets).
By continuity of , and of theS\ we may takeH to be regular. Thet is
T - H' for someT in W and somef’ in C. Now we have, using Cor. K,
p(H') > T~ p(H') = p(H) > TA(H) = T~ H) = A(H'). /

We come to the last topic of this section, the notiom@iximalor dom-
inantelement of a root system (wr to the given orde¥in

First an important definition: An elementof R* is calledextremeor
highest, if o + 3 is not a root for any positive rogt.

(Actually this is equivalent to requiring that+ «; is not a root for any
fundamental rooty;. Writing 5 as sum of a positive and a fundamental
root if it is not fundamental itself (Prop.A (d)), one reduces this to the
following: If «,8,v,a+ 3, anda + 8+~ are inR, then at least one of + v
andg++~ is also a root. This in turn follows easily from the Jacobi identity
for X,,X3,X, and the fact thaiv, s is different fromo iff « + 3 is a root.)

PROPOSITIONL. Let R be a simple root system (with order and
fundamental system as above). Then there exists a unique extreme root
u, the maximal or dominant element &f . is the unique maximal (wr
to > ) root and lies in the fundamental Weyl chamber. Moreover, with
expressed as. m;a; and an arbitrary root asy_ b;«; the inequalities
m; > b; hold for1 < i <, in particular, then; are all positive.

Proof: Leta = Y a;«; be an extreme root. We have, ;) > 0 for all 4,
by extremeness (otherwise+ o; would be inR by Prop.B of §2.7); thus
a is in the fundamental Weyl chamber.

Next we show that alk; are positive. They are non-negative to be-
gin with (« is in RT). If someaqy is 0, then we hav€a, o) < 0,since
(a, ) < 0 for i # k. Together with the previous inequality this gives
(a, o) = 0; and this in turn impliego;, o) = 0 for all the: with a; # 0
and all thek with a;, = 0. ThusF would split into two non-empty, mutu-
ally orthogonal sub systeni8 andF”. But thenk would split in a similar
way, contradicting its simplicity: As noted after Prop. Rjs the orbit of
F under the Weyl group of’, and this Weyl group is of course the direct
product of the Weyl groups df’ andF”, acting in the obvious way.

Let now « and s be two extreme elements. First we haves) > 0;
otherwisex + 3 is in R. Since(w;, 5) > 0 anda; > 0 for all ¢, the relation
(a, B) = 0 would imply that all(«;, 8) vanish; but that would meas = 0.
Thus{a, ) > 0, and sax — g isin R (or is0). Say it is inR™; then we get
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the impossible relation = g+ (a«— 3). This means = 3, and uniqueness

of the extreme. is established. Maximality (and uniqueness of maximal
elements) follows from the obvious fact that maximal elements (which
exist by finiteness) are extreme.

2.12 Fundamental systems

Fundamental systems of root systems are important enough to warrant a
definition:

DEFINITION A. An (abstract) fundamental system is a non-empty,
finite, linearly independent subset= {as, as, ..., o, } Of a Euclidean space
(=real vector space with positive definite inner prodct) such that for
any «; anda; in F the value2(a;, o;)/{aj, o) = a;; IS @ non-positive
integer.

Thea,;; are theCartan integersof F'; they form theCartan matrix4 =
[a;;]. One sees as in §2.7 that only the valaes1, —2, -3 can occur for
1 # j and that the table of §2.7 applies to any two vector#'irf(In the
literature one also finds;; for oura,;, i.e., the indices are reversed.)

Usually one assumé€sF)) = V.

Equivalence of fundamental systems is defined, as for root systems, as
a bijection induced by a similarity of the ambient Euclidean spaces. There
is again a Weyl groupV, generated by the reflectiossof V' in the hy-
perplanes orthogonal to the. W is again finite: The formuls;(«;) =
a; —aj;o; Shows that each; leaves the lattic® generated by invariant;
since the elements a¥ are isometries oV, there are only finitely many
possibilities for what they can do to the vectorsin

There is the notion olecomposablundamental system: union of two
non-empty mutually orthogonal subsets. Every fundamental system splits
uniquely into mutually orthogonaimple( = not decomposable) ones.

In 82.11 we associated with every root systBm fundamental system
F contained in it, unique up to an operation of the Weyl grou@®of" in
turn determinesz: First, since the reflectionS; attached to the elements
of F generate the Weyl group &f (as we saw), the Weyl groups &fand
F are identical. Second, we showed (in effect) that the abitF’, the set
of the S(«;) with S'in W andg; in F, is R.

The main conclusion from all this for us is that in order to construct all
root systems it is enough to construct all fundamental systems. This turns
out to be quite easy; we do it in the next section.

To complete the picture we should also show that every (abstract) fun-
damental system comes from a root system. One way to do this is to con-
struct all possible (abstract) fundamental systems (we do this in the next
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section), and to verify the property for each case (we will write down the
root systems explicitly).

There is also a general way of proceeding: The root system would have
to be, of course, the orbiv - F' of F under its Weyl group. We first have to
show that this sek is indeed a root system. We prove propertigs (ii)’
and (ii7) of 82.6. First, the Weyl group a is again identical with that of
F, since for anyx = S(«;) we haveS, = S-S, - S71, and saS,, is in the
Weyl group ofF. It follows that R is invariant under its Weyl group, i.e.,
(i2)" holds. Next, for any3 in R we haveS;(3) — 8 = n - o; With integral
n (the left-hand side is in the lattice and is a real multiple of;, and«;
is a primitive element of the lattice). Applying§and recalling the relation
So =85-8;-S71, we getS,, - S(B) — S(B) = nS(a;) = n,. This proves
(z)',sinceS(B) runs over all ofrR asg does. Finally, for(éi:) we note that
a is also a primitive element of the lattice, singés invertible.

We still have to prove that the giveh is a fundamental system of the
root systemk = W - F defined by it. That is not quite so obvious. It
amounts to showing that the fundamental Weyl chandleof F, i.e. the
set{\: (A, ;) > 0,1 < i <} is identical with the corresponding chamber
Cg of R (clearly we have”r, c Cr anyway), or that thé@V-transforms of
Cr are pairwise disjoint. We proceed by inductiondm V. The situation
is trivial for dim = 0, and also fodim = 1; in the latter casé’ consists of
one vectowr, with R = {«a, —a}, W = {id, —id}, Cr = Cr = {ta : t > 0}.
The caselim = 2 is a bit exceptional; we have in effect considered it in
§2.7, when we constructed all root systems of rank 2. According to the
table there, there are four possibilities By and one easily verifies our
claim for each case.

Now the induction step, assumirig= dimV > 2. Let ¥ be the unit
sphere inV. Chooser with 1 < r < [, and letv be a point ofY in the
closure ofCr that lies on exactly singular planesa;,0), i.e. that is or-
thogonal tor of the elements of'. Theser elements form a fundamental
systemr,, whose Weyl groupV, is a subgroup ofV. Our induction as-
sumption holds for this system. This means thatthetransforms of the
fundamental chambef'x fit together around without overlap. We in-
terpret this on:: Let D denote the intersection af with the closure of
Cr; this is a (convex) spherical cell. Then theé -transforms ofD will fit
together around, meeting only in boundary points and filling out a neigh-
borhood ofv onX. We form a cell complex by taking all the transforms of
D by the elements ofV and attaching them to each other as indicated by
the groupsV, above, at their faces of codimensign < r <[ —1. The
fact just noted about the/, -transforms filling out a neighborhood means
that the obvious map of our cell complex ontas a covering in the usual
topological sense (each pointirhas an “evenly covered” neighborhood).
It is well known that the spherg has only trivial coverings for— 1 > 1.
This means that our map is bijective, i.e. that the transfa¥mb, with S
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running overnv, have no interior points in common and simply co¥er
Clearly this proves our claim, that the fundamental chambérisfalso a
chamber of the root systeRi= W - F, and thatF is a fundamental system
forR. v/

2.13 Classification of fundamental systems

Let F = {a1,a9,...,q;} be a fundamental system (in a Euclidean space
V). To F one associates a “diagram" , a weighted graph[Dtjekin dia-
gram, as follows: To each vectar; is associated a vertex orcell, pro-
vided with theweight («;, ;) or |a;|? (usually written above the vertex);
for any two different vertices; anda; the corresponding vertices are con-
nected byu;; -a;; = |a;] (= 0,1,2,3) edges orn-cells. In particular,
if (o, ;) = 0, then there is no edge. In the case of two or three edges, one
often adds an arrow, pointing from the higher to the lower weight (from
the longer to the shorter vector).

(Similar diagrams had been introduced by Coxeter earlier.)

For aconnectedin the obvious sense) Dynkin diagram the weights are
clearly determined (up to a common factor) by the graph (with its arrows),
since the number of edges plus direction of the arrow determines the ratio
of the weights. The Dynkin diagram (with weights up to a common factor)
and the Cartan matri® = [q;;] determine each other; the arrows are given
by the fact thata,;| (assumed ndi) is greater than iff |«;| is greater than
laj| -

The diagram (with the weights) determinBap to congruence : First
one can find the,;, since ofa;; anda;; one is equal te-1, and the arrow
determines which one; then from thg and the(w;, «;) one can find all

<O‘ivo‘j>'

There is of course the notion of abstract Dynkin diagram, i.e., a weighted
diagram of this kind, but without a fundamental system in the background.
Given such a diagram, one can try to construct a fundamental system from
which it is derived by the obvious device of introducing the vector space
V with the verticesy; of the diagram as basis and the “inner prodyct’
determined by theéx;, «;) as read off from the diagram; this will succeed
precisely if the form(-, -) turns out positive definite.

The Dynkin diagram of a fundamental systéfris connected iffF is
simple; in general the connected components of a diagram correspond to
the simple constituents df. A connected diagram with its arrows, but
without its weights, determines the fundamental system up to equivalence
(= similarity), since it determines the norms of the vectors (or the weights)
up to a common factor. One often normalizes the systems by assuming the
smallest weight to be 1. It turns out to be quite simple to construct all
possible fundamental systems in terms of their Dynkin diagrams.
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THEOREMA. There exist (up to equivalence) exactly the following
simple fundamental systems (described by their Dynkin diagrams) :

Name Diagram Rank
A o—0—0 - - - - O—O0—0 1=1,2,3,...
B oO—O0—0 -+ - O—0=—=0 1=2,3,4,...
C o—o0—0: - O—0===0 1=3,4,5,...
Dy o—0—0 - - - o—o<z 1=4,5,6,...
G2 =0 =2
Fy O—O0==0—0 =4
Eg o oO—o0 =6

E7 O

Eyg o O o) =8

The diagrams of the classes, B;, C;, D; (which depend on an inte-
gral parameter) are called theur big classe®r theclassical diagrams
the diagrams’,, Fy, Eg, E7, Es are thefive exceptional diagramssame
nomenclature for the corresponding fundamental systems.

We comment on the restrictions énfor the classical types; they are
meant to avoid “double exposureB; is supposed to “end" witlB,

o———=——o

on its right; this requires > 2. Put differently, proceeding formally with
[ = 1 would give B; as a single vertex — which would be identical with.

Next, C; is the same diagram d@ (only differently situated); thus one
required > 3 for the clas<;.

Finally D;: Here Ds is identical with A3. We can interpreD, as the
“right end" of the generab,-diagram, consisting of two vertices and no
edge; it is thus decomposable, and represents in fact the sylstem,

(or By @ B1). Dy could be interpreted as the empty diagram (which we
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didn't allow earlier); this “is" the Dynkin diagram for a one-dimensional
(Abelian) Lie algebra (there are no roots). All this makes good sense
in terms of the so-calledccidental isomorphismiketween certain low-
dimensional classical Lie algebras and groups (see [3], also §1.1).

We note that the diagramg (for [ > 1), D;, andEs have obviousself-
equivalencegautomorphismys: For A; and Eg reversal of the horizontal
arrangement, fob; switching of the two vertices on the right. The diagram
D, shows an exceptional behavior: it permits the full symmetric group
on three objects (the endpoints) as group of automorphisms. This will be
reflected in automorphisms of the corresponding Lie algebras.

For the proof of Theorem A we will construct all possible (connected)
diagrams with positive form-,-) by simple geometric arguments. The
proof will be broken into a number of small steps. We will be using slightly
undefined notions such asbdiagram(some of the vertices of and some
of the edges connecting them in a larger diagram). Foraarn F we
write v; for the normalized vectors; /|a;|. Thus corresponding to the “ba-
sic links"

we have respectivelf;, v;) = —1/2, -1/v/2,—/3/2.

1) The diagranti, is not subdiagram of any larger diagram (with positive
form (-, -)): Otherwise we find a subdiagram

o————————— o °
U1 V2 U3

with the arrow in theGs-part going either way and the other part one
of the three basic links. This gives three vectors,, vs with (vy,vs) =
—/3/2, (v1,v3) <0, (v2,v3) < —1/2. (For the second inequality note that
in the larger diagram there could bgl, 2, or 3 edges fromy; to vs.) For

a = V/3v; + 2vy + v3 We compute(a,a) < 0 (we use here and below,
without further comment, the fact that &ll;, v;) for i # j are< 0). But
this contradicts positive definiteness(af).

From now on we consider only diagrams withéistas subdiagram, i.e.,
only diagrams made up of the basic links

R — ) and o——————eo

2) A diagram can contaiB; only once as subdiagram: Otherwise there is
a subdiagram of the type

Let vy, vs,... be the corresponding vectors (from left to right) and put
a=1/v2v; + vy + -+ w1 + 1/v/2v,. One computesa, o) < 0 (note
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again that there might be additional edges between some of the vertices in
the big diagram). This again contradicts positive definiteness of the inner
product.

3) There is no closed polygon containifg in a diagram: Otherwise on
going around the polygon the weight would change exactly once, by a
factor2, manifestly impossible.

4) If there is aB,, then there is no branchpoint: Otherwise there would be
a subdiagram

Let vy, v, ..., v: be the vectors, in order from the left, with_; andwv;
the two ends at the right. Put=1/v/2v; +vo +-- -+ v, o +1/2(vs_1 +v4),
and verify(a, o) < 0; contradiction.

5) The diagram

does not occur as subdiagram.

Reason: Putt = v/2v; + 2v/2vy + 3vs + 2v4 + vs, and verify(a, a) < 0.
From 2) to 5) we conclude that diagrams containiygmust be of the
typesB, C;, Fy listed in Theorem A. Therefore from now on we consider

only diagrams containing neithét, nor B,, i.e., made up ofi, only.

6) There are no closed polygons in the diagram. (The diagram is a tree.)
Otherwise, withvy,v,, ..., v, the vectors around the circuit, one com-
putes thaty = > v; has{a, a) < 0.

7) There are at most three endpoints (and therefore at most one branch-
point).
Otherwise there is a subdiagram
[ )
[ ]

\
/
(The horizontal part might be “empty".) Let,...,v, be the vectors,

with v; and v, at the left ends and;_; andv; at the right ends. Then
a=1/2(vy +vy) +v3+ -+ vi_o+1/2(vs—1 + v¢) has{a, a) <O0.

8) If there is a branchpoint, then one of the branches has length one.
Otherwise there is a subdiagram
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Let v, be the centen,, v3, v, adjacent to it, ands, vg, v; the endpoints.
Thena = 3vy + 2(ve + v3 + v4) + v5 + v + v7 has{a, a) < 0.

9) The diagram

is impossible as subdiagram.
Let vq,...,v; be the vectors on the horizontal, the one below. Then
a = v1 + 2vg + 3vg + 4vg + 3vs + 2v6 + vy + 2vg has(a, ) < 0.

10) The diagram

is impossible as subdiagram.

With the analogous numbering put= v; + 2vs + 3vs + 4v4 + 5vs + 6vg +
4vr + 2vg + 3vg and verify(a, a) < 0.

From 6) to 10) it follows easily that diagrams with all links of tyde
must beA;, D;, Eg, E;, or Eg of Theorem A./

As noted before, we still have to show that the diagrams listed in The-
orem A are Dynkin diagrams of fundamental systems, i.e., that the corre-
sponding quadratic form is positive definite. (We verify that this is so in
the next section, where we will write down the fundamental systems and
root systems for each case.) As an example we lodk alThe quadratic
form works out tar, 2 + x9% + 2232 + 2242 — 2129 — 22023 — 2w324. By COM-
pleting squares this can be written(@s — 1/2x5)? + 1/4(xy — 4/323)% +
2/3(x3 — 3/2x4)% + 1/224°. /

We comment on how the vectosswith («, ) < 0 were constructed
above: Recursively the coefficients of theare so chosen that the norm
square of each vector cancels the sum of the inner products with the ad-
jacent (in the subdiagram) vectors. (Any additional links in the original
diagram contribute non-positive amounts.) Take 5) as an example: We
start withvs;. The factorr of v4 is determined from the relatiofs, vs) +
(rvg,vq) = 0; with the rule noted just before 1) this gives= 2. The
next equation, involving the coefficientof vs, is (2vy, 2v4) + (2v4,vs) +
(2v4, sv3) = 0, yielding s = 3. (As long as only links4, occur, the rule
is: each coefficient is 1/2 the sum of the adjacent ones.) The faofar,
comes from(3vs, 3uz) + (3vs, 2v4) + (3us, tvy) = 0 @ast = 2v/2. The next
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step,(2v/2vq, 2v/2vs) + (21202, 3v3) + (2v/2v9, uv1) = 0 gives the factow
of v; asy/2. This happens to be one-half the factowgfthis “accident" is
responsible fofa, a) < 0 (the sum of the squares cancels twice the sum
of the relevant inner products).

In case 9) we start with; and work our way tay; the factor ofuvg is
one-half that ofv,; then we findvs etc.

2.14 The simple Lie algebras

The next step in our program is to show that each of abstract Dynkin di-
agrams found in 82.13 comes from the fundamental system for the root
system of some semisimple Lie algebra. There are several approaches to
this problem.

The most direct approach (Serre) uses the endfiesf the Cartan ma-
trix A (with 1 < i,5 < [), and defines the Lie algebra by generators and
relations: There ar& generators;, f;, h; with 1 < i <[ (corresponding to
the elements;, X_;, H; of g introduced in §2.11); the relations are

1) [hih;] = 0,

(2) [hie;] = ajie;andh f] = —ajif;,

(3) leifi] =0,

(1) (eiesl.o[ere;]..] = 0 for —ay; + 1 factorse,
(5) Ufilfi-Ufifj]...] = 0for —aj; + 1 factorsf;

One proves that this is a (finite dimensional!) semisimple Lie algebra with
the correct root and fundamental system. Théorm a Cartan sub Lie
algebra. (See [24].)

Another approach (Tits, [23]) uses the relations betweenathéor
equivalently the strings) and th€,s; of §2.8, 2.9 to show that th&,z
can be so chosen (recall they are determined up to some signs) that the
resultis in fact a Lie algebra, with the correct root system.

We shall not reproduce these arguments here, but shall follow the tra-
ditional path of Killing and Cartan of simply writing down the necessary
Lie algebras. That turns out to be easy for the four classical classes. For
the five exceptional we write down the root system, but do not enter into
the rather long verification of the fact that there is a Lie algebra behind the
root system.

We state the main result.
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THEOREM A. Assigning to each complex semisimple Lie algebra
the Dynkin diagram of the root system of a Cartan sub Lie algebra sets
up a bijection between the set of (isomorphism classes of) such Lie alge-
bras and the set of (equivalence classes of) abstract fundamental systems.
In particular, the simple Lie algebras correspond to the simple diagrams,
listed in Theorem A of §2.13, and are given by the following table :

Name Description Rank Dimension
A sl(l4+1,C) 1=1,2,... l(I1+2)

By 0(20+1,C) 1=2,3,... 1(2141)
C sp(l,C) 1=3,4,... 1(2l+1)
D, 0(2l,C) l=4,5,... 1(2l-1)
Go - 2 14

Fy - 4 52

Eg - 6 78

E; — 7 133

Eg — 8 248

Corresponding Lie algebras and Dynkin diagrams are denoted by the
same symbold4;, B;, C;, D, are theclassical Lie algebrasss, Fy, Eg, Er, Eg
are thefive exceptionabnes (just as for the diagrams). (We note that in
using these classical names we are deviating from our convention on nota-
tion, 81.1.) It is clear from the earlier discussion and the comments above
on the exceptional cases that all that remains to be done here is to ver-
ify that the classical Lie algebras have the correct fundamental systems or
Dynkin diagrams. We proceed to do this. All these Lie algebras are sub
Lie algebras ofjl(n, C) for appropriate, i.e., their elements are matrices
of the appropriate size. We writg;; for the usual matrix “unit" withl as
ij-entry and O everywhere else. We use the standard basis vectdr&
andC and the standard linear functionals(see Appendix). In each case
we shall display an Abelian sub Lie algebyavhich is in fact aCS A, and
the corresponding roots, fundamental system and (for the classical cases)
root elements, and also the fundamental coroots and the Cartan matrix; the
proof that the displayed objects are what they are claimed to be, and that
the Lie algebra itself is semisimple, will mostly be omitted.

As for the dimensions in the table above: It is clear from the general
structure that the dimension of a semisimple Lie algebra is equal to the
sum of rank and number of roots.

1) A

Forsl((1+ 1,C) one can take aSSA § the space of all diagonal matrices
H = diag(a1, as, . ..,a;+1) (With 3" a; = 0). We treath in the obvious way
as the subspace 6f*! on which}" w; vanishes. One computé8 E;;| =
(a; —aj)E;j; thus the linear functions;; = w; —wj, for i # j, are the roots
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and theE,;, for i # j, are the root elements, is obtained by taking alt;
real; itis thushnR*1. We define the order il through some (arbitrarily
chosen)Hj in ho with a; > as > ... > a;1. The positive roots are then the
a;; With 7 < j. The fundamental system consistswf, ass, ass, . . ., 415
fori < jwe haveOé,'j = Q41+ Qp1442 + 00 Q15 The fundamental
Weyl chamber consists of thg& with a; > a> > -+ > a;,1. The maximal
rootisais + o3 + -+ aip1, = w1 — Wig1-

The only way to form non-trivial strings of roots is to add two “adja-
cent" roots:a;; anday; with eitherj = k or ¢ = I. This means that for
two adjacent fundamental roots we haye- 0 andp = 1 (in the nota-
tion of 82.5), so that then the Cartan integer-is and that non-adjacent
fundamental roots are orthogonal to each other. Thus the Dynkin diagram
is

1 1 1 1 1 1
W1 —W2 W2 —W3 W3 — w4 Wi—2 =Wj—1 Wi—1 —WwW; Wi —Wi+1

The fundamental coroots aé, = e; — ex, Hy = ey —e3,...,H =
€] — €[4+1-

One verifies that the bracket of two root elemeats and E;;, is non-
zero exactly if the sum of the two roats; anday; is again a root (meaning
j = kori=1), inaccordance with our general theory. In fact, the opposite
view of structure theory is possibly sounder: the general semisimple Lie
algebra has a structure similar to thastih, C), as exhibited above.

As for simplicity of 4;, it is elementary that there are no ideals: starting
from any non-zero element it is easy, by taking appropriate brackets, al-
ways going up in the order, to produce the elentant, ;, and then, by tak-
ing further brackets, alt;; and allH (note[E;;E;;| = Ei; — Ej; = e; — e,
these elements spah

h is a Cartan sub Lie algebra since it is nilpotent (even Abelian) and
clearly equals its own normalizer. The Killing form dn(sum of the
squares of all roots) is, up to a factor, the Pythagorean expresgion.,2.
(Note that because Of w; = 0 we have}_,; wiw; = — > w;i2)

As for the Weyl groupV, the reflectionS;», corresponding to the root
a19, Clearly consists in the interchange of the coordinateenda, of any
H. One concludes that consists of all permutations of the coordinate
axes, and is thus the full symmetric grouplen1 elements.

The Cartan matrix has 2’s on the main diagonal, an& on the two
diagonals on either side of the main one.

In the remaining cases we shall give less detail.
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2) B.

Foro(2l + 1,C), the orthogonal Lie algebra in an odd number of vari-
ables, we take instead of the usual quadratic fdfm;? the variantry? +
2(z1x2 + T334 + -+ + To_129;), Which leads to somewhat simpler for-
mulae; ie., withP — H? (1) and K — diag(1,P,...,P) = Eoo +
FEio+ Eo1 + B3y + Ey3 + -+ + EQl_l,Ql + E25721_1, we take our Lie al-
gebra to be the set of matricesthat satisfyAT K + KA = 0. For b
we take the sub Lie algebra of diagonal matrices; they are of the form
H = diag(0,a1, —a1,as, —as, . ..,a;, —a;). We treath asC!, with H corre-
sponding tq(ay, as, . . ., a;); the real subspad®’ is .

The roots and root elements are then described in the following table.

Roots Root elements
wi for1<i<l 2(Es_10— Fo2i)
—Ww; K \/ﬁ(EO,Zifl - E2i,0)
w; — wj i F ] Eai 1251 — Eaj2;
w; + wj 1<J Eoj_1,2i — Eai_1.2;
—Ww; — Wj K Ea;05-1 — E2j2i-1

The order iny] is defined by somél, with a; > ay > --- > a; > 0; the
positive roots are the; and thew; + w; with i < j.

The fundamental system{s; —ws, wo —ws, ... ,w;_1 —wy, w; }; one verifies
that every positive root is sum of some of these.

The fundamental Weyl chamber is givend&y> a; > --- > a; > 0.

The maximal root isn +ws = wy —wo + 2(ws — w3z + -+ +wj—1 — w; + wy).

Now the diagram: for the first — 1 fundamental roots we can form
strings only by adding adjacent roots; this means that we have links of
type A, between adjacent roots. For the last pajr,; — w; andw;, one
cannot subtract;, but one can add it twice to;_; — w;; thus the Cartan
integer is—2 and there is a link of typel, with the arrow going from
w;—1 — w; tow;. The Dynkin diagram is then

2 2 2 2 2 1
W] — W2 Wy —Ws W3 — w4 Wi—2 —Wj—1 Wi—1 —wW w

The Killing form is againy_ w;2, up to a factor, as easily verified.

The Weyl group contains the interchange of any two axes (Weyl reflec-
tion corresponding t@; — w;) and the change of any one coordinate into
the negative (corresponding to the rag}). Thus it can be considered as
the group of all permutations and sign changes variables; the order is
20 -1!.
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Fundamental coroot$i; = e; —eg, ..., Hj_1 = e;_1 — e;, H = 2¢;.

The Cartan matrix differs from that of; only by having—2 as(l — 1,1)-
entry.

(If we usezgl x;2 as the basic quadratic form, then the relevant Cartan
sub Lie algebra consists of the matrices of the form

dlag(O, CllJl7 (L2J1, ey alJl),
with the usual matrix/;, and thes; in C, purely imaginary foi,.)

3) O.

sp(1,C) consists of thel x 21 matricesM satisfyingM ".J + JM = 0
(see 81.1 for7). We leth be the set of matrices

H = diag(ah —ap, a2, —ag,...,a, _al)7
setting up the obvious isomorphism with. As before we have, = R'.

Roots Root elements
wi—wj i FJ Ey125-1— Eajoy
witw; 1 <j BEyi_12j+ Eaj_1
—wi—wj 1<j FEgjoj-1+ Eojoi1
2wy Eoi_1,2

—2w; B 0i—1

Order inh] defined byH, = (1,1 —1,...,1).
Positive rootsw; — w; andw; + w; with i < j, 2w;.
Fundamental systemi; — wy,ws — w3, ...,wi_1 — wy, 2w;.
Fundamental Weyl chamber; > as > --- > qa;.
Maximal root:2w;, = 2(w; — ws +we — w3 + -+ +wy—1 — wy) + 2w;.
For the first — 1 fundamental roots there is at3-link from each to the
next. For the last pair, thev,_1 — w;)-string of 2w, hasq = 0 andp = 2.
Thus the Dynkin diagram is

1 1 1 1 1 2
W] — W Wy — W3 W3 — Wy Wi—g —Wwj—1 wi—1 —w; 2wy

The Killing form is again k3 w;2. We note thaf3; andC; have the same
infinitesimal diagram and the same Weyl group (but the roots are not the
sameC; has+2w; whereB; has+w;).

Fundamental coroot$i; =e; —eq,...,Hj_1 =¢e;_1 —e;, H = ¢;.

The Cartan matrix is the transpose of that Br
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4) D

Foro(2l,C), the orthogonal Lie algebra in an even number of variables,
we take the quadratic form aszs+x314+- - -+x2;_129;. Then, puttingl, =
Ei2+Fy +FE3.+FE43+. .., our Lie algebra consists of the matridgswith
MTL+LM = 0. Forh we can take thél = diag(ay, —a1, az, —as, ..., a;, —a;).

Roots Root elements
wi—w; 1 F ] Ea_19i-1— Fajoi
w;i + wj 1<j Egi_125— Eaj_12

—wi—w; 1<j Faai1— Fajoi1

Order inh| defined byH, = (I — 1,1 —2,...,0).

Positive roots: The; — w; andw; + w; with i < j.

Fundamental systemu; — wo,ws — w3, ...,wj_1 — W, w;_1 + wy.
Fundamental Weyl chambet; > as > -+ > a;—1 > |a;|.(Note the abso-
lute value in the last term.)

Maximal root:w; + W, = W] — wy + 2((4}2 — w3 +tw3 —wqs+ -+ wW_g —
wi—1) + (wi—1 —wp) + (wi—1 + wi).

The firsti — 2 fundamental roots are connected by links of type. In
addition there is ad,-link betweenw;_s — w;_; andw;_; — w;, and one
betweenv,_> — w;_; andw;_1 + w;. Thus the Dynkin diagram is

2
Wi—1 — W
2 2 2 2 2
oO—O0—O e e e e . wl*? — wl*l
W] —W2 Wy —W3 W3 —Ww Wj—3 —Wi—2
wi—1 +wi

The Killing form is a multiple ofu;2. The Weyl group contains the inter-
change of any two axes, corresponding to reflection acress; = 0, and
also the operation that interchanges two coordinates together with change
of their signs, corresponding to reflectiondfyw;. Thus it consists of the
permutations together with an even number of sign changesafables;
its order is2!=1 - [!.

Fundamental coroot$i; =e; —es,...,Hj_1 =e¢j_1 — e, H = ¢;_1 + ¢;.

The Cartan matrix differs from that of; by havinga;_1; = a;;,-1 = 0 and
aj—2,; anda; ;_, equal to—1.

(With zgl x;% as quadratic form, a Cartan sub Lie algebra is formed by
all matricesdiag(ayJ1,a2J1,...,a;J1), thea; again purely imaginary for
bo-)

We proceed to describe the root systems, fundamental systems, Dynkin
diagrams, and Cartan matrices for the exceptional Lie algebras.



2.14 THE SIMPLELIE ALGEBRAS 79

5) Gs.

b is the subspace df? with equationw; + wy + w3 = 0, andp, is the
corresponding subspace®f. (Vectors inC? are written(a;, az, a3).)
The roots are the restrictions toof +w; and +(w; — w;). Order inh]
defined by(2, 1, —3).

Positive rOOtswl, w9, —W3,wW1 — Wz, Ws — W3, W] — W3.
Fundamental systemi, w; — ws.

Fundamental Weyl chamber; > a, > 0.

Maximal root:w; — w3, = 3ws + 2(w; — wa).

wy IS a short root, of norm squatew; —ws is along root, of norm square
3. We can add., three times tas; — w» (the arrow goes from; — ws to
w2). The Dynkin diagram is

1 3
C @)
w2 w1 — W2

The Killing form is again k> w;?. The Weyl group contains the in-
terchange of any two coordinates, corresponding;te w; (these act as
reflections inhy), and so all permutations; it also contains the rotations of
ho by multiples ofr/3, in particular the elementid.lt is isomorphic with
the dihedral grou@s. Its order is 12, in agreement with the fact that there
are twelve chambers in th@ — S diagram. [For the computation we note
that the operation associated withsendgay, az, a3) t0 (—ag, —a1, —as3).]

Fundamental coroot$f; = (1,—1,0), Hy = (—1,2,—1).

(B

Actually all this is part of an explicit description 6f, as sub Lie algebra
of Bz, i.e.,o(7,C): LetY;,Y_;,Y; _;,... be the root elements @&f; as in the
table forB; above, and puf.; = Y3, + Y4, 3 etc. (permute cyclically).
Then the subspace &f; spanned by the;, theY; _, and the subspace
b’ of h defined byw; + ws + w3 = 0 is a sub Lie algebra aBs, isomorphic
to G, with h” asC'SA and the restrictions tfy of the+w; and thew; — wy,
as roots. (Note; = —wy — w3 etc. onk’.)

The Cartan matrix is

6) Fy.

b is C*, andp, is R*.
The roots are the formsw, and+w, + w; with 4,5 = 1,2,3,4 andi < j,
and the formd /2(+w; + wy + w3 +wy). Order inh] defined by(8,4,2,1).
Positive rootsw;, w; + w; andw; — w; with ¢ < j, 1/2(wy + ws £+ ws £ wy).
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Fundamental SyStenﬁil = 1/2(&)1 — Wo — W3 — W4),052 = W4, = W3 —
Wy, 04 = Wy — W3.

Fundamental Weyl chamber; > as + as + a4, a4 > 0, a3 > ay, a2 > as.
Maximal root:w, + ws, = 2a1 + 4oy + 3az + 2a4.

We can addy; twice toas. The Dynkin diagram is

1 1 2 2
O—O#O—O
aq (e%)] a3 Qg

The Killing form is Pythagorean, K~ w; 2. The Weyl group contains all
permutations of the axes (from the— w;), all sign changes (from the;)
and the transformation that sentds= (a1, as, as, aq) t0 H — (a1 +az + a3+
aq)- Ewith E = (1,1,1,1) (from 1/2(w; + w2 + w3 + w4)), and is generated
by these elements. Its orderis 24 - 3 (as determined by Cartan [3]).

Fundamental corooty = e; — ey —e3 — ey, Hy = 2e4, Hy = e3 —e4, Hy =
€9 — €3.

The Cartan matrix differs from that fot, only by having—2 as3, 2-entry.

For Es, E7, Es we first give Cartan’s description. Then follows a more
recent model folFg, in which Eg and E; appear as sub Lie algebras.

7) Es.
b is C8, andp is RS.
The roots are the; — w;, the+(w; + w; + wy)
with i < j <k, and£(w; + wa + -+ - + wg).
Order inh] defined by(5,4,...,0).

Positive rootsw; —w; with i < j, w; +w; +wi With i < j < k, wi+- - -+ ws.

Fundamental system; = w; — we, a9 = Wy — w3, ..., a5 = Wy — W, Qg =
wyq + W5 + wg.

Fundamental Weyl chamber; > ay > --- > ag, a4 + a5 + ag > 0.

Maximal root:w; +wo + -+ - + wg, = a1 + 209 + 3a3 + 204 + a5 + 2a5.

We can add each; to the preceding one once, updg; and we can add
as andag. The Dynkin diagram is
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DOH
Q0+
Q0+

4

The Killing form is not Pythagorean; it &t w;? + 8(> w;)?.
Order of the Weyl group, as determined by Carten:6! (see [3]).

Fundamental corootd?; = e; — eg,..., Hs = e5 — eg, Hg = 1/3(—e1 —
ey — ez + 2e4 + 2e5 + 266)

(One could consider as the subspacg3 - wy + wi +wy + - +wg =0
of C” (with coordinates, a1, . . ., as) and Pythagorean metric.)

For the Cartan matrix and another description see below.

8) E.

his C7, andpg is R".
The roots are the; — w;, the £(w; + w; + wi) With ¢ < j < k, and the
+ Zr;ﬁz Wr-
Order inh] defined by(6,5, . ..,0).
Positive rootsw, — w; with i < j, w; + w; + wy, With i < j <k, ZT# Wy
Fundamental systemy; = w; — wa, ..., 0 = wg — wr, Q7 = W5 + W + wWr.
Fundamental Weyl chamber; > ay > --- > ar,a5 + ag + a7 > 0.
Maximal root:w; + - -- + we, = a1 + 2a + 3ag + 4ay + 3as + 2a6 + 2ar7.

We can add eac#; to the preceding one once, updg, and we can add
ay anday. The Dynkin diagram is

1 1 1 1

(¢35} (&%) ag 4 Qs Qg

The Killing form is not Pythagorean. (One could consigeas the sub-
spaceV2 - wy + w; + - - - +wy = 0 of C* with Pythagorean metric.)

Order of the Weyl group, as determined by Cartan27-16-10-6-2 (see
[3D-

Fundamental corootd; = e; —es,...,Hs = es —e7, Hr = 1/3(—e1 —eg —
es3 — eq + 2e5 + 2¢e6 + 2e7).
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For another description and the Cartan matrix see below.

9) Es.

Forh we take the subspace +ws +- - - +wg = 0 of C?, with by = hNR.
Roots: they, —w; with i # j and thet (w; +w;+wi) With1 <i < j <k < 9.
Order inh] defined by(8,7,...,1,-36).

Positive rootsw; — w; with i < j,w; +w; + wi With i < j < k <9, and
—wi—wj—wgwithi<j<9.

Fundamental systemy; = w; — wa, ..., a7 = wy — ws, @g = wWg + W7 + ws.

Maximal root:w; — wsg, = 21 + 3as + 4ag + day + 6as + dag + 27 + 3as.

We can addy; to «; etc. up towr, and we can adds andas.
The Dynkin diagram is

20O~
Q0+

1 ag

(This diagram appears in many other contexts in mathematics.)
Order of the Weyl group (after Cartan [3P40 - 56 - 27-16-10- 6 - 2.
We write out the Cartan matrix (denoted By):

(2 -1 0 0 O 0 0 0

-1 2 0 0

0 -1 2 -1 0

0 0 -1 2 -1 0

Bs = 0o 0 0 -1 2 -1 0 -1
0 0 -1 2 -1 0

0 0 -1 2 0

1o 0 -1 0 0 2f]

This is an interesting matrix (discovered by Korkin and Zolotarev 1873,
[16]). It has integral entries, is symmetric, positive definite (the quadratic
form v " Egv, with v in RS, is positive except for = 0), unimodular (i.e.
det Fs = 1), and of type Il or even (the diagonal elements are even; the
valuev ' Egv with v in Z8 is always even), and it is the onfyx 8 matrix
with these properties, up to equivalence (i.e. up to replacing MByzs M
with any integral matrix\/ with det M = +1).

The Cartan matrices foE; and Eg are obtained from that foEs by
removing the first row and column, resp the first two rows and columns.
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Fundamental corootH; = e; —eg,..., Hg = eg—e7, H; = e7 —eg, Hg =
e¢ + er +es —1/3e, withe = (1,...,1).

There is an alternative description Bf, with h = C8.
Roots:tw; + w; with ¢ # j, and1/2(tw; + we £ --- £ wg) With an even
number of plus-signs.
Order defined by, = (0,—-1,-2,...,—6,23)
Positive roots+w; — w; with 1 < i < j < 8, tw; +wsg With 1 < ¢ <
8,1/2(+e; £ eg £ - ey + eg) (even number of--signs).
Fundamental system; = 1/2> w;, a2 = —w1 — wa, a3 = we — w3, g =
W1 —W2,05 = W3 — Wy4,0g = Wy — W5, 07 = W5 — Wg, g = W — Wr.
Maximal root:wsg — wr

We can addy, to as.

We show the Dynkin diagram once more, in reversed position and with
new numbering:

1 1 1 1 1 1 1
O 0
(o7} (o) a3 (671 Qg (%4 ag
1 Qg
Fundamental corootd; = 1/2> e;, Hy = —e; — e3, H3 = e — e, Hy =

er — ez, Hs =e3 —eq, Hg = €4 — e5, Hy = e5 — eg, Hg = €6 — e7.

The Cartan matrix in this scheme is derived from the earlier one by rear-
ranging rows and columns by the permutation which describes the change,
namely(1,...,8) — (8,7,6,5,3,2,1,4).

There are models faEs and E; in terms of Eg (we stay with the alter-
native picture): The root system @f; is isomorphic to the subset of the
root system oftz consisting of those roots that do not involwg when
written as linear combinations of the. Similarly the root system of’s
“consists” of those roots ofs that involve neitheryg nor a;. More than
that, E; is (isomorphic to) the sub Lie algebra Bf formed by allH,, and
X, for thea that do not involvens; this sub Lie algebra is generated by
the X,; with 1 < < 7. Similarly for E5 one omitsag andas.

In general, if for a semisimplg one takes a subdiagram of the Dynkin
diagram obtained by omitting some of the vertices (and the incident edges),
then theX, ; of g corresponding to the subdiagram generate a sub Lie alge-
bra ofg which is semisimple and has precisely the subdiagram as Dynkin
diagram.To prove this one should verify that each sub Lie algebra corre-
sponding to one of the components of the subdiagram is simple (the ideal
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generated by any non-zero element is the whole Lie algebra; use Prop.A(d)
of §2.11).

The Cartan matrices foE; and Eg in this system are obtained from
that for E5 by omitting the last row and column or the last two rows and
columns.

2.15 Automorphisms

We continue with our semisimple Lie algebggover C), with a Cartan
sub Lie algebrd, the associated root systetyy the Weyl groupw, etc.
The first thing we prove is that the operations of the Weyl groulp ane
induced by inner automorphisms@fTo recall, an inner automorphism of
g is a product of a finite number of automorphisms of the fexmad X)
with X in g . We write I'nt(g) for the group formed by all inner automor-
phisms; this is a subgroup of the grodpt(g) of all automorphisms of
g which in turn is a subgroup of the general lingak(g) of (the vector
spacey.

THEOREMA. To any elemens$ of the Weyl group of there exists
an inner automorphism of g under which the Cartan sub Lie algebre
stable and for which the restrictiokih of A tot equalsS (as operator on

h).

For the proof we shall use elementary facts about Lie groups, without
much of a definition or proof (see 8§1.3). The prime example, and the start-
ing point of the proof, iss((2,C), with h = ((H)) (see 81.1). The Weyl
group isz/2; the non-trivial element’ sendsH to —H.

The Lie group, of whichsl(2, C) is the Lie algebra, is the special linear
groupSL(2,C). Initwe find the elemeni; (= X — X _), which conjugates
Hto—H.

Now J; can be written asxp(w/2-J1), by the familiar computation with
series that showsp(it) = cost +i-sint, because,? is —I. This suggests
to use as thel of our theorem for the present case the inner automorphism
exp(t - ad(Xy — X_)) for a suitable-value. Indeed, the operatof2 ad J;
has matrixdiag(0, J;) wr to the basis{.J;, P,—H} of sl(2,C) (hereP is
X+ +X_, see p.75). Then we havep(r/2ad J;) = diag(1,—1, —1), since
exp(wJy) equals—1, and this send# to —H.

We now consider our genergl Let S, be the reflection iy associated
with the roota. Recall the sub Lie algebrg®) = ((Ha, Xo, X_o)). Put
temporarily J, = X, — X_,, and form the inner automorphisr, =
exp(m/2ad J,). Our computation fos((2, C) yields A,(H,) = —H,. For
any H orthogonal taH,,, i.e. for anyH with «(H) = 0 we havead J,(H) =
0 [from [HXy,] = ta(H)X1,] and sod,(H) = H. ThusA, sends) to
itself and agrees omwith S,. Now theS,, generate the Weyl group, and
Theorem A follows.
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There is a kind of converse to this.

THEOREMB. Let A be an inner automorphism gfthat send$ to
itself. Then the restriction of to b is equal to an element of the Weyl

group.

Together the two theorems say that the Weyl groupainsists of those
operators orfy that come from th@ormalizer Ny of  in Int(g) (the ele-
ments that sengl to itself). In addition we have

THEOREM C. An automorphismA of g that send$ to itself and
induces the identity map af is of the formexp(ad Hy) with a suitable
elementt, of y.

Thus such an automorphism is automaticallyin(g), and thecentral-
izer Zy of i in Int(g) (consisting of the elements that leaygointwise
fixed) is the set of alkxp(ad H) for H in j (this is a subgroup, since the
H'’s commute and sexp(ad(H + H')) equalsexp(ad H) exp(ad H')). We
see thatz, is connected.

Altogether we get

THEOREMD. The assignment — Al sets up an isomorphism of
the quotientNy, /Z, with the Weyl groupV. (And Ny /Zy is the group of
components oy .)

We first prove Theorem C (which is easy) and then comment on Theo-
rem B.

Let thenA be as in Theorem C. We recall the fundamental regt3 he
corresponding corootd; and the root elements; and X _; generatg, as
we know from §2.11. Thud is determined by its effect on these elements.
By hypothesis we have(H;) = H,. Therefore each; goes to itself (under
AT), and in turn eackX; and eachX_; goes to a multiple of itself, with a
(non-zero) facton; or b;. The relation X; X_;] = H; and invariance under
A requiresh; = 1/a;. Choose; so thata;, = exp(t;). Since the rootgo;}
are a basis fop, there existsH, in h with «;(Hy) = ¢;. It follows from
ad Ho(X ;) = +t; X4, that the automorphiswexp(ad Hy) agrees withd on
the H; and theX ,; the two are therefore identical.

Theorem B is a good deal harder to prove and in fact goes beyond the
scope of these notes. However we briefly indicate the steps. Sbhet
an inner automorphism gf that sends) to itself. Applying A to one of
the formulag[HX,] = a(H)X, that define the roots and root elements,
we get[AH,AX,] = a(H)AX, or, replacingH by A~'H, [H,AX,] =
AVa(H)AX,. ThusAY« is again a root (and X, is a corresponding root
element). It follows thattV mapsh to itself; andA mapsh, to itself (as a
real linear transformation) and permutes the corébtg¢note thatd leaves
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the Killing form and the induced isomorphismigfandp] invariant) and
by the same token permutes the Weyl chambers. Since the Weyl group
is transitive on the chambers, we can, using Theorem A, find an inner
automorphisnB that induces an element of the Weyl grouphaend such
that the compositiom’ = BA preserves the fundamental Weyl chamber
C. The next step is to show that|p is in fact the identity. We note first
that the linear map!’|ho has a fix vector (eigenvector with eigenvalue 1)
H, in C, e.g. the sum of the unit vectors, wr to the Killing form, along the
edges olC.

One now introduces a compact fonof g, which one can assume to
containih, (see §2.10). With the scalars restrictedtone hagy = u -+ 7u.
One shows now (a long story) that the real sub Lie algelofsy generates
a compact Lie groug in Int(g), with Lie algebrat, and that every element
of Int(g) is (uniquely) of the formk - exp(adY) with £ in K andY in
u (analogous to writing any invertible complex matrix as unitary times
positive definite Hermitean — the polar decomposition). In particular the
automorphismd4’ above can be so written. Now comes a lemma, which
allows one to disregard th& -term. Note that the fix vectail, of A’ lies
in ho and so iniu.

LEMMA E. Suppose for som# in b, the element-exp(adiY)(H) =
H' is also inhy. Then[Y H] = 0, andexp(adiY)(H) = H.

Proof: Sinceu is a real form ofg, complex conjugation of wr to u
(sendingi to —: in the decompositiog = u + iu) preserves brackets, and
so one hag-exp(—adiY)(—H) = —H'. This impliesexp(ad 2:Y)(H) = H.
Now adY is a skew-symmetric (wr to the Killing form) om, and so its
eigenvalues onu and then also ory are purely imaginary. The eigen-
values ofad:Y are then real; it is also semisimple, justaky is. But
then it is clear from the diagonal form afi:Y that the fix vectorH of
exp(ad 2¢Y) must be an eigenvector afl ;Y with eigenvalug), i.e., must
satisfyad Y (H) =0, or [YH| = 0.

This in turn impliesexp(ad sY)(H) = H for all s.

Applied to the A’ = k - exp(adiY) above this has the consequence
A'(H) = k(H) for all H in by, and in particulak(H,) = H,. Now one
has another important fact which we don’t prove here. (Cf. [12], Cor. 2.8,
p.287.)

PROPOSITIONF. In a compact connected Lie group the stabilizer
of any element of the Lie algebra is connected.
(Thestabilizerof X is the set (group)g : Ad g(X) = X}. HereAd g refers
to theadjointaction ofg on g, induced by conjugation af by g, see [11].)

One applies this to the elemeft. Then the elementscp(itHy), for
realt, which lie in K, commute withk. The fact that no root vanishes on
H, (oriHy) implies that the Lie algebra of the stabilizeri@§ (in u) is iho.
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Thusk lies inexp(ihy) (by Prop.F), and therefore it and then al§oacts
asid onihy and on.

Finally thenA|h, equalsB~!|h, and is therefore equal to an operator in
the Weyl group, establishing Theorem 3.

We now want to go fronint(g) to Aut(g). The important concept here is
that of adiagram automorphisme recall the basic Isomorphism Theo-
rem (82.9, Cor.2). It suggests looking at the weak equivalences of the root
systemA of g with itself; as noted loc cit, each such equivalence extends
uniquely to an isometry df, with itself, and we will use both aspects in-
terchangeably. Under composition the self-equivalences form a group, a
subgroup of the group of all permutations&f called theautomorphism
groupof A and denoted bylut(A). It has the Weyl group as a subgroup,
in fact as a normal subgroup (the conjugate of a Weyl reflectiphy an
elementT in Aut(A) is the reflection wr to the rodf'(«)). There is also
the subgroup of those elements that send the fundamental Weyl chamber
to it self, or—equivalently—permute the fundamental roots among them-
selves; it can also be interpreted as the group of automorphisms (in the
obvious sense) of the Dynkin diagram; we denote itdy(DD). (See
§2.13))

SinceW is simply transitive on the chambers, it is clear thai(A)
is the semidirect product of¥ and Aut(DD), and thatAut(DD) can be
identified with the quotient grougut(A)/W.

The basic isomorphism theorem cited above allows us to associate with
each element aflut(A) an automorphism af . However there are choices
involved, and one does not get a group of automorphismstbis way.

This is different if one restricts oneself tut(DD). An elementl” of it
permutes the fundamental roatsin a certain way; one gets an associ-
ated automorphismr of g by permuting the corresponding root elements
X; and X_; (which generatg) in the same way. It is now clear that the
mapT — Ar is multiplicative. The automorphisms gfso obtained from
Aut(DD) are calleddiagram automorphisms

This depends of course on the choice@nd of the fundamental Weyl
chamber. However, for any two fundamental systdrmend &’ we know
that there exist inner automorphisms that sén &’ and that the map
® — @' so obtained is unique (Propositions C, D, E, 82.11, and Theo-
rems A, B and C); thus we can identify all fundamental systems tof
agenericfundamental system, with a corresponding generic Dynkin dia-
gram. It is easily seen that any automorphisng ofduces a well-defined
automorphism of the generic fundamental system and Dynkin diagram,
and that this yields a homomorphism &fi¢(g) into Aut(DD) (the latter
now interpreted as the group of automorphisms of the generic Dynkin di-
agram). Theorem C implies that the kernel of this map is precisely).
The diagram automorphisms above show that(g) contains a subgroup
that maps isomorphically ontéut(D D). We now have a good hold on the
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relation betweemiut(g) andInt(g):

THEOREMG. The sequence — Int(g) — Aut(g) — Aut(DD) —
1 Is split exact.

Another way to put (part of) this is to say that “the groQpt(g) of
outer automorphisms @f", i.e., the quotient grougut(g)/Int(g), can be
identified with Aut(DD).

We noted already in effect in §2.13 whatt(D D) is for the Dynkin di-
agrams of the various simple Lie algebrds; B;, C;, G2, F,, E7, Es admit
only the identity (and so all automorphisms of the Lie algebra are inner).
A; foril > 1, D, for | # 4 and Es admit one other automorphism (“hor-
izontal" reversal ford; and Eg, interchanging the two “ends" fap;), so
that Aut(DD) is Z/2; and finally D, permits the full symmetric grougs
on three objects (the endpoints of its diagram). (The non-trivial element of
Aut(DD) is induced forsl(n,C),n > 2, by the automorphism “infinitesi-
mal contragredience’y — X#, and foro(2n, C) by conjugation with the
improper orthogonal matridiag(1,...,1,—1); as notedp(8,C) has some
other outer automorphisms in addition.)

Our final topic is the so-calledpposition elemerih the Weyl group of
anyg. Itis that element of the Weyl group that sends the fundamental Weyl
chamberC to its negative—C'; we denote this element by. Clearly, if
W contains the elementid, thenop is —id. This is necessarily so for a
g with trivial Aut(DD): Forg we have the contragredience automorphism
CV of 82.9 (end), whose restriction tpis —id. By the results above,"
is inner iff —id is in the Weyl group; and for g with trivial Aut(DD) all
automorphisms are inner.

For D; with eveni the element-id is in W.

For A;, with[ > 1, where)V acts as the symmetric group on the coordinate
functionsw;, op is the permutation); — w;,o_;. This sends each funda-
mental rooty; = w; —w; 1 t0wy o0 s —wir1 s = —ayy1-4, and so sends the
fundamental chamber to its negative.

For D; with odd! the opposition is given by; — —w; fori=1,...,1—1
andw; — w;. This sends the fundamental roets= w; — w;+1 With i =
1,...,1 — 2 to their negatives, and sends_; = w;_1 — w; [respa; =
wi—1 + w] to —ay [resp—a;_1], thus sending” to —C.

We come taE. First a general fact: for any roatand any weighi the
elementS,(\)— X = A(H,)a lies in the root latticer (see 8§3.1); it follows,
using the invariance d® undernw, thatS(\) — A lies in R for any S in W.

We use this to show thatid is not in the Weyl group of’s; namely, for
the fundamental weight; (see §3.5)the elementid(\) — A} = —2)\; =
—2/3 - (4w +we + -+ +wg) ISNOtINR.

In all three cases we hawe # —id, —id is not in the Weyl groups-op
gives a non trivial element olut(DD), andC" is not an inner automor-
phism.
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Representations

This chapter brings the construction of the finite dimensional represen-
tations of a complex semisimple Lie algebra from the root system. (The
main original contributors are E. Cartan [3], H. Weyl [25,26], C. Cheval-
ley [5], Harish-Chandra [10].) We list the irreducible representations for
the simple Lie algebras. Then follows Weyl's character formula, and its
consequences (the dimension formula, multiplicities of weights of a rep-
resentation and multiplicities of representations in a tensor product). A
final section determines which representations consist of orthogonal, resp
symplectic, matrices (in a suitable coordinate system).

Throughout the chaptgris a complex semisimple Lie algebra of raink
h is a Cartan sub Lie algebra, = {«, 3, ...} is the root system and ™ is
the set of positive roots wr to some given weak orddy, i@t = {1, ..., }
is the fundamental systenil, (with o in A) are the coroots),, are the
root vectors, X, are the root elements, and the coefficients; are in
normal form (all as described in (). As noted in §2.11, we writé];
instead ofH,,,, for «; in @, for the fundamental coroot§) denotes the set
{Hy, Hs, ..., H;}. Similarly we write X; for X,,, andX_; for X_,,..

3.1 The Cartan-Stiefel diagram

This is a preliminary section, which extends the considerations of §2.11
and introduces some general definitions and facts. For all of it we could
replaceA (in hJ ) by an abstract root system (in a Euclidean sgagevith

ho corresponding to the dual spat€é (using the standard identification

of a vector space with its second dual). In the literatifrandp, are often
identifiedunder the correspondenge— h, given by the metric; but we
shall keep them separate.

We recall that{h,} andA are congruent root systems and that, } is
the root system dual toh,, }. {H,} and{h,} have the same Weyl group,
isomorphic to that ofA in the obvious way (contragredience; the reflection
for H, equals that foh,,).

We note tha® is a fundamental system for the root systgf, }: Each
relationa = Y a;«; for o in AT, with non-negative integral;, implies the
relation{(«, a)H, = > a;{(o;, ;) H; (because ofx, o) H, = 2h, etc.). Thus
all theseH,, lie in the cone spanned &, and that is of course enough to
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establish our claim; it also follows that the number&y;, o) /{a, ) are
(non-negative) integers.

We regard the Weyl group W as an abstract group, associaged/toch
acts orp (with the original definition of §2.6) and also énwith the con-
tragredient (transposed-inverse) action. Thus we Iavél) = A\(S~1H)
for S'in W, X in b, andH in ,. Since the inner products iy andb]
are compatiblé|a| = |h,|), the action oy, is also orthogonal, and in par-
ticular eachsS,, acts as reflection across thmgular plane(a,0) = {H :
a(H) = 0} (cf.82.11). The formula for this iS,(H) = H — a(H)H,.

We recall that the union oveX of these singular planes is the infinites-
imal Cartan-Stiefel diagram®’ of g (in ho). It divides b, into the Weyl
chambers. The fundamental Weyl chambBeconsists of all the/ in b,
for which the valuesy;(H), or equivalently the H;, H), or again all the
a(H) with o in AT, are positive. Similarly the fundamental Weyl chamber
C" in by consists of the\ with all \(H;) positive. The Weyl chambers are
cones, of the linear kind described in the Appendix. The walls of the fun-
damental chamber lie in the planes orthogonal toHhéin o), resp. the
a; (in bJ). (As examples see the figures for the casgss,, G in §83.5.)

We come to the new definitions:

Generalizing the notion of singular plang, (), we define, fora in A
andn in Z, thesingular plane(a, n), of heightn, as{H € ho: a«(H) = n};
note @, n) = (—a, —n). The union over andn of the (x, n) is the(global)
Cartan- Stiefel diagranD(g), or D in short, ofg (wr to h; by conjugacy
of the CSA's it is independent of whidhwe use). The components of the
complement ofD(g) in b, are thecellsof the diagram.

(We recall that dattice in a vector space is a subgroup (under addition)
generated by some basis of the space.) The subgrogpge#nerated by
all the H,, (or equivalently byO) is called thetranslation lattice 7. The
subgroup ofy, of thoseH for which all valuesx(H), with « running over
A (or ¢), are integers is called theenter latticeZ. Dually we write R
(theroot lattice) for the subgroup ofi; generated byA (or @), andZ (the
lattice ofintegral formsor weight9 for the subgroup ofy] consisting of
the X for which all values\(Ha) with « in A (or in @, i.e., using only the
H; in ©) are integers. For examples see §3.6.

Each element of 7 defines a map di, to itself, called aranslation
with H — H + ¢. The group of maps df, to itself generated by all these
translations and by the Weyl growp is called theaffineor extendedVeyl
groupW,, with a split exact sequence— 7 — W, — W — 0. All its
elements are isometries - maps that leave the distance between any two
points invariant; but they don’t necessarily fix the origin (they affene
transformations). Clearly each elemen®f maps the Cartan-Stiefel di-
agramD(g) to itself, and thus permutes the cells.
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In 7 we distinguish two important subsets: Fifst the set of the\ in
7 with all \(H;) > 0 (equivalently:\(H,) > 0 for all « in A*), thedom-
inant forms or weights; second the sgt of the inZ with all A\(H;) >
0, the strongly dominanforms or weights. One sees th#t (resp.Z)
is the intersection of with the fundamental Weyl chamber (resp. the
closed fundamental Weyl chamber) &fin ] . We introduce the set =
{A1,A\2,...,\;) of independent generators &f namely the dual basis to
©, defined by the equations(H;) = ¢;; (Kroneckers). The \; are the
fundamental weightghey lie on the edges (the 1-dimensional faces) of
the fundamental Weyl chamber, since we hayé?;) = 0 for i # j. [\; is
the point of intersection of the i-th edge with the plane through the point
1/2a;, orthogonal to the vectar; (the factor 1/2 comes from; (H;) = 2).]
7° (resp.Z9) is the set of linear combinations of thewith positive (resp.
non-negative) integral coefficientg? is a free Abelian semigroup, with
basisA.

We single out an important element®f, the elemend = \; + Xy +...+
A1, thelowest strongly dominant fornusually just called théowest form
(or lowest weightin the literature also often denoted py it is character-
ized by the equation& H;) = 1 fori = 1,...,l. Clearly a dominant form
A is strongly dominant if\ — § is dominant.

We now prove a number of facts about all these objects.

PROPOSITIONA. The fundamental Weyl chamber(in y,) is con-
tained in the cone spanned by the @et

(Geometrically, because a@fi;, H;) < 0 for i # j the set© spans a
“wide” cone, and therefor€, the negative of the “dual” cone, is contained
init.) Takev =Y r;H; in C, i.e., with all (v, H;) > 0. Write v asv™ + v™,
wherev™ means the sum of the terms with< 0. For anyH, that occurs in
the sumw~ (and so not in™) we have(v™, H;) < 0 because ofH;, H;) <
0 for i # j, and so(v—, H;) = (v, H;) — (v*, H;) > 0. Multiplying by the
(non-positive)r; and adding we getv—,v~) <0, i.e.,v™ =0. /

It follows from the corresponding fact fgf that the fundamental weights
); are positive (in the given weak order) and that the lowest fdigin-
deed the smallest elementDt.

PROPOSITIONB. The lowest formy equals one half the sum of all
positive roots. For any in W the element — S¢ is the sum of those
positive roots that become negative undet.

For the proof we write temporariy=1/23" .+ o. By LemmaF, 82.11,
we haves;(e) = e—a; for the Weyl reflection associated to the fundamental
roota;. Comparing with the general formufa(\) = A\ — A\(H;)«; we find
e(H;) = 1 for all 4; but thene is §. The second assertion of Prop.B is then
elementary,/
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LetU = {z : |z] = 1} be the unit circle inC, as multiplicative group
(this is just the unitary group(1)). b4 andh, are paired td/ by the “bi-
linear" function that sends the pdix, H) to exp(27i\(H)). Theannuller
(or annihilator) of a subgroup of, (resp.h, ) is the subgroup of] (resp.
ho) of those elements that under the pairindgitgield 1 for every element
in the given subgroup. We use some simple notions of Pontryagin duality
theory of Abelian groups: The dual* of a (topological) Abelian group
A is the groupHom(A, U) of all continuous homomorphisms dfinto U
(the characters of), with the pointwise product, with a suitable topology,
and the pairindf,a) — f(a) to U.

ProPOSITIONC. The groupsT, Z, R, T are lattices (i, andb]
respectively)T is a subgroup of., andR one ofZ. T andZ are annullers
of each other, similarly foR andZ. The groupsZ/T andZ/R are finite,
and are dual under the induced pairing/t¢and thus isomorphic) .

That7 andR are lattices, generated Iy and ® respectively, we have
seen alreadyZ and Z are then generated by the dual basesand an
unnamed one fog. The inclusion relations come from the integrality of
the3(H,). The finiteness of the quotients comes from the fact that all four
groups have the same rank. TH&t7 andZ/R are dual (each “is" the
group of all homomorphisms of the other irit9), follows easily from the
facts claimed about annulling - which are also quite cldais(defined
as annuller of7'; that conversely is annuller ofZ one can see by using
the symmetry in the definition of dual bases). That duality implies (non-
natural) isomorphism for finite Abelian groups is well known; it follows
from the facts that duality preserves direct sums and that the dual of the
finite cyclic groupZ/n is isomorphic tdZ/n. /

We note, but shall not prove, the fact th&t7 is (isomorphic to) the
center of the simply connected (compact) Lie group with Lie algebra
(compact form ofy, §2.10).

The coroots,,, for o in A, are all primitive elements df (they are not
divisible, in7, by any integer different fromt1). The reason is that each
H, belongs to some fundamental system and thus to a basis(&#. 11);
similarly for thea andR.

The affine Weyl groupV, contains the reflections in the singular planes
(o, n); e.g., the composition df,, with translation byH,, is the reflection
in the plane ¢, 1); the “1" comes fromn(H,) = 2. It is easily seen that
W, is in fact generated by these reflections. It follows, as for the cham-
bers undemy, thatW, is transitive over the cells, and that therefore all
cells are congruent. Cells are clearly bounded convex sets. The cell in the
fundamental Weyl chamber whose closure contains the origin is called the
fundamental cellc.
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PrRoOPOSITIOND. If g is simple, then the fundamental cell is the
simplex{H : «;(H) > 0 fori =1,....,l andu(H) < 1}, cut off from the
fundamental Weyl chamber by the maximal rpot

This follows from Prop. L, §2,11.
LEMMA E. Lett be a non-zero element @f then there exists
a roota with a(t) > 2.

We use the notion dével writing an element of 7 as)_ s; H; (with s;
in Z), this i) s;, the sum of the coefficients. Now suppose all the values
a(t) are+1 or 0. The same holds then for all transfor§tswith .S in W;
thus we may assume thein ¢t = > ¢, H; to be non-negative (transform
into C and apply Prop.A). Fronk,t) = > ¢;(t, H;) we conclude that there
is at least ong with ¢; > 0 and(t, H;) > 0; the latter impliesy;(t) = 1 by
our assumption off. The element;t =t — «o;(t)H; =t — H; still has all
coefficients non-negative, when written in terms of fiie But the level
has gone down by 1. Iterating this we end up with a contradiction when
we get to a singléd;, sinceq;(H;) = 2. v/

We now prove, among other things, thé&}, is simply transitive on the
set of cells.

PROPOSITIONF.

(a) The only element of the affine Weyl group that keeps any cell fixed
(setwise) is the identity.

(b) Each closed cell has exactly one point (a vertex) in the lattice

(c) The union of the closed cells that contain the origin is a fundamental
domain forT .

(d) The only reflections contained v, are those across the singular
planesa,n).

Keeping a cell fixed, in (a), is of course equivalent to the existence of a
fixed point in the (open) cell. For the proof we may as well assume that
g is simple. In the general case the various simple components operate in
pairwise orthogonal invariant subspaces and are independent of each other.

First (a): By transitivity we may assume that the cell in question is the
fundamental celt. Suppose that for & in W, we haveT'(c) = c. If T
leaves the origin fixed, it leaves the Weyl chambs¢iixed (setwise), and
by Prop. E, 82.11 we hav€é = id. If T(0) were not O, it would be an
element of7, in C, on which the maximal roqt takes value 1 (by Prop.D),
contradicting Lemma E (note tha{7'(0)) is a non-negative integer for
every positive rooty).

For (b) suppose thathad another vertex besides 0, i¥. Translation
by —t sends: into another celt’ that also has 0 as a vertex. There exists
then anS in W with S(¢/) = ¢. By (a) this would say tha$ equals the
translation byt, which is manifestly not so.
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Now for (c): LetQ(= W - ¢) denote the set described in (c). Since the
closed cells cove, it follows from (b) that each point df, can be trans-
lated intoQ by a suitable element @f. On the other hand, Prop.D implies
that for any pointd in @ and any rootx we have|la(H)| < 1;i.e.,Q is
contained in the strigH : |a(H)| < 1}. Suppose now that’ and H' are
two points inQ that are equivalent undér, so thatH — H' = t(# 0) is
in 7. Lemma E provides a roat with «(¢) > 2. But then we must have
a(H) = —a(H') = 1, so that both# and H’ lie on the boundary of the
strip associated with, and so also on the boundary@f ThusQ has the
properties required of a fundamental domainZor

Finally (d) is immediate from (a),/

Remark to (c): One sees easily that the(g&t the intersection, ovek,
of all the strips described. But for somethe strip may contain in its
interior (e.g. for the short roots @f,), and for somex the intersection of
Q@ with the boundary of the strip may be (non-empty and) of dimension
less than — 1 (e.g., for the short roots aBs). This corresponds to the
fact that in general the roots that occur as maximal roots wr to some weak
order form a proper subset of.

3.2 Weights and weight vectors

We now come to the study of representations. (We shall often abbreviate
“representation” to “rep" and similarly “irreducible rep” to “irrep".) Let

v : g — gl(V) be a representation gfon the (complex) vector spadée

(We often writeXv or X - v for o(X)(v).)

The basic notion is that afeight vector a joint eigenvector of all the
operatorsp(H) for H in the Cartan sub Lie algebta Note that by defini-
tion such a vector is nat If v is a weight vector, then the corresponding
eigenvalue forp(H), as function ofH, is a linear function or, in other
words an element df'; this element is theveightof v.

For a given\ in h T theweight spaceV), is the subspace df (possibly
0) consisting of 0 and all the weight vectors wittas weight.\ is called
aweight of ¢ if V) is not O, i.e., if there exists a weight vectorXoThe
dimensionm, of V, is called thanultiplicity of A (as weight of the rep).

We prove a simple, but fundamental, lemma (generalizing Lemma A in
81.11, forA;). Letv be a weight vector op, with weight); let o be any
root, and letX,, be the corresponding root element (well determined up to
a scalar factor, see 82.5).

LEMMA A. The vectorX v, if not zero, is again a weight vec-
tor of o, with weight\ + «; in other words X, mapsV, into V..
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This is a trivial computation; again, as the physicists say, we “use the
commutation rules": From([H X,]) = ¢(H)p(Xa) — (X )e(H) (since
o preserves brackets) ap X,,] = a(H)X,, (sinceX, is root element to
a)we getHX v = XoHv+ [HX v = XoAH)v + a(H)Xv = (MH) +
a(H)) Xo. v/

We come to the basic facts about weights, witandV as above.

THEOREMB.

(a) V is spanned by weight vectors; there is only a finite number of
weights;

(b) the weights are integral forms (they belong to the lattiéey, );

(c) the set of weights aof is invariant under the Weyl group: if is
a weight, so isS,A = X\ — M\(H,)a, for anya in A; in fact, withe =
sgn(A(Hy)), all the terms\, A — ea, A — 2¢a, ..., A — A\(H,, ) are weights of
h

(d) the multiplicities are invariant under the Weyl groug, = mgs,, for
all s inw.

For the proof we recall that each cord@}, belongs to a sub Lie alge-
brag® = ((H,, X, X_.)) Of type A, (82.5). ApplyingA, -representation
theory (81.12) to the restriction qgfto g() we conclude that the operator
»(H;) is diagonizable. All the varioug(H;) commute. It is a standard re-
sult of linear algebra that then there is a simultaneous diagonalization of
all thep(H,). This proves (a), since thié, spanh. Point (b) is also imme-
diate, since by oud;-results all eigenvalues of(H,), i.e. the(H,,) for
all the weights\, are integers.

The proofs for (c) and (d) are a bit more elaborate: . &k a weight
vector, with weight\, and let« be a root ofy. Because ofi_, = —H, we
may assume(H,) > 0 (the case = 0 being trivial).

Applying Lemma A toX_,, and iterating, we find thatX_,)"v, if not
0, is weight vector to the weighit — ra. But it follows from the nature of
the repsD; of A; that, withr = X\(H,,) (= the eigenvalue off,, for v), the
vectorsv, X v, (X_,)?%v,...,(X_,)"v are non-zero, in fact independent.
This proves (c) (note = 1 at present). The argument shows at the same
time thatm, < mg_x (namely, the mapX_,)" is injective onV,). Since
S, is an involution, we have equality here, and then= mgs, follows for
all Sinw.

The last argument also shows, < my_,, provided\(H,) > 0. Thus
the sequencey, my_q, Mr—2q4, - - -, Mg, » INCreases (weakly) up to its mid-
dle, and decreases (weakly) in the second half.

The multiplicitiesm, may well be greater than This happens, e.g., for
the adjoint representation, where the weiglsippears with multiplicity
(the rank ofg). (The other weights are the roots, with multiplicitie¥ ./
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Remark: (c) implies that the integetsor which X\ + ka is a weight of
o fill out some interval—r, s] in Z, with r, s > 0; these weights form the
a-string of A (for ¢). Thus the set of weights ¢f is “convex in direction

”

a .

A weight )\ of ¢ is extreme(or highes} if A + « is not weight ofy for
any positive rooty; note that this involves the given weak orderbih.
Extreme weights exist: we can simply take a maximal weight of the
given order, or we can take any weight of maximal norm (wr to the Killing
form) and transform it into the closed fundamental Weyl chamber by some
element ofW (then(\, o) > 0 for all « in A* and sg\ + a| > |}|, so that
A + « is not a weight). Similarly a weight vector gf is calledextreme
if it is sent to 0 by the operator¥, for all positive rootse. We note an
important consequence of Lemma Aweight vector whose weight\ is
extreme is itself extreme.

The main construction for representation theory, generalizing directly
that for A;, follows now: Letv be an extreme weight vector gf with
weight\ (like the vectory, for A;-theory, an eigenvector ¢f and sent to
0 by X, see 81. 12). We associateitthe subspac¥, of V defined as the
smallest subspace ®f that contains and is invariant under all the root
elementsX_; corresponding to the negatives of the fundamental repts
ClearlyV, is spanned by all vectors of the fotkn ;, X_;,..X_;, v with k& =
0,1,2,...andl < i; <I.(Thuswe have itself, all X_;v, all X_; X_,v, etc.,
analogous to the vectoig, X _vg, (X_ )2y, ... of A;-theory.) By Lemma
A each such vector, if nat, is weight vector ofp with weight\ — a;, —

a;, — ... — ay, ; it follows that all but a finite number of these vectors are 0.

PROPOSITIONC. V, Is ag-invariant subspace of.

For the proof we note thatis generated by the (fundamental) root el-
ementsX; and X _; (see §2.11). Therefore it is enough to show tHats
invariant under theX; and X_;. Invariance under th& _; is part of the
definition of V. Invariance under th&; we prove by induction: Writing
for a sequencéiy , is, ..., i} as above, we abbreviate ;, X_;,...X_;, v to
Xjv (s0 X 3v = X _v); call k thelengthof 7. We shall prove inductively
that all X;v with I of length at most any givenare sent intd/, by the X;.

This is clear fort = 0, sincev is an extreme vector: alt;v are 0. For
the induction, take any < t + 1; putl’ = {is,...,4x} (with I as above).
Then from the “commutation relatiori’X; X_,] = X;X_; — X_,X; we
haveXiX]v = XiX,ilX]/U = X,ilXiva + [XiX,il]Xp’U. By induction
the vectorX; X v is in V,,, and so is then itX_;, -image, taking care of
the first term on the right. As for the second terf&; X_;,] is O if 4, is
different from: (since«; — «;, is not a root), and ig; if iy = 4; in the
latter caseX v is eigenvector ofd;. |/
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COROLLARY D. If the representatiory is irreducible, then there
exists exactly one extreme weight, sgyit is dominant (belongs to the
semigrouf?), maximal in the given order, of maximal norm, and of mul-
tiplicity 1; all other weights are of the formm— " n;a; with non-negative
integersn;.

Proof: We take any extreme weight and the corresponding weight
vectorv (as noted, these exist). The corresponding space then in-
variant and non- zero and by irreducibility equals the whole spaceéhe
claim about the uniqueness and multiplicity)odnd the form of the other
weights follow at once from the explicit description of the vectars
spanning/,. The other properties of follow by uniqueness from the fact
that, as noted above, extreme weights with these properties gxist.

We interpolate a convexity property of the set of weights of

PROPOSITIONE. The set of weights of,, is contained in the con-
vex closure of the orbity - X of A under the Weyl group.

Proof: Let 1 be a weight; we may assumein the closed dual funda-
mental chambe€ " ~. Fromu = A — Y n;a; we conclude\(H) > u(H)
forall H in C~ (i.e. with alla(H) > 0). Now we apply Prop. | of §2. 11.

Vv

We return to the situation of Cor.D. The principal fact of representation
theory, which we prove below, is that conversely the extreme weight deter-
mines the representation; if two irrepsgifiave the same extreme weight,
then they are equivalent (uniqueness). Moreover, exényZ? appears as
extreme weight of some irrep (existence). Clearly this gives a very good
hold on the irreps. And for general, reducible reps there is Weyl's theorem
that any rep is direct sum of irreps. We state these results formally:

THEOREMF. Assigning to each irrep its extreme weight sets up a
bijection between the sgt of equivalence classes of irrepsgénd the
setz? of dominant integral forms in .

THEOREMG. Every representation @fis completely reducible.

Comments: The bijection in Theorem F seems to depend on the choice
of order inpJ or of the fundamental Weyl chamber. One can free it from
this choice be replacing the dominant weighin question by its orbit
under the Weyl groupV, which has exactly one element in every closed
Weyl chamber by Prop. H in 82.11. The bijection is then between the set
g and the set ofv-orbits in the latticeZ of integral forms.

The splitting of a repp into irreps, given by Theorem G, is not quite
unique (if there are multiplicities, i.e., if several of the irreps are equiva-
lent). What is unique, is the splitting inteotypic summandsvhere such
a summand is a maximal invariant subspace all of whose irreducible sub-
spaces arg-isomorphic to each other. This follows easily from Schur’s
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Lemma; an isotypic subspace is simply, in a given splitting into irreps, the
sum of the spaces of all those irreps that are equivalent to a given one.

3.3 Uniqueness and existence

We start with the uniqueness part of Theorem F, the easy parp. dued’
be two irreps of, on the vector spacds andV’, with the same extreme
weight . We must show andy’ equivalent.

The clue is the consideration of the direct sum representatiop’ on
V @ V'. Letv andv’ be extreme weight vectors tofor ¢ andy’; then
(v,v") clearly is an extreme weight vector Xdor ¢ @ ', with associated
invariant subspac&” = (V @ V'), . (see Prop. C in 82). The (equiv-
ariant) projectiorp of V& vV’ ontoV sendg(v,v’) to v, and therefore (by
irreducibility) mapsW onto V. On the other hand the kernel pfon W
is the intersection of¥ with the natural summand of V & V’, and thus
a g-invariant subspace df. It cannot contain the vectar, since(v,v’) is
the only vector inW with weight\ (all the vectors generated frofm, v’)
have lower weights). Thus by irreducibility gfthis kernel is 0, and sp
is an equivariant isomorphism of with W. Similarly W is isomorphic to
V’, and soV andV’ are isomorphic, i.e andy’ are equivalent,/

We come to the hard part, existence of irreps. The proof we give is an ad
hoc version of the standard proof (which involves Bancaré-Birkhoff-
Witt theoremtheBorel sub Lie algebraf g (spanned by and theX,, for
all positivex), and theVerma modulésimilar to ourV* below)).

Let \ be a dominant integral form dgy . We must construct an irrep
with ) as extreme weight. We shall construct, successively: First an infinite
dimensional vector spa¢&* on which the elementX, for a in A and the
H in b act (but brackets are not preserved; this is not quite a representation
of g); U* will be a direct sum of finite dimensional eigenspaces wiith
weights inZ of the form “\ minus a sum of positive roots", and with
an extreme weight of multiplicity 1. Second, a quotiént of U*, still
infinite-dimensional, but otherwise with the same properties, on which the
original action becomes a representatiop.dfinally a quotientv* of V*,
irreducible undeg , with ) as extreme weight, and of finite dimension. We
take our clue from the form of the spakgin Prop. B, §3.2.

Let{~1,...,7m} be alist of all positive roots of (this is not a fundamen-
tal system). To each finite sequernice {i1, ..., i} of k integers;,. satisfy-
ing 1 <4, < m, with k (thelengthof I)=0,1,2, ... , we assign an abstract
element;. Thus we havey (also written jusb), vy, v, ..., U, V11, V12, Va1,

... . We letU* be the vector space ov&mwith all thesev; as basis. For any
suchl and anyi with 1 <i < m we putil = {i,41, ..., }.
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We shall now define operatofsfor H in h andX , for ain A, operating
onU*; hereH depends linearly ofif. For an arbitraryX = H + 3" ¢, X
we then putX = H + > ¢, X ,; thusX is linear inX.

We defineH as follows: Anyv;, with T as above, is eigenvector &f
with eigenvalue\(H) — ~;, (H) — vi,(H) — ... — v;, (H). ClearlyU” is then
direct sum of weight spacdg} with weights of the formu = X —~;, —
Vi, — ---— Vi, - EACh such weight space is of finite dimension, because of the
positivity of the~;. Clearly also the variou® commute with each other;
we have a representation ipf

Next, for anyy; we defineX _ in the obvious wayX _ v; = v;.
Finally we defineX . vr by induction on the length af. To begln with we
putX v =0.We denote the operator assignedXg X ;] by X, ; for any
o, 3 in A; this equalst, if 3 = —a, or NopX,, 5 if a4 3 is aroot, and
the operator O otherwise. (Recall that we piyf, = 0, if one of \, p, A + 1
is not a root, and similarlyx . = 0 for any o in h] — A.) For anyI of
length> 0 we write I in the form:;I’ and putx, vi(= X, 17%1@[) =
1_7 X or + X, s, VI (Note that the operations an. are already

defined lnductlvely) Thusweareforcidg, X —-X X =X _ .

With o, g in A we write Z,, ; for gagﬁ - XX, —X,5 and defingZ, ,
to mean the operatar for \, . in bJ, but at least one of, 1 not a root;
note that the relationg,, ; = 0 hold fora > 0,3 < 0 and fora < 0,3 > 0,
but possibly not for the remaining caségX , — X H is the operator to
[HX,], i.e. it equalsa(H) X, for all a, from the easily verified fact that
X, sends a vector of weightto one of weight + «. To forceZ,,; = 0
for all pairs of rootsy, 5 and thus to get a representatiorgpfve form the
smallest subspace, say, of U* that contains alZ,,zvr and is invariant
under all operatorX,, and H. It is fairly clear thatU’ is spanned by all
vectors of the formX; X .. X Z,pv1, With thed; in A.

On the quotient spadé* = U*/U’ we have then induced operatot§
andH’, and generallyX’, which form a representation @f since the re-
lations X/, X, — X;X|, = [XoX;]' now hold for alla andg. Furthermore,

V* is spanned by the images of the(which we still callv;; they may not

be independent any more), andsgenerates’* under the action of.

Thew; are eigenvectors of thié’, with the same eigenvalues as befdre.

is still direct sum of (finite dimensional) weight spaceg)o{This uses a
standard argument of linear algebra, essentially the same as the one show-
ing that eigenvectors of an operator to different eigenvalues are linearly
independent.) In particulayris an extreme weight, of multiplicity 1, with

v as eigenvector, providedis not 0 inV* (this proviso is equivalent to
VA£0orU’ #UM).

Thus, in order to get something non-trivial, we must show that the vector
v (in U*) does not belong t&”. Sincev is the only basis vector of weight
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A, this amounts to the following.

LEMMA A. Let o and 3 or —a and -3 be in A*. Then for
arbitrarys; ande; in A with - 6;+a+ 5+ ¢; = 0 the vectorX 5, X,
Zoy- X, .. X vIsSO,

(By the relation on theé, ande; the vector in the lemma is of weight)
We start the proof with two auxiliary relations.
If a, 3,y arein A*, then

Zog X =X Zop+ Na—yZayp+Ng—vZapr

)

If o, 3,y are inA™, then
Xy Zoo-p=Loo-p Xyt Ny-aZya_ptNy-pZ

EZR Lry—a,—

**)

—a,— —ay—p8"

Proof of (x): UsingZ; _, = 0 etc., we get

Zog X,
XXX - X X X §
=X (X X+ Ny X5 ) = X (X X+
N%—’Yza—'v) — Nap (l—'yla—kﬁ + Na+57—’yia+6—'y)
= (X X+ NoonXo) X Ny X, X
- (X—'yiﬁ + Nﬁﬁ’yxﬂ—v) Xo— Na»*vlﬁia—’y
= NopX_Xt5 = NopNatp,—X

- aﬁzoﬁ_ﬁg_

at+f—y

Here the termVs _, X ; . should be replaced by 5, if 3 = ; similarly
fory=aory=a+ 8.

Equation(x) follows upon applying the relatioN,sNe3,— =
Ng,_yNog—~ + No_Nga—v, Which follows from the Jacobi identity
for X,, Xz, andX_, or the vanishing of somé&’’s; again this has to be
modified ify = « (replace the last term b¥(H,)) or 8 or a + 3. Similarly

for (xx). v/

We can now prove Lemma A: We apply) and(xx), and also the rela-
tionsgegfn =X ,Xg+X,_,(1e.,Z,_, =0)foro,n > 0,tothe vector
in the lemma, in order to shift all factors; andX, with §, ore; < 0 all
the way to the left, in the case 3 > 0, or to shift theX; and X, with §;
ore; > 0 all the way to the right, in the cases < 0.

These shifts introduce additional, similar (with oth&s), but shorter
terms (i.e., smalleg or t) , which are 0 by induction assumption. After
the shifts have been completed, the term:ign casea, 3 > 0 it must

begin with at least on&’__; butwv is not in the image space of any such
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operator, by definition. In case 3 < 0 the first operator applied tomust

be anx_; but those operators annul The induction starts with terms as
in Lemma A that do not allow any of our shifts. But then the vector in
guestion is 0, by the argument just given.

We now havel’* = U*/U’, with a representation af on it. As noted
earlier, it is direct sum of finite dimensional weight spaces. The same
argument shows that this holds also for gninvariant (orp-invariant)
subspace. Therefore amonggihvariant proper subspaces (i.e., different
from V' itself, or, equivalently, not containing there is a unique maxi-
mal one. Dividing/’* by it, we get a quotient spad&* with an irreducible
representation af on it, still generated by under the action of, with X
as extreme weight, and direct sum of finite dimensional weight spaces. We
continue to write the spanning vectorsigasWe plan to show that’* has
finite dimension—which will establish the existence theorem.

We recall that for; = 1,...,1 we have the fundamental roats, the
corootsH;, the root elementX; andX_;, and the sub Lie algebra$) =
((H“ XzaX—z)) of g (Wthh are of type41, with [HzXz] = 2)(17 [HZX_A =

—-2X_;,[X;X_;] = H;). The X,’s and X_;’s generateg. We prove two
lemmas.
LEMMA B. For each from1 tol the spacé&V* is sum of finite-

dimensionah'”) -invariant subspaces.

We fix ¢ and show first that there exists a non-trivial finite-dimensional
gW-invariant subspace: We consider the sequence- v,w; = X_;wy,
wy = X_;ws,.... The computations ofi;-theory (81.11) yield the rela-
tions X,w; = prwe—q With pp = t(r — ¢t + 1), wherer = X\(H;) is a non-
negative integer. We see tha&tw,, is 0. Forj # i we getX,w,+1 =
Xi(X_)" o = (X_;)" X,v, sinceX; andX_; commute {; anda; be-
ing fundamentaly; — «; cannot be a root), and S9;w, 1 = 0. Thusw,
is an extreme vector, and the computation for Proposition C in 82 shows
that the space generated fram, ; by theX_; is g -invariant. This space
is clearly not the whole spad&” (all weights are less thax), and so by
irreducibility of W* it is 0. In particularw,, is 0. It follows that the
space((wo, w1, . .., w,)) is g@-invariant; so non-zero finite-dimensional
gW-invariant subspaces exist.

Next we note: IV is a finite-dimensiona®-invariant subspace &,
so is the spacgU generated by’ underg, i.e., the space spanned by all
Xu with X in g andw in U, because ofX; Xu = XXu + [Xy; X]u.
Therefore the span of all finite-dimensiond? -invariant subspaces s
invariant. It is not, as shown above, and thus by irreducibility it is equal
to WH. /

LEMMA C. The set of weights that occur > is invariant
under the Weyl group.
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Proof: Let # be a weight ofiv*, with weight vectorw. Take anyi be-
tweenl and!; we have to show thai;0, i.e.d — 6(H;)«;, is also a weight.
By lemma B and byA;-theory the vecto lies in a finite direct sum of
g(-invariant subspaces in which certain of the standard irreducible reps
D, appear. SupposgH;) > 0 (a similar argument works #(H;) is nega-
tive; the casd@(H,) = 0 is trivial). We writer for the positive integed(H,),
and note thatv is eigenvector off with eigenvalue-. We know fromA; -
theory thatw’ = (X_;)"w is then eigenvector off; (with eigenvalue-r),
and in particular it is not 0. But Lemma B of 83.2 tells us thats weight
vector with weight) — r«;, and s — 0(H;)«; is a weight of >, \/

We come now to the main fact, which finally establishes the existence
of a finite-dimensional representationgivith extreme weigha.

ProPOSITIOND. The dimension ofv* is finite.

Clearly it is enough to show th&it* has only a finite number of weights;
by Lemma C it is enough to show th&t* has only a finite number of
dominant weights, i.e. in the closed fundamental Weyl cha@Ber. That
this holds, comes from the simple geometric fact that the half spaee
he : o < A} intersects” "~ in a bounded set. In detail: All the weightsn
question are of the forin;\; (where the\; are the fundamental weights
and then; are non-negative integers); they also satjsfg \ (since they
are of the form\ minus a sum of positive roots). But there is only a finite
number of integral forms with these two properties: Hgtbe the element
of by that defines the order. The are positive, by Proposition A of §3.1,
so we have\;(H,) > 0. The condition\ > p translates into\(Hy) >
Yn;\;(Hp). Clearly this leaves only a finite number of possibilities for the

With this Theorem F of §3.2 is proved.

(Note: To the weight = 0 corresponds of course the trivial representa-
tion.)

3.4 Complete reduction

We prove Theorem G of §3.2. Letbe a representation gfon V' (irre-

ducible or not). We recall the notion of trace fotpgof ¢ (81.5):t,(X,Y) =
tr (p(X)-¢(Y)). (Also recall our use aKv for ¢(X)(v). We will even write
X for ¢(X) and depend on the context to determine whefhies meant
ingoringl(V).)

LEMMA A. If ¢ is faithful, then the trace formy, is non-degenerate.

For the proof we consider the set {X € g : ¢, (X,Y) =0forall Y
in g}, theradical of ¢,. By infinitesimal invariance of, (loc.cit.) this is
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an ideal ing . By assumption we may considgias a sub Lie algebra of
gl(V). Proposition B, 81.9 says then thas solvable; by semisimplicity
of g it must be 0.,/

Next comes an important construction, f@asimir operatorl’,, of ¢:
Let a be the (unique) ideal of complementary tder ¢; by restrictiony
defines a faithful representationofLet X, ..., X,, be any basis fod, let
Y1,...,Y, be the dual basis wr to the trace form o(so thatt,(X;,Y;) =
di;), and putl’y, = Xp(X;) o o(Y;). Itis easily verified that this is indepen-
dent of the choice of the basfs(;}. The basic properties @f, appear in
the next proposition and corollary.

PROPOSITIONB.
(a)T, commutes with all operators X),
(b)tr (I'y) = dima = dim g — dim ker ¢.

Proof: Take anyX in g. We expandX X;] (which lies ina) asXz;; X,
and [XY;] as Xy;;Y;. We havez;; = tr[XX;]Y;, and the latter equals
—tr X;[XY;] = —y;s, by invariance of,, (81.5). Then we comput&T | =
=0, proving (a). And (b) is immediate from X,Y; = 1. /

COROLLARY C. If ¢ is irreducible (and/ # 0), thenT, is the
scalar operatorlim g — dimker )/ dim V - id; it is thus non-singular, if
is non-trivial .

Proof: By part (a) of Proposition B and Schur’s lemma the operBtor
is scalar; the value of the scalar follows from part (7).

The key to complete reducibility is the next result, known as JHC White-
head'’s first lemma. (“The cohomology spadé(g, V) is 0.")

PROPOSITIOND. Letg act onV (as above). Lef : g — V be a
linear function satisfying the relatiof{[XY]) = X f(Y) — Y f(X) for all
X,Y ing. Then there exists a vectolin g with f(X) = Xv forall X in g.

(Note that for giverw the functionX — Xwv satisfies the relation that
appears in Proposition D, which is thus a necessary condition.)

Proof: First suppose that has an invariant subspace with quotient
spacelV and quotient map : V — W. We show: If Proposition D holds
for U andW, italso holds fol. Letw in W satisfyr- f(X) = Xw, letw’ be
a representative far in V', and define the functioff by X — f(X)—Xw'.
We haver - f/(X) = 0 for all X, i.e., f mapsg into U. Also, f’ has the
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property of Proposition D. Therefore there iz @ U with f/(X) = Xu
for all X. But this meang'(X) = X (v’ + u) for all X, and Proposition D
holds forV.

Thus we have to prove Proposition D only for irreducible This is
trivial for the trivial rep (dimV = 1, all X = 0). Suppose thep is ir-
reducible and non-trivial, so that by Corollary C the Casimir operator
I', is invertible. As in the case of Proposition B, Igk;} and{Y;} be
dual bases oti wr to t,. We definev in V' by the equatior,(v) =
YX;f(Y;). Then we havé',(Xv — f(X)) = EXX, f(Y;) - X, Y f(X)) =
SXXG]F(Y)) + XX F(Vi) = Yif(X))+ = B[XX] £(Y;) + X f([XY]) =
Y, X, f(Y5) + Zy;; Xi f(Y;) = 0 for all X, and sof(X) = Xv forall X. /

We come now to complete reducibility and prove Theorem G of §83.2.

So letg act onV, via ¢, let U be an invariant subspace, and Ig€tbe
the quotient space, with quotient map: V. — W. We have to find a
complementary invariant subspace, or, equivalently, we have to find a
equivariant map ofV into V', whose composition with is idy; .

We write L. and M for the vector spaces of all linear mapslgfinto U
andV. (We can think ofZ as a subspace af.) There is an action gf on
these two spaces, defined f6rin g by p — [Xp] = X -p—p- X (this makes
sense for any linear mgpbetween twgy-spaces). The equivariant maps
are the invariants of this action, i.e., those wikp] = 0 for all X in g. Let
h be any element a¥/ with 7 - h = idw (this exists sincer is surjective).
We plan to maké equivariant by subtracting a suitable element of

Consider the mapX — [Xh], a mapf of g into M that satisfies the
relation in Proposition D (see the remark after Proposition D). The com-
position7-[Xh]=7n-X-h—7-h-Xis0,byr-X = X -7 andr-h = idy,
for any X. This means thaitXs] actually lies inL, so f can be consid-
ered as a map gfinto L. We apply JHC Whitehead’s lemma (Proposition
D) to it as such: There existskain L with f(X) = [Xk]. Thus we have
[X,(h — k)] = 0 for all X, i.e.,h — k is an equivariant map d#’ into V;
and the relatiorr - £ = 0 (from 7(U) = 0) showsr - (h — k) = 7 - h = idw .
Soh — k does what we want/

We have now finished the proof of the main result, Theorems F and G of
83.2, existence and uniqueness of the irrep to prescribed dominant weight
A.

One might of course consider reps of real semisimple Lie algebras.
Complex representations are the same as those of the complexification;
so there is nothing new. We shall not go into the considerations needed for
classifying real, real-irreducible reps. Complete reduction goes through
for real reps almost exactly as in the complex case. The only difference is
that the Casimir operator for an irrep is not necessarily scalar (as in Corol-
lary C); itis however still non-0 (since its trace is not 0) and thus invertible
(by Schur’s lemma), and that is enough for the argument.
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For completeness’s sake we sketch the proof of a related result.

THEOREME. Letg be the direct sum of two (semisimple) Lie alge-
brasg; andg,. Then any irrep of g is (equivalent to) the tensor product
of two irrepsyp; andy, of g1 andgs.

This reduces the representations of a semisimple Lie algebra to those of
its simple summands. In terms of our main results, it will be clear that the
extreme weight ofy in Theorem E is the sum of the extreme weights of

®1 andapg.

Proof: Let ¢’ be the restriction op to the summang;. By complete re-
ducibility V splits into the direct sum of some-invariant-and-irreducible
subspace®, Vs, . ... All the V; are isomorphic ag;-spaces: Sincg; and
g commute, the map; — V; obtained by operating with arly in g, and
then projecting intd/; is g;-equivariant and therefore, by Schur’s lemma,
an isomorphism or 0; the sum of th& that areg;-isomorphic toV; (an
isotypic component of”) is g-invariant and so equal t&. Thus we can
write V asVi & Vi & --- @ V4, asg;-space, or (writinge; for the action of
g1 onVy) also as; @ W with X in g; acting asp, (X) ® id, with a suitable
spacdV.

Take anyY in g». As before, the map of theth summand/; obtained
by first operating withp(Y") and then projecting to theth summand ig; -
equivariant and therefore scalar. Interpreted in the foym W of V this
means that there is a representatigrof g, on W with o(Y) = id® 2 (Y).
Clearly o5 has to be irreducible, and X, Y") is ¢1(X) ® id + id ® p2(Y).

v

The converse is also true (ovE&): If 1, o are irreps ofgy, g2, then
» ® s IS anirrep ofg; @ go.

As an application we look at the irreps of the Lorentz Lie algepsa
(Examplel1, §1.1). We recall from §1.4 that it is isomorphicst(®2, C)g =
(A1)g. Its complexification isA; & A7, and the irreps of the latter are the
tensorproduct®, ® D; with s,t € {0,1/2,1,3/2,...}. Restricting tols ;
(asitsitsind; @ A7) and spelling out what th®, are, we find the (com-
plex) irrepsD; ; of the Lorentz Lie algebra (i.e., ¢#,);) as tensorprod-
ucts of the space of homogeneous polynomialsamdr of degrees and
the space of homogeneous polynomials in the complex conjugate variables
¢~ andrn~ of degree (each matrix im4; acting via its complex-conjugate).

3.5 Cartan semigroup; representation ring

Let g be semisimple as before; we continue with the previous notations
etc.

The setD of all (equivalence classes of) representations (not necessarily
irreducible) ofg is a semiring, with direct sum and tensor product as sum
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and product. To get an actual ring out of this, one introducessiresen-
tation ring, alsocharacter ringor Grothendieck ring of virtual represen-
tations Rg:

Write [¢] for the equivalence class of the rep The additive group of
Rg is simply the universal (Abelian) group attached to the additive group
of D (cf. Z andN): We consider pairs[§], [¢]) of representation classes
(which eventually will become differencég| — [«]), with componentwise
addition, and call two pair§y], [¢/]), ([¢'], [+/']) eqivalent ifo &)’ is equiv-
alent toy’ @ . Then Rg, additively, is the set of equivalence classes of
these pairs, with the induced addition. The tensor product of reps induces
a product inRg, under which it becomes a (commutative) ring. (The triv-
ial rep becomes the unit.) One writes for ([¢], [0]) (in Rg); ([0], [¢/]) then
becomes-[v], (I¢], [¢]) becomesy] — [¢], andp & 1] equalsly] + [¢].

(Itis because of the appearance of minus signs that one speaks of virtual
representations. An integral-linear combination of reps represents 0 if the
direct sum of the terms with positive coefficients is equivalent to that of
the terms with negative coefficients.) (Note: We used tacitly that complete
reduction implies cancelation; i.ep, @ ¢ =~ ¢ @ e implies ¢y =~ ,.
Otherwise one would have to define equivalence of pairs by: there exists
XWithpo @y & x~ ¢ &Y D x.)

For an alternate description, write (temporarily¥or the free Abelian
group generated by the setand letV be the subgroup df' generated by
all elements of the formy @ ¢] — [¢] — [¢]; then the additive group dgg
is by definition the quotient group/N, and multiplication is induced by
the tensor product. Equivalence of the two definitions comes, e.g., from
the universal property: Every additive map®into any Abelian groupd
extends uniquely to a homomorphism ®f into A. One also sees easily
that additivelyRg is a free Abelian group with the sgt of (classes of)
irreps as basisg(' generate®lg by the complete reducibility theorem. The
map of F' that sends each rep into the sum of its irreducible constituents
vanishes onV and thus factors througRg, and shows that there are no
linear relations between the elementg0fin Rg.)

Consider two irrepsy and ¢’ of g, on vector space® and V', with
extreme weights and)’. The tensor product rep® ¢’ of g, onV ® V’,
is not necessatrily irreducible (in fact, it is almost always reducible). (Note
that as a rep ofi @ g it would be irreducible, but that in effect we are
restricting this rep to the “diagonal” sub Lie algebraefy, the set of pairs
(X, X).) By complete reducibility it splits then into a certain number of
irreps. In 83.8 we shall give a “formula" for this splitting (cf. the Clebsch-
Gordan series of §1.12); but for the moment we have a less ambitious goal.

Let v,v" be weight vectors op, ', with weightsp, p’; it is clear from
the definition ofy @ ¢’ thatv ® v’ is weight vector ofp ® ¢’, with weight
p + p', and that one gets all weight vectors and weightse @ ¢’ this
way. In particular, since and)\’ have multiplicity 1,A + X’ is the unique
maximal weight ofy ® ¢’ (thus extreme) and it has multiplicity 1. This
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means that in the decompositione® ¢’ the irrep with extreme weight
A+ )\ occurs exactly once, and that all other irreps that occur have smaller
extreme weight.

The irrep with extreme weight + )\’ is called theCartan productof
¢ andy’. The setg” of equivalence classes of irreps g@fendowed with
this product, is called th€artan semigrougof irreps ofg). It is now clear
from the main result (Theorem E in 83.3) that assigning to each irrep its
extreme weight sets up an isomorphism between the Cartan semigroup
and the (additive) semigroupy of dominant weights. We recall that is
generated (freely) by the fundamental weights. . ., \;; the correspond-
ing irreps are called thiendamentateps and denoted by, . . ., ¢;.

The structure of the Cartan semigroup has a strong consequence for the
structure of the representation riRy.

THEOREMA. The ringRg is isomorphic (under the natural map) to
the polynomial ringPy[¢1, - . ., 1] in the fundamental reps,.

In other words, thepy; generateRg, and there are no linear relations
between the various monomials in the For the obvious natural homo-
morphism¥ of the polynomial ring intaRg we first prove surjectivity by
induction wr to the order iy . Let A\ = ¥n;\; be a dominant weight, and
assume that all the elementsgfwith smaller extreme weight are in the
image of.

We forme' @ --- @ ¢;" (the exponents are meant in the sense of tensor
product), ther-image of the monomiaby” ... ¢;" in the polynomial ring.

By the discussion above this is the sum of the irggelonging to\ and
other terms that belong to lower extreme weights. Since all the other terms
belong to the image of already, so doeg,. /

Next injectivity of ¥. For a given non-zero polynomial we pick out a
monomial whose associated weight Xn,;)\; is maximal. The argument
just used shows that theé-image of the polynomial inkg involves the
irrep ¢, with a non-zero coefficient (the other monomials can't interfere),
and so is noo. We shall return to this topic in 83.7/

3.6 The simple Lie algebras

We now turn to the simple Lie algebras. Using the notation developed
in 82.13 we shall list for each type the fundamental corddtsand the
translation latticeT, the fundamental weights;, the lowest forms, and

the fundamental repg;. For completeness we also describe the center
lattice Z, and theconnectivity groupg /7.

If ¢ is a representation qf, on a vector spac¥®, we write p A ¢ Or
/\230 for the induced representation on the exterior prod\f(ﬁ’, and more
generally/\", for the induced representation on th¢h exterior power
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ANV =VAVA--AV. (In more detailip A ¢(X) sendsv A w to Xv A
w+vAXw.)If p,po,... are the weights op (possibly with repetitions),
with weight vectorsy,, v, .. ., then thep; + p; with i < j are the weights
of o A ¢, with thev; A v; as weight vectors; more generally the weights on
NV are the sSuUMmg;, + pi, + -+ + pi,. With i3 < is < --- < i, and with the
corresponding products, Av;, A--- Av; as weight vectors. As usual we
write ¢; for thei—th coordinate vector iR or C™ (thuse; = (1,0,...,0)
etc.), andy; for thei—th coordinate function. — An analogous description
holds for the induced rep on the symmetric produts.

1) A, sl(i+1,C).

(Recall the restriction; + ws + - - - + w4 = 0 for bh; elements ofy " are
linear combinations afy, . ..,w; 1 modulo the terrrEllﬂwi.)

Hy=e1—ey,Hy=ex—e3,...,H =¢ —e;q1.

M=w, =w+wy, ..., =wi +wa+ - Fw.

d=l-wi+({—=1) wa+-+1-w.

v1 = sl(l + 1,C) = the representation &f(! + 1,C) “by itself", = A; in
2 l

short,py = A sl(1+1,C) = As,..., 0 = N sl(1+1,C) = A,.

7:TheH = (ay,as, ,,,a+1) With all coordinates; integral (and of course
Zai = 0)

Z: The H such that for some integérall a; are congruenttdé/l+1 mod 1
(andXa; = 0).

Z/T =7/l +1 (the cyclic group of ordefr+ 1).

7¢ (the dominant forms): the forms = X! f;w; with integral f; satisfying
fhizfez>f2>0.

To justify these statements we recall that the Killing formbois the
restriction to the subspacg+- - -+w;; = 0 of C'*! of the usual Euclidean
form /102, up to a factor. Therefore the root vector corresponding
to the rootn;, = wy — wo is certainly proportional te; — e5; and since the
latter vector has the correct vala®n a-, it is the corootH .

The \; exhibited are clearly the dual basis to tHg we have\;(H;) =
8;;. The conditions that defing? simply say that the values(H;) are
non-negative integers. Note thatin reality is of the form!* f,w; and
is defined only mod:llﬂwi, and that in effect we have normalizedby
putting f;11 = 0.

The weights ofA! are thew;, i = 1,2,...,1 + 1, sinceh consists of the
diagonal matrices (of trace 0). The weights\6fare thev;, +w;, +- - -+w;,
with1 <4 < iy < --- < i, <[4 1. This is the orbit of\, under the
Weyl group (all permutations of the coordinates). Since the iggpo
A as extreme weight must have all these as weights, it follows/Ahat
is p,.. That7 is as described is fairly clear from the form of the. For
Z note that all rootsy; — w; are integral on arff in Z; i.e., all a; are
congruent to each other mod 1 (afid; = 0). For Z/7: The vectory; =
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(1/1+1,...,1/l+1,-1/l + 1) and its multiple®uv, ..., (I + 1)v; form a
complete system of representativeszofnod 7.

[For the general linear Lie algebgd! + 1, C) - which is not semisimple
(itis si(I+1, C)®C, where the second term is the one-dimensional, Abelian,

center) - the situation is as follows: We have the irraps: \' gl(l+1,0)
fori=1,2,...,l+1. The last onej;., (which didn’t appear fosl) is one-
dimensional and assigns to each matrix its trace (on the group level this is
the map matrix— determinant). The tensor powgy; ;)™ makes sense for

all integraln, even negative ones (matrix n-trace). [Formally one could
consider matrix— c-trace for any constant but in order to get single-
valued reps for the corresponding general linear group one musttake
integral.] The notion of weight etc. makes sense roughly asif@out

the reps in question should have their restriction to the center completely
reducible, i.e.(id) should be a diagonalizable matrix), withnow be-

ing the set of all diagonal matrices. In this sense one has an irrep for each
weight of the formx{*1n,;\; with n; > 0 for i = 1,2,...,1, but withn;
running through all ofZ (here\;; means of course; + ws + - - - + wi41)-

One can change,; by tensoring with a tensor power af, ;. The repre-
sentation ring iSPZ[A1, A, ..., Ajr1, (Aje1) 71, i.e. Pz[Ay, ... Ayyq, 2] mod

the ideal generated hy- A; 1 — 1.]

We shall give less detail in the remaining cases.

2) Bj,=0(20+1,C).

H1 — €1 —€g,.. .,Hl,1 =€l—-1 — el,Hl = 261.

M =w, A =wi+ws, ..., o1 =wiHwa+ w1, A = 1/2(wy +we +

s wp).

0= (l - 1/2)(4.)1 + (l —3/2)0)2 + -+ 1/20)[

1 =020+ 1,C) = Ay,pp = /\2<P1 = Ag,...,0m1 = Ny, finally ¢
corresponding to the “unusual” weight, is a quite “non-obvious" rep-
resentation, called thgpin representatiomnd denoted by\; or just A,

of dimension2! as we shall see in the next section. (The proper algebraic
construction for the spin rep is throu@hifford algebras)

7: The H with integral coordinates; and everta;.

Z: The H with all a; integral.

Z/T =17/2; e, is a representative of the non-trivial element.

7¢ consists of the forma = X! fiw; with f; > fo > --- > f; > 0, all
fi integral, or all f; half-integral (i.e., congruent td/2 mod 1). (These
conditions express again the integrality of th&7;).)

3) Cla:'gp(lv(c)'
Hy=e—e3....,H_1=¢_1—¢,H =e¢.
Ni=wi+wr+--+w;fori=1,2...1
o=l-wn+({(—-1) we+ - +w.
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p1isagain;, = sp(l,C) itself, onC* . For the othep; : The basic 2-form

Q of C* maps/\zCQI onto /\1472(321 (“inner product” or contraction, dual
to the mapA™*(C2)T to A'(C?)T by exterior product with2). Since

Q is invariant undesp(l, C), the map is equivariant, and its kernel is an
invariant subspace. The restrictian of A", to this kernel isp;, for i =

2,...,1. (With coordinates: Represefitby the skew matriXa,.|; a skew
tensor¥ivz:--tm goes th7-Stu1u2”'um—2TS,)

7T: The H with all a; integral

Z: The H with all a; integral or all half-integral= 1/2 mod 1)
Z|/T =7/2.

79 consists of thet f;w; with f; integral,f; > fo > --- > f; > 0.

4) Dl, = 0(21,@)

Hy=e —ea....H 1=¢ 1—¢,H =¢_1+e.

Ni=w)F+wy+-Fwforl <i<]—-2,

MNo1=1/2wi+wa+ - Fwim1 —w), N =1/2(wr +we + - Fwim1 Fwi).

6= (l— 1)&)1 +(l—2)w2—|—-~-—|—wl_1.

1 =0(20,C) = Ay, 00 = Nopr= Mo, prs = N o1 = Aa.

In addition there are two non-obvious irreps, calledriegative and pos-
itive half-spin representations,;,_; = A, andy, = Af; both are of di-
mensior2'~!, as we shall see in the next section. (Again the proper context
is Clifford algebras.)

T: The H with integrala; and everta;.

Z: The H with all a; integral or alla; half-integral.

Z/T =7Z/4foroddl, Z/2 & Z/2 for eveni.

The pointP = (1/2,1/2,...,1/2) is a representative for a generator for
odd/; Pand@ = (1/2,1/2,...,1/2,—1/2) are representatives for the gen-
erators of the tw&@ /27's for eveni.

79 consists of thet f,w; with the f; all integral or all half-integral and
fi>fa>---> fi—1 > 1fi|- (Note the absolutevalue.)

5) G

Hy, =(1,-1,0), Hy = (—1,2,-1).

)\1 = w1 — w3, )\2 = w1 + wa. (Recal|w1 + wo + w3 = 0)

6= 3&]1 + ng.

1 has dimension 14; it is the adjoint representatigrhas dimension 7; it
identifiesG2 with the Lie algebra of derivations of the (eight-dimensional
algebra of) Cayley numbers, or rather with its complexification (see [12]).

7:The H = (a1, az,a3) with integrala; anda; + as + a3 = 0.
Z=T
Z/T =0.
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7¢: The X f;w; with the differences between thfeintegral and withf, >
f2,2f2 > f1 + f3. (Or, making use of; + ws + w3 = 0, the fiw; + fows
with f; andf, integral an®fs > f1 > fs.)

6) Fu.

Hy=e1 —ey—e3—eq, Hy =2eq, H3 = €3 — €4, Hy = €2 — e3.
)\1 = Wi, )\2 = 1/2(3w1 + wo + w3 +(.U4), )\3 = 2(,{}1 + wao +L¢J3,)\4 = w1 + wa.
0= 1/2(11W1 + 5wy + 3ws +W4).

Center latticezZ : The H with integrala; and everta;.
T =2Z.
Z/T trivial.
7% The ¥ f,w; with the f; all integral or all half-integral, and with, >
f3> fa>0andf; > fo+ fs + fa.

7) Es.
(h as described in §2.14.)

Hy=e;—eg,..., Hs = e5—eg, Hg = 1/3(—e1 —ea — e3+ 2e4 + 2e5 + 2eg).
Al = 1/3(4&)1 +wy 4+ - —l—wﬁ), Ay = 1/3(5w1 + dwo + 2w3 + -+ + 2w6),
A3 :2(w1+w2—|—w3)+w4+cu5+w6,)\4 :4/3(w1—|—---—|—w4)+1/3(w5—|—w6),
/\5:2/3(w1+~~+w5)71/3w6,)\6:w1+~~+w6.

6 = 8wy + Twy + 6ws + dwy + dws + 3ws.

Center latticez: The H with a;,7 > 0, all integral or all=1/3 mod 1 or
all = 2/3 mod 1.

Coroot latticeT: The sublattice of with 4a; + a2 +--- + ag = 0 mod 3.
Z/T =7/3. A representative for a generatoreis

79 Thex§ fw; with 3f; integral, all differenceg; — fj integral, f1 + f> +
fs —2(f+ + f5 + f¢) integral and divisible by 3f; > f, > --- > fs and
i+ fot f3 <2(fa+ f5+ f6)-

8) .
(h as described in §2.14.)
Hi=e1—e€y,..., Hs=eg—e7, H; = 1/3(—61 —-~-—64—|—2€5+2€6+267).

A = 1/2(3&)1 +WQ+~'~+CU7), Ay = 2((4)1 +w2)+w3+--~+w7, A3 =
5/2(w1 +we+ws)+3/2(wa+- - -+wr), Ag = 3(wr+- - -+ wyq) +2(ws +ws +w7),
)\5 = 2(w1+~ . ~+W5)+w6+w7, )\6 = w1+~ . ~+w6, )\7 = 3/2(w1+ . ~+w7).
0 =1/2(27w1 + 25ws + 23ws + 21wy + 19ws + 17we + 15wr).

Center latticez: The H with «;, all integral or all= 1/3 mod 1 or all
= 2/3 mod 1.

Coroot latticeT: The sublattice of with 3a; + a2 + -+ + a7 = 0 mod 2.
Z/T =7/2. Arepresentative for the generatoeis
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74: The X f;w; with the #; all integral or all half-integral2%] f; divisible
by3,f1> fo>--> frandfi+ fo+ f3+ fo < 2(fs + fo + fr).

9) Es.
(Subspacé™’ w; = 0 of C? as in §2.14.)
Hl = €1 —€2,... ,H7 = 67—68,H8 = 1/3(—61—' . '—€5+266+2€7+268—€9)

Ai=wi 4+ tw —iwgforl <i<5.x=2/3(w1 4+ +wg) —1/3(w; +
wg)—10/3w9, A7 = 1/3(w1—|—~-~+w7)—2/3w8—5/3w9, Ag = 1/3<W1+"'+
wg)—8/3w9.

0= 1/3(190)1 + 16wy + 13ws + 10wy + Tws + dwe + wy — 2wg — GSWQ).

Center latticez: The H with theq; all integral or all= 1/3 mod 1 or all
=2/3 mod 1, anda; = 0.

Coroot latticeT = Z.

Z/T trivial.

74: The X} f;w; with the f; all integral or all= 1/3 mod 1 or all = 2/3 mod
1L,Yi=0,f1> fa>-> fsandfs + fr + fs > 0.

(In the second picture fakg, with h = C?, we have
H1 = 1/22€i,H2 = —€1 —82,H3 = €9 —63,H4 = €1 —62,H5 = €3 —
64,H6 = €4 — 65,H7 = €5 — EG,Hg = €g — €7. /\1 = 2“-)8’)\2 = 1/2(—(.01 —
(.UQ7"'7W7+7W8),)\3:7(4)37"'7007“”50)87)\4:1/2(W17W27w,‘37
coo—wr 4 bws), As = —wyg — -+ —wr +4dws, Ag = —ws —wg — w7 + 3ws, A7 =
—wg — w7 + 2w, A\g = —wr +wg. § = — ZI (1 — Dw; + 23ws.

Center latticez, = coroot lattice7: The Xa;e; with theaq; all = 0 or all
= 1/2 mod 1 and the sunta; an even integer.
7¢: TheY” f;w; with the f; all integral or all= 1/2 mod 1 and}_ f; even.)

In Figs.3, 4, 5 we present the Cartan-Stiefel diagrams4fgi3,, Gs.
The figures can be interpretedigsor ashy.

Forp/ the points marked form the latticeR, and the points marked
form the latticeZ; the vectors marked ands form a fundamental system
of roots.

For b, the points markedl form 7, the points marked) form Z ; the
vectors marked andg are the coroot$fz and H,, (in that order!; a long
root corresponds to a short coroot).
The fundamental Weyl chamber is shaded. The fundamental weights (in
o) are the two points nearest the origin on the edges of the fundamental
Weyl chamber. Their sum is the elemeént
Note that forG, one hask =7 and7 = Z.
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There exists a quite different path to the representations of the classical
Lie algebras (see H.Weyl, [25]): For;, e.g., one starts with the “lowest”
representatio\,, sl(l + 1, C) itself, forms tensor powerg\;)™ with ar-
bitrary n, and decomposes them into irreducible subspaces/tmmetry
operators this yields all the irreps.
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Figure 4

(NB: There are of course the two subspaces of the symmetric tensors
and of the skew symmetric tensors; but there are many others.) For the
other Lie algebrasi;, C;, D;, one also has to put certain traces (wr to the
i r or exterior product) equal to 0. (However the spin reps and the other
reps ofo(n, C) with half-integralf; do not arise this way.)
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3.7 The Weyl character formula

We first define the concept of character of a representatiohour Lie
algebrag algebraically, rather formally, and discuss it in the context of Lie
groups, to make contact with the usual definition. Then we state and prove
the important formula of H. Weyl for the character, and derive some of its
consequences.

We continue withg etc. as before. We have the grofpof weights,
free Abelian, of rank, generated by the fundamental weights\We now
form its group ringZZ, consisting of the formal finite linear combinations
of the elements of with integral coefficients, with the obvious addition
and multiplication. In order not to confuse additionZirwith addition in
7T we writeZ multiplicatively: To eaclp in Z we associate a new symbol
ep, With the relations:,, = ¢, - e,. (Thus forp = ¥n;\; we havee, =
(ex)™ - (exy)™ - -+ - (ex,)™.) The elements dLZ are then the finite sums
Ym,e,, With integersm,,.

Let now ¢ be a representation @f We have then the weighisof ¢
and their multiplicitiesm,. For anyp in Z that does not occur as weight
of o we writem, = 0. [Thusp — m, is a functionm : 7 — Z, attached
to ¢.] The characterof ¢, written asy,, or justy, is now defined as the
element ofZZ given by the (formal, but in fact finite) suim e,, where
the summation goes ovér

So far the character is just a formal device to record the multiplicities of
the weights ofy. It becomes more interesting in terms of the biwup,
attached tqgy (which we have hinted at, but not defined). As mentioned
in 81.3, for anyA in a gl(V) one has the functionxp(sA4). For any Lie
group G, with Lie algebrag, there are analogous functions, denoted by
exp(sX), for any X in g, theone-parameter subgroupd G. In particular
the elementxp X is well defined (and these elements gene€atd G is
connected).

If g is any Lie algebra ang any representation gf on a vector space
V, then for eachX in g we can form the operataekp p(X). [If g comes
from the Lie groupG and the repy of g comes from a rep, also called
v, of G—that is not much of a restriction—, thep ¢(X) is in fact
p(exp X), the p-image of the elemenixp X.] The trace of this operator
is a function ofX, i.e., a function ory. [If there is a groupZ around as
described, the valuer (exp (X)) equalstr (p(exp X)), i.e., it is what is
usually called the character ¢f at the elementxp X of G.] The stan-
dard facts continue to hold in our situation: #fand ¢’ are equivalent
reps, then we have (exp ¢(X)) = tr (exp ¢’(X)) [this is obvious]; and
tr (exp (X)) = tr (exp(p(X’)) for X’ = exp(adY’)(X) for anyY in g, anal-
ogous to the character of a group rep being constant on conjugacy classes
[the relationp(X’) = expp(Y) - p(X) - (exp(Y))~! holds then].

Let now g be semisimple as above, with all the associated machinery.
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The repy then has its weightg,, po, . . ., with the associated weight vec-
torsvy, vg, ... in V. For eachH in b the operatoexp(p(H)) is now diago-
nal, with diagonal entriesxp(p,.(H)). The character, i.e. the trace, is then
of the formXm,, exp(p(H)), where the sum goes over the weightsaind
the m, are the multiplicities. We make one more modification by intro-
ducing a factoeri, and define theharactery,, or justy of ¢ as the trace
of exp(2mip(H)), as function off. [It makes sense to restrict oneselfto
since any representation is determined - up to equivalence - by its weights,
which are functions om. It is of course implicit that all the results below
do not depend on the choice of the Cartan sub Lie algghpra

To repeat, thecharacterof ¢ is the C-valued function orf given by
H — ¥m,exp(2mip(H)), the sum going ovef. As a matter of fact, we
will consider only theH in b, (in part the reason for this is that we can
write exp(2mip(H) asexp(2re(iH)), and thatib, is the Cartan sub Lie
algebra of the compact form @f cf. §2.10).

The main reason for the factarri is that then the character, in fact
every termexp(2mip(H)) in it, takes the same value at any t&ics whose
difference lies in the coroot latticE, since thep’'s are integral forms. In
other words,y is a periodic function onfg, with the elements of” as
periods. As usual, when dealing with functions that are periodic wr to a
lattice such ag’, one considers Fourier series, with tetegnexp(2mip(H)),
where thep run over the dual lattice in the dual space - which here is of
course just the lattic of weights inp] . We see thaf is in fact a finite
Fourier series. We describe this a bit differently: We form the quotient
grouphy/7 and denote it bif. [It is isomorphic to thé-dimensional torus,

i.e. R modulo the lattice of integral vectors, direct suni obpies ofR /Z.
We note without proof or even explanation tliatepresents a maximal
torus of the compact simply-connected Lie group associatgd to

Each functiorexp o27ip on b, with p in Z, is a (continuous) homomor-
phism ofh, into the unit circleU = {z : |z| = 1} in C. It has the lattice
7 in its kernel, and so induces a homomorphisnTafto U; in the usual
language for Abelian groups this is also called a charact@r(afslightly
different use of the word character). We take it as well known that we get
all characters of" that way.

We writee, for exp o2mip, as function or), (which makes sense for alll
p in bJ) or onT. The confusion with the earlier abstract symbeJsis
intentional: The functions, satisfy the lawe, - e, = ¢,.,, with point-
wise multiplication on the left, and the assignment “symbol- function
e,” sets up an isomorphism dof with the character group (or Pontrya-
gin dual) of T, and also an isomorphism of the integral group r#gof
Z with the ringG of (C-valued continuous) functions ¢h generated by
the characters, (the character ringor representation ringof T). [One
needs to know the - easily proved - fact that theare linearly indepen-
dent as functions off.] The algebraic structure @f ~ ZZ is described
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by the formulaZley,, (ex,) ™, exn,; (€x,) 72, - - -, en,s (ex,) Y. It is fairly ob-
vious, either from this structure or from the interpretation as functions on
T thatg is an integral domain (has no zero-divisors).

The two definitions fory above, as element &7 or as element of,
agree of course under the isomorphism of the two rings. In both cases we
havey = ¥m,e,. As noted in the beginning, our aim is Wey!'s formula for
X, and its consequences.

To begin with, the Weyl groupV acts onp] and onZ, and thus also
(as ring automorphisms) oit; the formula isSe, = eg,. [In the function
picture, i.e. forG, this meanse,,(H) = e,(S~'H).] An elementz = Xa ¢,
of G is calledsymmetridf Sa equals: for all S'in W, andantisymmetrior
skewif Sa equalsiet S-a for all Sin W. (Note thatdet S'is 1 (resp-1) if S
preserves (resp reverses) orientatioff The symmetric elements form
a subring ofg; the product of a symmetric and a skew element is skew. It
is important that the character of any rep is symmetric, by Theorem B (d)
of 83.2.

For anyp in Z the sum of the elements of the orbit- ¢, is a symmet-
ric element. Just as easy and more important is the construction of skew
elements: fop in Z we put4, = Xy, det S- Se, = Xy det S-eg,. (The ex-
pressiorntyy, det S - S, an element of the integral group ringof, is called
the alternation operator) The elementd, is skew: For anyl’ in W we
haveT' A, = Xdet S-ers, =detT-XdetT'S-eps, =detT-Xdet S-eg, =
detT - A, (we used the standard fact tiag runs once oveyV if S does).
Note alsal- A, = A7, by T-A, = Y det S-TSe, = X det S-TST~" Te, =
Y det S- Ser, = A7, (we usedlet S = det T'ST ! and the fact that'S7—*
also runs once ovew if S does so).

PROPOSITIONA.
(a) The element, is0 if p is singular, i.e., lies on the infinitesimal
Cartan-Stiefel diagrar®’ (of b] );

(b) For the othep there is exactly one, from each Weyl chamber in
A,, with coefficientt1.

Part (b) is immediate from the definition gf,. For (a) suppose we have
(p, ) = 0 for some rootv. ThenS, p equalsp, and sad, = Ag, = So-4, =

—A,.

Proposition A implies easily that thé, with p strongly dominant (i.e.,
in 79 constitute a basis for the (free Abelian) group of skew elements of
G (a sub group of the additive group 6J; in other words, that the skew
elements are the finite suls, 4, with p in Z° and (unique) integers, .

We recall the element of Z°, the sum of the fundamental weights
The associated elemens plays a special role. It happens that it factors
very neatly, in several, equivalent, ways.
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PROPOSITIONB. As =es ool —e—y) = e_s-Mysoleq — 1) =
Haso(ea/2 — e—q/2). (All products go over the positive roots.)

The third product has to be understood properly. The terms and
e_q/2 do not make sense as elementg ¢i.e., as functions off = b, /7),
but they do make sense as functions (exponentialg) ¢or, if one wants,
on the torusg), /27 ; equivalently one could consider the integral group ring
of the latticel/2Z or adjoin suitable square roots algebraically).

That the three products are equal comes from the facttisabne half
the sum of all positive roots (Proposition B, 83.1); notige, —e_, /2 =
eas2(l —e_o) = e_q/2(ea — 1). We must show that they equdl. The
third product is antisymmetric, as follows from the formaéa S = (—1)",
wherer = rg is the number of positive roots sent to negative ones by
(82.11, Corollary F); it is thus an integral linear combination of tertps
with p in Z°. Multiplying out the first product and collecting terms we
see that; appears with coefficient, since all other terms correspond to
weights of the formy — S« with positive a’s, which are lower than and
different fromJd. It is also clear that there is no other term thgritself
that comes fronT?, sinces is already the lowest element &f. But a sum
of A,’s that has exactly the teray coming formZ® must of course be just

As./

Let now\ be a dominant weight and le}, or justy be the irrep (unique
up to equivalence) with as extreme weight, operating on the vector space
V; denote its character by,. We can now finally stat&eyl's character
formulg an important formula with many consequences [22].

THEOREMC. XA = A)\+6/A6

Note that the right-hand side is easy to write down (if one knows the
Weyl group and), that it is fairly simple (except for being a quotient), and
that one needs to know only the extreme weightot the representation
Pr-

The formula holds in the group ring. It says thatd,_ s is divisible in
G by A; and that the result ig,. Another way to say this is that the re-
lation x, - As = Axys holds ing; it determinesy, uniquely, in terms of
Axis andAs, sinceg has no zero-divisors. One can also interpret the three
terms of the formula as functions dhor ho. There is some difficulty of
course, since the denominatéy has lots of zeros. One can either rewrite
the formula again ag, - As = A,.s, Or take the point of view that the
function given by the quotient on the set whetgis not 0 extends, be-
cause of some miraculous cancelation of zeros, to the whole space, and
the extended function ig,.

Before we enter into the fairly long proof, we describe a simple example,
namely the representatioriy, of A; (cf.8§1.11). Here a Cartan sub Lie
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algebrap is given by ((H)). The linear functionrH — r (for r in R)

on by is the fundamental weight; and also the elemeidt the function

rH — 2r is the unique positive root. The Weyl group contains besides the
identity only the reflectiomH — —rH. The weights of the irre@®, are

the elementa); with n = 25,25 — 2,...,—2s; that is a restatement of the
fact that these values are the eigenvaluegiah D,. (In particular, the
extreme weighh for D, is 2s)\;.) The character ab; is then given by

Xs(rH) = exp(2mi - 2s7) + exp(27i - (258 — 2)7r) + - - - + exs(2mwi - —2s7) ;

writing exp(27ir) = a, this is the geometric seri@$® +a(?*=2) +...+q72.
On the other side we have

Axys = exp(2mi - (25 + 1)r) — exp(2mi - —(25 + 1)r) = a® 1 — ¢~ (2s+D)

and
1

As =exp(2mi-r) —exp(2mi-—r)=a—a"".
We see that Weyl's formula reduces to the usual formula for the geometric
series.

We start on the proof of Theorem C. We shall interpret the elements of
G as functions or, (although in reality everything is completely formal,
algebraic). For any giveil, in hy we define the differentiation operator
dy, (for C-valuedC*-functions o) by

A, [(H) = lim(f(H +tHo) — f(H))/2mit .

All these operators commute, and one verifigse, = p(Hy)e, for anyp
inhy.Let Ay, As,..., Ay and By, Bs, ..., B; be any two dual bases 6f
(and b) wr to the Killing form (so that(4,, B;) = 4;;). We define the
Laplace operatorL. as the sumd,, o dp, (this is independent of the
choice of dual bases), and construct the bilinear opefatby the rela-
tion L(fg) = Lf - g+ 2V(f,9) + f - Lg. Explicitly we haveV(f,g) =
Yda,f-dp,g+dp, f-da,g. We note that¥’ is symmetric, vanishes jf or

g is constant, and that it has the derivation property

V(fg,h)=f-V(g,h)+V(f,h)-g.

Finally we haveLe, = (p,p)e, and V(e,,e,) = (p,0)e 4, (this uses
Yip(A;) - p(B;) = {p, p), which in turn comes from the duality of the bases
{A;} and{B;}).

We recall the root elements,,, for o in A (882.4,2.5). We modify them
to z, = |a|/v/2X,; the factors are chosen to haye,,z_,) = 1. Then
{4;,z,} and{B;,z_,} are dual bases far wr to the Killing form. We
define theCasimir operatol” of p asXp(A4;) o p(B;) + Xaw(xa) o p(T_q).
(Again this is independent of any choices involved.)
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This is not quite the Casimir operatorgts defined in 83.4 (we are now
usingx on g and nott, on a); nevertheless the same computation shows
that the newl" commutes also with alp(X) for X in g and is therefore,
by Schur's lemma, a scalar operatoid. (We show below that equals
(A A) 4+ 2(), 6).)

In V we have the weight spacé$; we know the basic fact that(z,,)
mapsV, into V... Theny(z,) o p(z_o) andp(z_,) o ¢(z,) both mapV,
into itself; we writet,, , andt;, , for the corresponding traces. There are
two relations that are |mportant for the proof of Weyl's formula.

LEMMA D.
(@)m, - (o, p) =ta,, — ta,p+o for all weightsp of o and all rootsy.

(b) Zata,, +m, - (p,p) =m, -~ for each weighp.

(The sum in (b) goes ovek, and~ is the eigenvalue of described
above.)

Proof: (a) The symmetry relation AB = tr BA holds for any two linear
transformationst and B that go in opposite directions between two vector
spaces Applied tg(z,) andp(z_,) onV, andV,,, this yieldst, , =

ta,p+a- The relationX,X_,] = H, gives [p(z.), p(z_a)] = (a,a)/2 -
v(H,); onV, this operator is scalar with eigenvalye, «)/2 - p(H,) =

(o, p). Taking the trace o, gives the result.

(b) OnV, the eigenvalue ap(A;) o ¢(B;) is p(4;) - p(B;); the sum of these
values is(p, p). Taking the trace of onV, gives the result,/

The next lemma contains the central computation.

LEMMA E. As - x Is eigen element of the Laplace operatowith
eigenvalués, 5) + .

Proof: We havel.(A;s-x») = LAs-xx+2V(4s, xa)+As-Lxa. The proper-
ties ofLL listed above and the invariance ©f under the Weyl group imply
the relationLAs = (0, 0)As. Fromy, = Ym,e, we getLy, = Xm,(p, p)e,
Substituting forn,, - (p, p) from Lemma D, (b), we obtain:

L(A(; -X,\) = (<(5, 5> +79)As - xa + (2V(A5.X)\) — Ep,ata’pAg . ep).

We show now that the second term is 0, after multiplying it3y(this
will establish Lemma E, since there are no zero divisogs)irfrom Propo-
sition B we haved? = e-I13(eg — 1) with e = +1. We use the properties of
V, in particular the derivation property, repeatedly. We have
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245 -V(A5,xx) = € V(Igleg —1),x2)
= € X,m,V(lg(eg —1),¢p)
= e-2,mpyEallpzaleg — 1){(a, p)eatyp

By (a) of Lemma D, this equals £, (g0 (€5 — 1) (ta,p — ta,pta)€atp-
Replacingy + « by p in the terms of the sum involving, ,; e+, We get
€Y allgza((eg—ta,p(€atp —€p). Witheqy, —e, = (eq —1)e, this turns
intoe- ¥, Ilg(eg — 1)ta,p€,, Which is the same ads - X, ota,pAs - €,. v/

We come to the proof of Weyl's formula. By Lemma E all the terms
e, appearing inds - x, have the samép, p), = (4,0) + . If we multiply
the expressiond; = X det S - ess andx, = Ym,e, = ey +---, We get a
sum of terms of the form - eg;5., with integralr. The terme;,., appears
with coefficient 1, sincé is maximal among th&s (by Proposition B of
83.1) and\ is maximal among thgin x, (by Corollary D in §2). Thus all
the terms for whichSé + p, Sé + p) is different from(s + X, + A) must
cancel out. (We see also th@ats) + v equals(d + A, § + \), so that we have
v =(AA) +2(N,8).)

Suppose now thasd+p, Sd+p) equalsd+ A, §+ ). Then we have also
(§+871p, 6+ S tp) =(6+)\,d+)\). HereS—1p, = o say, is also a weight
in x». We show that for any such, except for) itself, the norm square
(0 +0,6+0) is strictly less tharid + A, § + A), as follows. We know that (a)
(A, M) is maximal among thés, o), that (b) X — o is a linear combination
of the fundamental roots; with non-negative integral coefficients, and
that (c) (4, a;) is positive (sincé(H;) = 1). Thus(s,d) + 2(d,c) + (o,0) <
(6,0) + 2(6, \) + (A, \). So theos above is)\, and thep above isSA. This
means thatl; - x, contains only of the form - e, 1), i.€. only terms that
(up to an integral factor) appear i, s; since it is a skew element and
containse, 5 with coefficient 1, it clearly must equal, 5. v/

3.8 Some consequences of the character formula

The first topic isWeyl's degree formuldor the irrep ¢, with extreme
weight )\; it gives the dimension of the vector space in which the repre-
sentation takes place.

THEOREM A. The degreel, of v, IS 4o, X + §)/Tasola,d).
(The products go over all positive roots.)

(This could also be writtey = 50X+ 0)(Ha)/Has00(Hy)-)

Proof: The degree in question is the valuexgfat H = 0. Unfortunately
both A, s and A5 have zeros of high order at Thus we must take deriva-
tives before we can substitute(L'Hopital). We use the root vectorks,
(see 82.4), and apply the differential operatet I1,-0d},, to both sides of
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the equatiom;s-x, = A,,s. Using the factorizatiods = e_s-T1,~0(eq—1)

and differentiating out (Leibnitz’s rule) one sees thatfios 0 the relation
d(As - xA)(0) = dAs(0) - xA(0) holds. Thusl, is the quotient ofiA,5(0)
anddA;(0). Fromdy, e, = p(ha)e, = (p, e, We finddes(0) = IT~0 (0, ).
Similarly we getdegss(0) = I1450(S3,a) = I4~0(5, S~1a). Now some of

the S—'a are negative roots; from §2.11, Corollary F we see that the last
product is exactlydet S - I1,~0(d, «). Thus all terms inds = X det S - egs
contribute the same amount, and &t (0) equalsV| - I,so{,d). The
corresponding result fot ;s finishes the argumeny/

Our next topic is Kostant’s formula for the multiplicities of the weights
[17]. One defines thpartition function” on the sef (lattice of weights)
by:

P(p) is the number of (unordered) partitions @finto positive roots;
in detail this is the number of systenis,).-o of non-negative integers
po Satisfyingp = Y a+pa. Note thatP(p) is 0 for manyp, in particular
for every non-positive weight except 0 and for any weight not in the root
lattice R.

We continue with the earlier notatiokh;a dominant weighty or ¢, the
irrep with extreme weight, andy, = Xm,e, the character ap,.

PROPOSITIONB ( KOSTANT' S FORMULA). The multiplicitym,, of
pinpyistgydet S-P(S(A+4d)— 48— p).

This rests on the formal relatiofil,~(1 — e_,))~! = ZP(p)e_,, ob-
tained by multiplying together the expansiongl —e_,) = 1 +e_, +
e_aq + -+--. TO make sense of these formal infinite series, weklstand
for the cone inh] spanned by the positive roots with non-positive coef-
ficients (thebackward cong for any u in h] we setE, = u + E. Now
we extend the group ring (finite integral combinations of the,) to the
ring G> consisting of those formal infinite seri&s, e, (with integralc,),
whose support (the set p§ with non-zera:,) is contained in somg,,; the
restriction on the support is analogous to considering power series with a
finite number of negative exponents and makes it possible to not only add,
but also multiply these elements in the obvious way (using some simple
facts about the conés,). E.g., the serie§P(p)e_, above has its support
inEy,=FE.

With the help of Proposition B in §3.6 we write Weyl's formula in the
form xn = Axise—s/Mas0(1 — e_y), Which with our expansion of the de-
nominator becomesm e, = (X det S-eg(at5)—s) - (EP(0)e_o). Multiply-
ing out, we see that we get,, for a givenp, by using those for which
S(A 4+ 0) — § — o equalsp for someS in W. That is just what Kostant’s
formula says./

While the formula is very explicit, it is also very non-computable, to a
minor extent because of the summation over the Weyl group, but mainly
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because of the difficulty of evaluating the partition function (cf. the case
of partitions of the natural numbers!). We present two more practical al-
gorithms for the computation of the multiplicities of the weightspqf

The first one is Klimyk’s formula [15].

For any integral linear formp we pute, = det T, if there existsI" in the
Weyl group withp = T'(A + §) — §, and= 0 otherwise. (The operations
A — T(\ + 8) — § constitute theshiftedaction of W on pJ, with -4 as
origin.)

PROPOSITIONC (KLIMYK 'S FORMULA). For any weighp in T the
multiplicity m, equals:, — Ygiq det S - myys5-s5 -

We first comment on the formula and then prove it.

The main point is that that — 56, for S # id, is a non-zero sum of
positive roots (see Proposition B of §3.1). Thusis expressed as a sum
of a fixed number (namelyV| — 1 terms) of the multiplicities of weights
that are higher thap (the p + § — S9), plus the term, (which requires a
check over the Weyl group). Thus we get an inductive (wr to the order in
hg ) computation ofn,,. It begins withm, = 1. This is quite practical, par-
ticularly of course for cases of low rank and small Weyl group. The main
objection to the formula is that about half the terms are negative, because
of the factordet S, and that therefore there will be a lot of cancelation to
get the actual values. (The next approach, Freudenthal’'s formula, avoids
this.)

Now the proof: We rewrite Weyl's formula a@sm e, - X det S - eg5 =
YdetT - er(ats). The left-hand side can be written first g, (X7 det S -
mpepess), then asyyy (X det S - mgpeg(,40) (SiNnCeSp, for fixed S, runs
overZ just asp does), and then (puttinglp+4J) = o +46 with o, for fixed S,
again running once ovél) asXyy(Xrdet S - my1s5-ssest+s), Which equals
Yz(Ew det S - myts5-s5)ep4s. Comparing this with the right-hand side of
Weyl's formula, we see that the coefficient @f,; is detT, if p + 0 =
T(A + 6) for some (unique)l’ in W, and 0 otherwise. That’s just what
Klimyk’s formula says./

We now come to Freudenthal’s formula [8].

PROPOSITIOND. The multiplicitiesm,, satisfy the relation

(A +6,A+3) —(p+6,p+0) mp = 2505057 Mpt1ap + ta, a).

We first comment on the formula and then prove it.
We saw at the end of §3.6 that for any weighdf ¢ (i.e., withm, # 0)
the inequalityy A+, A+ 6) — (p+9, p+4) > 0 holds. Thus the formula gives
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m, inductively, in terms of the multiplicities of the strictly greater weights
my1iq fOrt > 1anda in A™. The “induction” again begins with = X. All

the terms in the formula are non-negative, so there is no such cancelation
as in Klimyk’s formula, which makes the formula quite practical. On the
other hand, in contrast to Klimyk’s formula, the number of terms in the
sum on the right is not fixed, and becomes larger and larger, for gme

as\ gets larger.

Now to the proof:
First we state some results df -representation theory (81.11) in a
slightly different form; we use the notation developed there.

LEMMA E.

(a) In any irrepD, of A, the sum of the eigenvalues &f on all thev;
(the trace ofif) is O;

(b) Each vector; is eigenvector of the operatar, X _; the eigenvalue
equals the sum of the eigenvaluedbbn the vectorsg, vy, . .. ,v;.

We return to our irreg,, on the vector spack, with extreme weight
A, weight spacey),, etc., as in the last few sections.

We choose a roat (positive or negative) and consider the sub Lie alge-
brag(® = ((H,, X4, X_,)) Of type A, (see §2.5).

LEMMA F. There exists a decomposition vfunder the action of
¢(») into irreducible subspacés,, v = 1,2,3,... (each equivalent to some
Standard ref,) such that the eigenvectors 8f, in anyW,, are weight
vectors ofp.

Proof: For a given weighp we form itsa-string, the direct sum of the
weight space¥/,,, with ¢ € Z. By the basic lemma A of 82 it ig(®)-
invariant. Any decomposition into irreducible subspaces clearly has the
property described in Lemma F. Andis direct sum of such strings/

Note that the eigenvalues &f, in any W, are of the form(p + t«)(H,,)
for somep and some-intervala < ¢ < b; also recalk(H,,) = 2, consistent
with the nature of the,’s. /

The next lemma is one of the main steps to Freudenthal's formula. We
recall the elements,, = |a|/\/2X, introduced in 86.

LEMMA G.

(a) For any integral formp the sum=>_m,a(p + to, ) is 0.

(b) For any such the trace of the operatat,z_., on the weightspace
V, ISEmpriap + ta, a).
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[If we use X, X_,, instead ofz,z_,, then{(p + ta, a)(= (p + ta)(ha))
becomesyp + ta)(H,).]

Part (a) is an immediate consequence of Lemma E (a), applied to the
decomposition of/ into g(®-irreducible subspaces described in Lemma
F. We are in effect summing all the eigenvaluegifin all thoseWw, that
intersect som&,.,,, non-trivially; for eachiv,, we get O.

Part (b) follows similarly. This time we consider only tho#g, that
meet somé/,, ., with ¢ > 0 non-trivially. The right-hand side consists of
two parts: (1) The sum over th&, that meet/, itself non-trivially. This
gives the trace ok,z_, onV,, by (b) of Lemma E, since for eadi,
we are summing the eigenvaluesi®f from p(H,) on up. (2) The sum
over theW, that don't meet/,, but meetV,,, for some positive. This
gives 0 by (a) of lemma E as before; for edéh we are summing all the
eigenvalues off,,. v/

The next ingredient is the Casimir operaigrintroduced in §3.6. We
saw there thal' acts as the scalar operator+ 24, \)idy . Thus the trace
of I onV, ism, (A + 26, A). On the other hand, from the definitionbfve
get two parts for this trace, one corresponding &md one corresponding
to the roots. The first part yields ,¥p(A;)p(B;), which equalsn,(p, p).
The second giveSA Xm0 (p + ta, ), by Lemma G (a). Here we can
start the sum at = 1 instead oft = 0, since fort = 0 the contributions of
each paif{«, —a} of roots cancel. We now divida into A* andA~, and
note that by Lemma G (b) we ha¥&°m, o (p + to, ) = —m,(p, ) —
YT Mptia(p + ta, ), for anya. Takinga in A~, we can rewrite this as
mp(p, —a) + XM pyt.—a(p+1t-—a, —a). Thus the value of the second sum
in T becomes,~om,{(p, a) + 2Za>0mprta{p + ta, a); here the first term
equal2m,(p, §). All in all we get for the trace of onV, the valuen,(p+
20, p) + 2X0>0Xm 110 (p + to, ). (INcidentally, from this computation
we get once more the eigenvalyef I': Forp = A we havem, = 1, as we
know, and the sum vanishes, since all thg,,, are 0.) Equating the two
values for this trace we get Freudenthal’s formyla.

Our last topic is the generalization of the Clebsch-Gordan series, i.e. the

problem of decomposing the tensor product of two irrepsALanhd)\’ be

two dominant weights, with the corresponding irrepsandy”. By com-

plete reducibility the tensor produgt® " splits astn, ¢, (the sum goes
overZ?, the dominant weights, and is finite of course) withltiplicities

ny. The problem is to determine thg. (We know already from the dis-
cussion of the Cartan product theit+ \” is the highest of the occurring

here, and that .~ is 1.) We putn, = 0 for any non-dominank.
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We consider three approaches: Steinberg’s formula [22], R. Brauers’s
algorithm [2], and Klimyk’s formula [15].

PROPOSITIONH (STEINBERG' S FORMULA)
nx = Ygrewdet ST - P(S(N +6) + T(\' + §) — X — 26) for any
dominant\.

(HereP is the partition function, described above.)

The formula is very explicit, but not very practical: There is a double
summation over the Weyl group, and the partition function, difficult to
evaluate, is involved.

For the proof we writer’, for the multiplicities of the weights of’. It
is clear that the character of ® ¢” is the product of the characters of
andy” (tensor products of weight vectors are weight vectors with the sum
weight); thusy, xx» = Znxxa. Using Weyl's formula we rewrite this as
Xy - Axrys = EnaAxgs. Applying Kostant's formula for ther/, we get

Zp(ZS det S - P(S(/\/ + 5) —p— (5) c€p A,\N+5 = 2,\ ’I’L,\A>\+5.
On multiplying out this becomes
Ep.,S.,T det ST - P(S()\l + 5) —p— 5) CET(N ) 4p = 2)\7577,)\ -det S - €S(A+4)-

We have to collect terms and compare coefficients.

On the right we change variables, putting, for fix¢dS(A +6) = o + 4,
and obtaining:, s det S ng-1(g45)—5- €15 OF Ly Xg det S-ng(gi5)—5€ots-
On the left we put, for fixed andT, T(\’ + 6) + p = o + p and obtain
Yo,50det ST - P(S(N + ) + T (N 4+ 60) — 0 — 20) - e,46. Finally we note:
If o is dominant, therr + ¢ is strongly dominant, and then f&r # id
the weightS(o + ¢) — ¢ is not dominant and s0g(»s)—s iS 0. Thus for
dominantc the coefficient ofe, s on the expression for the right is,,
and the coefficient o, s in the expression for the left-hand side is the
value stated in Steinberg’s formulg.

Next we come to R. Brauer’s algorithm. It is based on the assumption
that the weights of one of the two representatiphandy” are known, so
that we have, say,' = ¥m/e,. We write the decomposition relation. -

Xar = Xmaxa, Using Weyl's formula fory,» and they, and multiplying
by As, in the form

(Zm;ep) . A)\//+5 = ETL)\A)\Jr(s.

We see that the problem amounts to expressing the skew element on the
left in terms of the standard skew elements s with dominanth.
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Brauer’s idea is to relax this and to admit terms with non-dominant
(each one of which is of course up to sign equal to one with a dominant
A). For an arbitrary weight we write[r] for the unique dominant weight in
theWw-orbit of r (i.e., the element iiV -7 that lies in the fundamental Weyl
chamber), and we writg. = 0, if 7 is singular (lies in some singular plane
(a,0)), and= det S where S, in the Weyl group, is the unique element
with S = [7], for regularr. We have themd, = n, A, for any 7. (Recall
A, = 0 for singularr.)

PROPOSITIONI (R. BRAUER'S ALGORITHM).
X - Axigs = Xm/ o - Noyaigs - Ajgpar46), Where the sum goes over the
set of weightsr of ’.

Proof: We introduce the sef = {(e,,e,) : p weight of ', L € W -
(X" + )}, the product of the set of weights gf and the Weyl group orbit
of X’ + 4. To each element,,e,) of E, with u = S(\" + §), we assign
the termm/ det Se, - e,; the sum of all these terms is then precisely the
left-hand side in Proposition I. Now we &V operatediagonallyon £,
with S(e,,e.) = (Se,, Se,). Each orbit contains an element of the form
(es,exr+s) (@and differente,’s correspond to different orbits). Using the
invariance of the weights und#v (i.e. m's, = m’,) we see that the sum
of the terms corresponding to this orbit, i.Byym’s, -det S-es,-eg(nr+4),
is preciselym’, A, av1s, €qual to the term correspondingd@n the right
hand side of the formula/

We restate the result in the form given by Klimyk.

PROPOSITIONJ. For dominant\ the multiplicityn, equalssm’, -
ne1x+s, Where the sum goes over those weightsf ' that satisfyjo +
N6 =A+44.

3.9 Examples

We start with some examples for the degree formula, 83.8, Theorem F.
We shall work out the degrees of the spin representatioaad A+, A~

of B; andD,. With the conventions of §2.13, the Killing form agrees with
the Pythagorean inner product up to a factor; by homogeneity of the degree
formula we can suppress this factor. Eithe positive roots are the and

thew; +w; with i < j; the lowest weigh# is (I —1/2)wy + (I —3/2)wa +- - -;

the extreme weight for the spin representatiok is 1/2(w1+wa+- - -+w;).

With (w;,8) =1 —1i+1/2 and(w;, \; + ) = 1 —i + 1 the formula evaluates

to
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[[,a-i+D ][, G-D@i+2-i—j)
[[,a—i+1/2) [, G- @1+1-i-j)

I (2i+2 I i+j+2
= 0<i<l—1 2741) 0<i<j<l—1 74441
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For D, the positive roots are the;, + w; with i < j; the lowest formy
is (I — Dwy + (I — 2)wq + - - -; the extreme weights for the two spin rep-
resentations are;_1,\; = 1/2(wy + wa + -+ F wy). For ¢; the formula
gives

[, ,G-D@-i—j+1)
1., G-d@i-i-p)

degreep, =

H i+j+1
= 0<i<j<l—1 i4j

i

ngigjgl—l +J

—

o<i<j<i—1 ‘T

M.,
1<i<l—1

Ho<jgz713

— 2l—1

Making the appropriate modification fgi_; we get for its degree the
value

(l—i4+1) (-9 -1
degreep, ; = degree,al~£[l ) U_iiD 2

A consequence of this computation is the following: The weights of
A are exactly thel/2(+w; + we + -+ + w;) Since all these must occur
by invariance under the Weyl group and they are alreézddy number.
Similarly for A* andA~ the weights are exactly thg2(+w; +ws - - -Fwy;)
with an even, respectively odd, number of minus signs.

In the same vein the weights of any are thew;, + --- + w;, — (w;, +
cdwy ) With iy < - <y, < --- < g, @andp4-g = r — 1 orr for B;
and= r for D,. (The difference comes from the fact thiails a weight of
A, for By, but not forD,.)
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Returning to the general degree formula we wkigsXn;\;, in terms of
the fundamental weights. Clearly the formula gives the degree of the rep
v as a polynomial in the variables, of degree /2(dim g — rankg) (equal
to the number of positive roots). It is fairly customary to wrke- § =
Yg;w;, thus expressing the degree as a polynomial irythe

As an example for the various constructions we considet s((3,C) in
more detail. (The simply connected Lie group her&ig3, C). The corre-
sponding compact group—which has the same representatistiga<)
andsl((3,C)—is SU(3); it is of interest in physics under the heading “the
eightfold way”. The point is that the elementary particles in nature appear
to occur in families that correspond to the weight systems of the irreps of
As. For instance, the two fundamental irrepsandy-, both of dimension
three with three weights of multiplicities 1, correspond to the two systems
of quarks and antiquarks. The adjoint rep, of dimension eight (hence the
“eightfold way”), corresponds to a family of eight particles.)

To begin with, from the description of the roots (82.14) we find for the
degreealy, with A = n1\; + 12X = giw; + gaws, the expression
{w; — wj, g1w1 + gawa)
H(w,; - Wy, 2&)1 + w2>

with g3 > g2 > 0 and the product running over < i < 5 < 3. With
(wi,wj> = (5ij th|S becomeg)\ = 1/2g1 gs (91 — gg) or 1/2(%1 —+ 1)(TL2 —+
1)(n1 + n2 + 2).

Forg, = 2,92 = 1 thisis 1; the rep is the trivial oney. Forg; = 3, g» =
1 the degree is 3, with = w,(= A1); the rep isA4, i.e.,sl(3,C) itself. For
g1 = 3,92 = 2 we get again 3, Withh = w; + wa(= —w3 = \y); this is Ay,
the contragredient rep, i.e. the negative transposegfer4, g, = 1 we
get 6 for the degree, with = 2\; = 2w; this is the symmetric square of
A4, i.e., the rep on the quadratic polynomials©@h Forg, = 4,9, = 3 we
get the contragredient, = 2\ = 2wy + 2ws. Finally, g1 = 4, g0 = 2 gives
degree 8, withh = \; + Ay = 2w; + wo; this is the adjoint representation.

One can find the weights gf, by Klimyk’s or by Freudenthal’s formula.
Klimyk’s formula can be described “geometrically” as follows: For any
weight . we have to look at the weighis+ § — S§ and the signsglet S.

From the Cartan-Stiefel diagram fdg we copy the six vector&— S5 on a
small transparent (plastic) plate, with common origin of course, and attach
the signsdet S to them. We move the plate so that its origin coincides
with the weighty, and find the multiplicitymn,, as the signed sum of the
multiplicities at the tips of the six vectors plus the vatuéAs regards the
latter, one should begin the operation by determining the shifted orbit of
A, with the appropiate signs.)

Finally we consider splitting tensor products. Looking at weights works
well in these simple cases. For instance:
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The weights ofp,y, are2)\; = 2w; (the extreme weightRw; — (w1 —
we) = wy +ws = —ws, —w3 — (w1 —ws) = 2wy (these three weights form the
(w1 — wq)-string 0f 2);) and —w, 2ws, —w> (€.g. by invariance under the
Weyl group= all permutations of the;). The tensor product; ® A; has
as weights all; + w; with 1 <, j < 3. The maximal weight i8w; = 2)\;;
thus sy, splits off, as the Cartan product &f andA;. The weights of
Ay ® A; are those obs,, and—w;, —ws, —ws. The latter are the weights of
As. Thus we have the splitting; ® Ay = @2y, + As.

Similarly A; ® A, has as weights all; —w;, i # j, and 0 with multiplicity
3. These are the weights of , , », = ad, with one weight O left over. This
meansA; ® Ay = ad +py.

For our A, a more explicit description of the irreps is of value (cf.[7]).
We abbreviat&€3 to V. Our Lie algebra being((V), we can identify AV

with VT equivariantly. Namely we identiff\sv with C by sendinge; A

es A ez t0 1; then then-pairing of V andV AV to A’V becomes identified
with the duality pairing of andV' " to C. The natural rep ofd, in V/

is the fundamental rep to the fundamental weightThe induced rep in

V AV is the one for\,; we see now that it equals the dual I’g@ invT.

To describe the irrep, with A\ = n1A; + naX\s we first form the tensor
products™V ® S™V T (with the induced rep of course) (hes& means

the symmetric tensors in the-fold tensor product), and then (assuming
both n; andn, positive) take the trace (i.e., the mape V' — C by

v® p — p(v)) for any one of thé/-factors and any one of tHe' -factors.
This sends the above space osto 'V @ "2~V T, The induced rep

on the kernel of the map is preciseby; note that (a) the highest weight
occurring isni; A1 + na)2, which does not occur in the image space), and
that (b) it is easily verified that the dimension of the kernel agrees with that
given forp, by the Weyl dimension formula developed above. We denote
this space and irrep also by, ns).

Let u,= miA + maole, be a second weight. There is a fairly efficient
algorithm for decomposing the tensor prodiiGt, no] ® [m, ms] into its
irreducible constituents. It is a two-stage process.

We introduceintermediatespaces (and rep$)., as, b1, bo], defined as
the subspace oV ® SV’ @ SV ® S*2V' T on which all possible
traces are 0. (A trace pairs some facdtowith some facto/ " to C, and
sends the whole space to the tensor product of all the other factors.)

The first stage is a decomposition[of, ns] ® [m1, m2] into intermediate
spaces.

PROPOSITIONA. The repin,,ns] ® [m1, ms] IS equivalent to the
direct sum of thén; — i,ny — j,my — j,mq — ] for 0 < i < min(ny, msz)
ando < j < min(ng, my).

The source for this is the distinguished elemEnt ® w; of V @ VT,
where{e;} and{w;} are dual bases 6f andV ". It does not depend on the
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choice of bases; it corresponds to it under the usual isomorphism between
V @ VT and the spacé(V,V) of linear maps fronV to itself (or to the
tensorsd] in coordinate notation). (All this holds for arly, not just for
C3.) We denote the element br and call it thedual trace NowV @ V' T
splits into the direct sum of the space of elements of trace 0 and the (one-
dimensional) space spannedi®n; and this splitting is invariant under the
action ofg((V). This generalizes: IN" @ (V7)™ (where exponents mean
tensor powers) we have the subspate of the tensors with all traces
0. Now in the product of thé-th V and j-th VT we take the element
TR and multiply it by arbitrary elements in the remaining factors. This
produces a subspace, sady, isomorphic tovV"~! @ (V)™= The sum
(not direct!) of all theU;; is a complement t&V,. EachU;;, being of the
same type as the original space, can be decomposed by the same process
into the space of tensors with all traces 0 and a complement, generated by
the TR’s. The O-trace tensors, for allj, give a subspac#/;. Continuing
this way, one arrives at a decompositionVof (V7)™ into a direct sum
Wo ® W1 @ -- -, where the terms i/, are products of TR's and a tensor
with all traces 0, or sums of such. This decomposition is invariant under
the action ofGL(V), and also under the symmetry group that consists in
interchanging thé -factors and (independently) the" -factors. (Cf.[25],
p.150.) Applying this construction one proves Proposition A; we shall not
go into the details.

The second stage consists in decomposing each intermediate space into
irreps.

PROPOSITIONB. The space (and ref):,n2, m1, ms] IS equivalent
to the direct sum of the irrefys, +m., na+ms), [n1+my —2i, no+mo+i| for
1 <4 <min(ng, m1), @andng+my+j,na+mo—24] for1t < j < min(nz, ma).

This depends very much on the fact that we are working in dimension
3 (i.e.,V = C?). In this dimension we can identify A V andV T (and
sl(3, C)-equivariantly so): Concretely, with dual bades} and{w,} for V/
andV T we senck; A e, to ws etc. (Abstractly, we can identify AV AV
with C, since it has dimension one and our Lie algebra acts trivially, and
then the pairing ot AV andV toV AV AV = C shows that/ A V acts
asV'T) Letabethemag’ @ V — V AV — V. The crucial fact is the
following somewhat unexpected lemma.

LEMMA C. Undera®id the subspace, of VoV VT consisting
of the tensors with both tracésnaps to the symmetric elementsiin ®
V.

In fact, more is true: an element, for which the two tracesi{(jaare
equal, goes to a symmetric element. To show this we compasé with
the mapg : VI @ VI — VT AVT — V (the analog ofx) and verify
that this is identical with the map “difference of the two traces”. E.g., for
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e1 ® ea ® wy the traces aré ande;, and the other map has ® e; ® ws —
erNery QW — w3y @wo — w3 ANwp — —eq. \/

Now to Proposition B. We consider twds, not from the same symmet-
ric product, and apply the mapto them. The kernel of this is clearly the
spacen; + mi,ng, 0, ms] (since the kernel of: is the symmetric subspace
S2V, which combines the two symmetric productsl@é into one long
one). The image on the other handris — 1,n2 + ms + 1,m; — 1,0], since
by the lemma the two symmetric productsiof’s become one long one
(in fact longer by one factor). (In the casg= m», = 0 it is not quite obvi-
ous, but still true, that the traces are 0 here.) Iteration of this process yields
Proposition B. Notéa, b,0,0] = [0,0, a,b] = [a,0,0,b] = [0,b,a,0] = [a, b].
v

As an example we take, 1]®[1, 1]. ([1, 1] is the adjoint rep, of dimension
8.) By Proposition A we have

(1,1 ®[1,1] = [1,1,1,1] +[0,1,1,0] + [1,0,0,1] 4 [0,0,0,0].
By Proposition B we have
[1,1,1,1] = [2,2] 4 [0,3] + [3,0].
So finally
1,1l @ [1,1] = [2,2] + [3,0] + [0, 3] + [1,1] + [1, 1] + [0, 0].

[0,0] is of course the trivial rep. One sees easily from the algorithm that
[n1,n2] ® [m1, mg] contains(o, 0] in its splitting iff ny = my andng = m;y.
Vv

As an example for Brauer’s algorithm (Prop.l of S3.7) we consider
againA,, i.e.,sl(2,C), with its two fundamental reps; andA, (see 83.5)
(whereA; is the same as thie, 0] above, i.e., the rep afi(2, C by itself).

We decomposé; ® A;. The weights of\; are of courses;, w», andws; in
terms of the fundamental weights and ), they are, respy;,\> — A1, and
—X2. Thus the character ig; = ey, + ex,—x, + e—x,. Brauer's algorithm
asks us to form the produgt - A,,+s, Whered is A\; + Ao, and tells us that
the result isAsy, 15 + Ax,+5 + A2y, - The third term i, because); is
singular (see 83.8, Prop.A). Dividing b4 and applying Wey!'s character
formula again, we find

X1 X1 = X2x T X, OF 01 @ 01 = wax; D ¥,

agreeing with our earlier result above.— In terms of propositions A and B
we also haveél, 0] ® [1,0] = [1,0,1,0] = [2,0] + [0, 1].
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3.10 The character ring

We return to the general semisimple and describe an important fact
about the representation ririty.

To each repp, or better to its equivalence clags, is assigned its char-
actery,,. By linearity this extends to a homomorphism of the free Abelian
group F' (see 83.5) into the additive group of the group riGigr ZZ
(see 83.6). Since the character is additive on direct sums, the subgroup
N (loc.cit.) goes to 0, and there is an induced additive homomorphism,
sayx~, of Rg into G. The character is multiplicative on tensor products,
and sox™ is in fact a ring homomorphism. The charactggsof the irreps
, associated to the dominant weightare linearly independent i, e.g.
by Weyl's formula: The skew elemens, ;s = x. - 4s are independent. In
fact, since thed,, s are a basis for the additive group of skew elements
in G, they, are an additive basis for the ring of symmetric elements. We
state this as

PROPOSITIONA. The mapy~ is an isomorphism oRg onto the
subringg” of G formed by the symmetric elements, the invariants of the
Weyl group.

G" (and then alsdzyg) is called thecharacter ringof g. (We recall that
Rg is a polynomial ring; see §3.5, Proposition A.)

We consider a slight generalization B§:

The charactex = x~(¢) of a repy can be considered as a function on
ho. At eacht in the co-root latticeZ it takes the valuel, = degree ofp,
since therxp(27riA(¢)) = 1 for all weights\. Now it may happen for some
¢ that there are otherin h, where the character takes this valiie(i.e.,
where all the weights iry take integral values). All these points clearly
form a lattice£ (depending o) in hy; here we assume faithful, i.e., no
simple constituent of goes to 0 undep. The lattice is of course invariant
under the Weyl group. Furthermore it contaihgof course), and is con-
tained in the center lattic& because every root appears as the difference
of two weights ofip, as one can see from Theorem B(c) of 83.2 (note that
by Proposition D, §2.6 no roet can be orthogonal to all the weightsjf
[The significance of all this is the following: Withis associated a simply
connected compact Lie group, whose Lie algebra is the compact form
u of g. The torusihy/27i7 becomes identified with a subgroup (the torus
T) of G; the finite grou®=iZ /277 becomes the center of. The repy
of g generates a rep“ of GG, which to the element represented by
assigns the operatexp(2mip(H)). The elements wittd in 7, which cor-
respond td in G, go toid undery®. The kernelV of »~ is a subgroup of
the center of7; its inverse image i is precisely the latticeéri£. Thus
a repy whose charactey, takes the valué, on £ corresponds to a rep of
G that factors through the quotie@y N .]
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To a given lattice between7 and Z and invariant undew we as-
sociate all the repg whose character takes the valigeon £. A direct
sum of reps is of this type iff all the summands are. We now construct the
representation rin@gg, for this set of reps by the same recipe by which
we constructed the rinfg. It is clear that this is a subring dfg, spanned
additively by the irreps with the property at hand. It may fail to be a poly-
nomial ring as we will see by an example below.

Example 1:B;.

Here we take as the only possibility (outside df’), namelyz itself (cf.
§2.5). [This amounts to considering reps of the orthogonal gaug@! +
1) rather then reps of the corresponding simply connected group, the so-
calledspin groupSpin(2! + 1).] The crucial element at which we have to
evaluate the characters is the veetarin order for all the exponentials in
xx to have value 1 at;, the coefficientf; of A = X f,w; must be integral
(and not half-integral). Writing, = Xn;)\;, in terms of fundamental reps,
this means that; must be even, i.e) must be a non-negative-integral
linear combination of\y, ..., \;_; and2),;, and thatRg, is the subring of
Rg generated by, Ay, ..., A;_; andepay,. [p2y, is in factAlo(2] + 1,C);
we also writeA, for it.]

Now all the exponentials in the character of the spin fep- ¢, take
value—1 ate;. ThereforeA ® A is in our subset, and we have an equation
A®A = oy, + -+, Where the dots represent a sum of tertps .., A;_1.
(Details below.) This means th&tg is the subring ofRg generated by
A Ao A1 and A ® A, and therefore it is a polynomial ring (with
these elements - or with, A,, ..., A; - as generators).

Example 2:D,.

Here there are several possibilities forVe choose the lattice generated
by 7 and the vectog; [this again corresponds to repssi®(2!) rather then
of the simply connected grou§pin(21)].

Again the) in question must have the foriyf;w; with f; integral or,
in the form Xn;\;, with n;_; + n; even. Introducing\ = X\_; + A\, =
w1 +w2—|—-~-—|—wl,1,)\+ =2\ =wiFws+---Fw,and\T =2\ =w; +
wo+- - -4wj—1 —w; (and denoting the corresponding repsbyA+ andA ),
we can describe theseas the non-negative-integral linear combinations
of A\y,..., N2, X, AT, andA\~. The ringRg, is then the subring ofke(21)
generated byy,..., A; 1, AT A,

Now the tensor products of the spin repps and A~ split according to
ATQAT =AT 4+ AT@A =A"+--- AT®A™ =A;_1+---,Where
the dots in all three cases represent a sum of tdrms., A;_,, as one can
see from the weights (details below). This means that the sulRgnf
Rg is also generated by, ..., A 5, AT®@ AT, A~ @ A~ andA*T @ A™.
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This is not a polynomial ring; as regards™ and A~ it is of the form
Alz?,y?, zy], which in turn can be described a&u, v, w]/(uv — w?).

Details and comments.

For B, the exact equation & ® A = pay, + Aj—1 + Aj_a + -+ + Ag, @s
one can see by properly distributing the weight\ob A (hereA, is, as
always, the trivial rep).

We indicate the argument: The highest weighfaf A isw; +wo +-- -+
wy; thusA; occurs, once, as the Cartan product. The weightws + - - - +
wy_1 occurs twice inA ® A, but only once inA;; it is the highest of the
weights of A ® A after those of\; have been removed. Thds_; occurs,
once. Next we look abt; + ws + - - - + w;_s. It occurs four times i\ ® A,
twice in A; and once im\;_;; this forcesA;_» to be present, once. Etc.

For D, the situation is of course a bit more complicatad.as defined
above, is/\l_lo(2l,(C), sincew; + wy + -+ + wy_1 is the highest weight
of the latter, and\;,_; has the right dimension, from the degree formula.

But /\lo(2l,(C) (= A; in short) is not irreducible; it splits in fact into the
direct sum of the\* andA~ introduced above. This comes about through
the so-called (Hodgegtar-operation«: For a complex vector spade of
dimensiom, with a non-degenerate quadratic fofm) and a given “vol-
ume element’s (element of A"V with (u,u) = 1) this is the map from
A’V to A"V defined byv A xw = (v, w)u. One verifies that is equiv-
ariant wr to the operators inducedAd'v and/\" "V by the elements of
the orthogonal Lie algebra associated with).

ForC™ with metricXz? andu = e; Aea A+ - - Ae, this sends;, Ae;, A+ A
e;, toe; Nej, A---Aej,_ , where thej’s form the complement to thés
in{1,2,...,n} and are so ordered thét, is, ..., ip, j1,j2,...,jn—p} IS AN
even permutation of1,2,...,n}. (Note that in our description @, and
D, in 82.14 we use a different metric form.)

Clearly the operatorx on APV is the scalar map-1)P("~P)id. In partic-

ular, for our caseD; with n = 2] and takingp = I, thex-map sendsf\l(C?l

to itself, and its square is-1)'. Thus the eigenvalues efon this space are

+1 for [ even andt: for [ odd, and the space splits into the correspond-
ing eigenspaces. [An improper orthogonal (w¢-te)) transformation. e.g.
diag(,...,1,—1), interchanges the two eigenspaces, which therefore have
the same dimension.] As noted above for the general easequivariant

wr to the action ofA; on Al(c2l. Therefore the eigenspaces=ofo into
themselves undex;, and this is the promised splitting &f into A* and
A~. The exact equations are n@dW QAT = AT+ A o+ A 4+...,A™®
AT =A"+AN o+A 4+ ,ATRA" =A_1+AN_3+A_5+...,each
sum ending iM\; or Ay, as one can see again by enumerating the weights.
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3.11 Orthogonal and symplectic representations

The purpose of this section is to decide which representations of the var-
ious semisimple Lie algebras consist, in a suitable coordinate system, of
orthogonal matrices, resp of symplectic matrices. The results are due to
I.LA. Mal’'cev [20]. We follow the argument by A.K. Bose and J. Patera [1].
First some linear algebra.
Let V be a vector space (ové&; of finite dimension). We write3 (V)
for the vector space of bilinear functions frdmx V to F, andLL, (V) for
the vector space of all linear maps fromto its dual spacé’ ". There
is a canonical isomorphism betwe&il) andL.(V): Let b be a bilinear
form; the corresponding map: V — VT sends a vectar into that linear
function onV whose value at any is b(v,w). In other words, we g&f
from b by fixing the first variable. The dual df is also a map fronV’
to VT (in reality it is a map fromV T to V'; but VT is canonically
identified with V). Of course this dual is nothing but the map obtained
from b by fixing the second variable; i.e., we haV/év)(w) = b(w,v). Thus
b is symmetric, resp. skew-symmetricpifequals its dual, resp. equals the
negative of its dual. Alsaj is hon-degenerate exactly whé&n(or b") is
invertible.

Let A be an operator ofY. We let A operate on/ " asA® = —AT;
that is, we definel®p(v) = —p(Av) for anyp in VT andv in V. We use
this infinitesimal contragredientwith the applications to contragredient
representations of Lie algebras in mind. We alsodleperate orB(V') by
Ab(v,w) = —b(Av,w) — b(v, Aw). The isomorphism oB(V) and L.(V)
then makesib correspond to the map” o’ — b o AfromV to V7. In
particularp is (infinitesimally) invariant undes (i.e., b(Av, w) + b(v, Aw)
is identically 0) iff &’ is an A-equivariant map fron¥ to VT (i.e., satisfies
A” o b =1 o A).

Let now g be a Lie algebra and let be a representation @f on the
vector spacd/. Associated tay are then the representations Bn, on
B(V) and onL.(V), obtained by applying to each operatgtX) the con-
structions of the preceding paragraph. The representatioli 'ois the
contragredient or dual tg, denoted byy”. We will be particularly in-
terested in the-invariant bilinear forms, i.e. the elemeritsf B(V) that
satisfyb(p(X)v, w)+b(v, o(X)w) = 0 for all v,w in V- andX in g. From the
discussion above we see that under the isomorphisB(6j with L. (V)
they correspond to the-equivariant maps fronv to V', i.e. the linear
mapsf : V — VT with fop(X) = ¢(X)* o f forall X in g.

We come to our basic definitions: The representafioof the Lie al-
gebrag on the spacé’ is calledself-contragredienbr self-dualif it is
equivalent to its contragrediegt™. This amounts to the existence of a
p-equivariant isomorphism frori to V', or, in view of our discussion
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above, the existence of a non-degenerate invariant (i.e. infinitesimally in-
variant under alp(X)) bilinear form onV. One callsy orthogonalif there
exists a non-degenerate symmetric bilinear fornvomvariant (infinites-
imally of course) under alp(X). Similarly ¢ is calledsymplectidf there
exists a non-degenerate skew bilinear formiQinvariant under alp(X).
Another way to say this is that all(X) belong to the orthogonal Lie al-
gebra defined by the symmetric form, resp. to the symplectic Lie algebra
defined by the skew form.

No unigueness is required in this definition; there might be several lin-
early independent invariant formg;could even be orthogonal and sym-
plectic at the same time. The situation is different however, if the underly-
ing field isC (as we shall assume from now on) apd irreducible.

PROPOSITIONA. Lety be overC and irreducible. Then
(a) ap-invariant bilinear form is either non-degenerate or 0;

(b) up to a constant factor there is at most one non-zero invariant bilinear
form;

(c) ap-invariant bilinear form is automatically either symmetric or skew
(but not both).

To restate this in a slightly different form, we note first that the space
B(V) is isomorphic (andp-equivariantly so) to the tensor product
V. (An element\ @ 1 of the latter defines a bilinear form By 1i(v, w) =
A(v) - p(w).) Under this correspondence symmetric (resp skew) forms cor-
respond to symmetric (resp skew) element¥ 6fo V',

PROPOSITIONA'. Lety be overC and irreducible.

(a,b) The space of invariants ¢f* @ > inVT @ VT is of dimensior)
or1, the latter exactly if> is self-dual;

(c) A (non-zero) self-duap is either orthogonal or symplectic (but not
both); it is orthogonal if the second symmetric powép has an invariant
(i.e., contains the trivial representation), and is symplectic if the second

. 2 . .
exterior power\”¢ has an invariant.

Proof (of A and A): we look at an invariant bilinear form as an equiv-
ariant map from/ to V7. Sincey”, onV T, is of course also irreducible,
Schur's lemma gives the result (a). For (b)bifand b, are two invari-
ant bilinear forms, then for a suitable numbethe formb; — kb, is de-
generate (we are ovet) and still invariant; now apply (a). For (c): A
bilinear forms is, uniquely, the sum of a symmetric and a skew one [by
b(v,w) = 1/2(b(v, w) + b(w,v)) + 1/2(b(v, w) — b(w,v))]. (In other words,
we have the invariant decompositidil @ V' = S2V T + /\2VT.) If bis
invariant, so are its symmetric and its skew parts; now apply/b).
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We need a few more obvious general formal facts.
PROPOSITIONB.

(a) If p is orthogonal [resp symplectic], then the duél is also orthog-
onal [resp symplectic]; the-th exterior power\" x is orthogonal [resp
symplectic] for odd- and orthogonal for ever

(b) the direct sum of two orthogonal [resp symplectic] representation is
orthogonal [resp symplectic] ;

(c) the tensor product of two orthogonal or two symplectic representa-
tions is orthogonal;

(d) the tensor product of an orthogonal and a symplectic representation
is symplectic.

The proof of this, using equivariant maps framto V' and natural
identifications such as dual of exterior poweexterior power of the dual,
is straightforward. E.g. for (a): If is orthogonal, there is @-equivariant
isomorphism fromi” to VT equal to its dual; the inverse of this map is
then an equivariant map from™ to V' " =V, equal to its dual,/

For the reducible case we need a simpleminded lemma.

LEmMA C. Suppose the rep of g onV is direct sum of irreducible
repsy; on subspaces;, andy,, onVy, is not the dual of any of the other
v, i > 1. Then, ify is orthogonal [resp symplectic], sods.

Proof: First,o® on VT is of course direct sum of the™ on theV,T. An
equivariant isomorphisii from v to V' gives then a similar maig from
Vi to V;", by the hypothesis op;, makingy; self-dual. If the dual o’ is
+v’, the same holds far,. /

We return now to our semisimple Lie algelyawith all its machinery
(82.2 ff.). We are given a dominant weightand the associated irrep,
with )\ as extreme weight. There is a simple criterion for self-duality in
terms of weights.

PROPOSITIOND. vy is self-dual iff its minimal weight is- ).

Proof: “Minimal” is of course understood rel the order by that we
have been using all along. — The definition of the contragredightX ) =
—o(X)T, shows that the weights Qﬂ‘f are the negatives of those @f.
Thus A\, the extreme and maximal weight gaf, is the negative of the
minimal weight ofy,. (Changing the sign reverses the ordeljjn) /

There are other ways to look at this. By considering the reversed order
in by one sees easily that the minimal weightgfis that element of the
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Weyl group orbit of) that lies in the negative of the closed fundamental
Weyl chamber. It is therefore the image)ofinder the opposition element
op of W (see 82.15). Thus Proposition D can be restated as

PROPOSITIOND'. p, is self-dual iff the opposition sendsto —\.

This is of course automatic if the opposition-igd; in other words, if
W contains the elementid.

We come now to our main task, the discussion of the individual simple
Lie algebras. In each case we shall indicate for each dominant weight
whetheryp, is self-dual, and if so, whether it is orthogonal or symplectic.
We write thel's asX f;w; (as in 83.5), and also as; \; (in terms of the
fundamental weight&; and non-negative integra}). One often describes
such a\ by attaching the integet; to the vertexa; in the Dynkin dia-
gram. The result is contained in the following long theorem. (The trivial
representation is of course self-dual and orthogonal.)

THEOREME.

(a) A, : py is self-dual ifff, = fo + fi = fs + fi_1 = --- (equivalently
ny = ng,ny = ny_1,...) [@and thus for allx in the casé = 1]. It is then
symplectic ifl = 1 mod 4 andf, odd (v1)/2, the middlen;, odd), and
orthogonal otherwise;

(b) B, : o, is always self-dual. It is symplectic lif= 1 or2 mod 4 and
the f; are half-integral«, is odd), and orthogonal otherwise;

(c) C; : py is always self-dual. It is symplectic ¥tf; is odd(n, + nz +
ns + --- is odd), and orthogonal otherwise;

(d) D, : o, is self-dual iff either is even onl is odd andf; = 0(n;_; =
ny). It is then symplectic if = 2 mod 4 and thef; are half-integra(n, 1 +
n; is odd), and orthogonal otherwise;

(e)Gs : o, is self-dual and orthogonal for evexy
(f) Fy : ¢, is self-dual and orthogonal for evexy

(g) FEs : ©A is self-dual IffEfZ/?) = f1 + f6 = f2 + f4 = f3 + f4 (m =ns
andns, = ny4). It is then orthogonal (and thg are integers);

(h) E; : o, is always self-dual. It is orthogonal if thg are integral
(n1 + n3 + ny is even), and symplectic otherwise;

(i) Es : v, is always self-dual and orthogonal .

We start with the question of self-duality, using Proposition D arA3
we know from §2.15, the opposition isid for the simple Lie algebras
A1, B, C; , the D, for evenl , Gs, Fy, E7, Eg; thus all their irreps are self-
dual. There is a problem only fot; with [ > 1, for D; with [ = 2k + 1 odd,
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and for Fs. For A, the opposition is given by, — w;.»_; (see loc.cit.).
Thusop sends the fundamental weight=w; + -+ +w; tOw; 1 + -+ +
Wito i = —w) — - — w1 = —Ni11-i (We usedSw,; = 0 here). The
weight A\ = ¥n;\; then goes te-)\ underop iff the relationsn; = nj1_;
hold. /

For Doy 1 the opposition sends; to —w; for 1 < i <1 — 1, and keeps
w; fixed (see loc.cit.). It sends the fundamental weighto —\; for 1 <
i1 <1-2,and sends,_; to —)\; and)\; to —\;_;. Thus a dominant weight
A = Yn;\; gives a self-dual irrep iffy_1 = n;. /

For Eg the opposition interchanges and \5;, and also\, and \, (see
loc.cit.) Thus a dominamt = Xn;\; is self-dual iffn; = n; andns = ng4.

Vv

Now comes the question orthogonal vs. symplectic. We settle this first
for A;, whose representations we know from §1.11. Here the representa-
tion D, /, is symplectic (the determinanty, — z,y; of two vectorsz,y
in C? is the relevant invariant skew form; or one notes that far>a2
matrix M the conditionM T.J + JM = 0 is identical withtr A/ = 0). It fol-
lows now easily from Proposition B, Lemma C and the Clebsch-Gordan
series (81.12) thab, is orthogonal for integral (i.e., odd dimension) and
symplectic for half-integrai (i.e., even dimension) (and also foe 0).

The other simple Lie algebras will be handled with the help of a general
result, which involves the notion gdrincipal three-dimensional sub Lie
algebra(abbreviated ta®T' D). Let g be a semisimple Lie algebra, as be-
fore; we use the concepts listed at the beginning of this chapter. Since the
fundamental roots, ..., «; are a basis ofj , there exists a unique ele-
mentH, in b, (in fact in the fundamental Weyl chamber) with( H,,) = 2
for 1 <4 < 1. We write H, as Xp;H;, choose constants, c_; so that
¢ - c—; = p;, and introduceX,, = X¢; H; andX_, = ¥¢; H;. Using the rela-
tions[HX;| = o;(H)X_;, [X;X_;] = H;, [X;X_;] = 0fori # j one verifies
[H,X,] =2X,, [H,X_,] = —2X_,, and[X,X_,] = H,. The sub Lie alge-
brag, of g spanned byd,, X,,, X_,, visibly of type A,, is by definition a
PTD of g. It hasCH, as Cartan sub Lie algebra (with the obvious order,
which agrees with the order iy : H, is > 0); its root system consists of
+a,, defined by, (H,) = 2.

A representatiorp of g restricts to a representatign” of g,,; sinceH,
lies inp, any weightp of ¢ restricts to a weight™ of ©™~, and all weights
of ¢~ arise in this way. (Such g~ amounts of course simply to the eigen-
valuep(H,) of H,.)

In generaly™ will not be irreducible, and will split into a sum of the
irreps ofg,, i.e., intoD,’s. We come to the property ¢f> that we utilize
for our problem.

LEMMA F. Let o = ¢, be an irrep ofy, with extreme weighb.
Then
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(a) \~ is the maximal weight of~ and has multiplicity 1,

(b) in the splitting ofpy™ the representatiob with 2s = \(H,) (thetop
constituent) occurs exactly once.

Proof: The weights ofy, other than) itself, are of the formp = X —
Yk;a;, With non-negative integers andxk; > 0. Thus froma;(H,) = 2
we havep(H,) = A\(H,) — 2Xk; < \(H,). SinceX has multiplicity 1 iny,
part (a) follows. Part (b) is an immediate consequence, since iDattye
largest eigenvalue df is precisely2s. /

We can now state our criterion.

PROPOSITIONG. o (assumed self-dual) is orthogonahifH,) is
even, and symplectic K(H,) is odd.

Proof: Clearly ¢} is orthogonal ify, is so, and symplectic ip, is so.
We apply Lemma C tg7} and its splitting intoD,’s. Since the top con-
stituent ofy}’ occurs only once, by lemma F, it follows from Lemma C
that the top constituent is orthogonaldf is so, and symplectic ip} is
so. As we saw above in our discussion of the behavior ofilig the top
constituent ofyy is orthogonal ifA(H,) is even, and symplectic if it is
odd../

(Incidentally, all eigenvalues df,, undery, are of the same parity, since
all a(H,) are even,; thus any weight ¢f, could be used in Proposition G.)

For the proof of Theorem E it remains to work this out for the simple
Lie algebras.

With H, = ¥p;H; and A = Xn;\; the crucial value\(H,) becomes
Yn;p;. The constantg; are determined from;(H,) = 2, i.e. fromXa;;p; =
2, wherea;; = o;(H;) are the Cartan integers. For the simple Lie algebras
thea,; are easily found from the; in §2.14 and the7; in §3.5.

As an example, foi; we haven; = ws, as = wy —wo, H; = (—1,2, 1),

Hy, = (1,—170). ThUSaH = 2,a12 = —1,a31 = —3,a905 = 2. We get the
equation®p; —ps = 2, —3p1 + 2pe = 2, giving p; = 6, p> = 10. ThusH,, is

6H; + 10H,, and for\ = ny Ay + noAy we havel(H,) = 6n; + 10n,. This

is always even, in agreement with Theorem E, (e).

[We also note that the definition df, is dual to that for the lowest
weights (see §3.1), except for a factor 2. Thdg can also be found as
Yas0Ha.]

We list the results in the usual way, attaching the coefficignd the
vertexq; of the Dynkin diagram.
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11 1-21 1-(2—1) 1-(2—2)
2.(1—1) 2. (21— 1) 2. (21— 2) 2. (21— 3)
3.(1-2) 3.(20—2) 3.(20 - 3) 3. (20— 4)
Ek:-(l—k:—i—l) Ek-(2l—k+1)zk-(21—k) ;k~(2l—k—1)
S(1=2)-3  0(-2)-(+3)0(-2)-(1+2) ©0(-3)-(+2)
(i—1)-2 (—1-(0+2) al-1)-(+1) Q1-2)-(+2)
1-1 I-(+1)/2 OF

L(1-1)/2  1-(1-1)/2

58 114 168 220 270 182 92
O O

i 136

It is now easy to verify the statements of Theorem E. E.g. Afowe
know already that,; equalsn,;_;,; for a self-dual\ = Xn;\;. The value
A(H,) = ¥p;n;, with the p; as listed above, is then clearly even iis
even. For odd we haveXp;n; = pgi1)/2 - nas1y2 mod 2 = (I +1)%/4 -
n(+1),2 mod 2, which is odd forl = 1 mod 4 andn;44),, odd, and even
otherwise. For the exceptional cases note that éhljpas any oda;; for
the others all irreps are orthogonal.

As a minor application: The seven-dimensional reg'ebf §3.5 can be
interpreted, using Theorem E(e), as giving an inclugignc B;.This is
the inclusion described in §2.14.

One reads off from Theorem E that for the following simple Lie algebras
and only for these all representations are orthogonal:

o(n,C) with n = +1 or 0 mod 8, G, Fy, Fs.
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To conclude we discuss briefly the situation for compact Lie groups.

Let thenG be a compact Lie group, and letbe a representation of
G on the (complex) vector spadé How does one decide whetheris
equivalent to a representationdn) [i.e., by real orthogonal matrices], or
in Sp(n) [i.e., by unitary-symplectic matrices]? We might as well replace
V by C™ andG by its imagep(G). The answer is as follows.

THEOREM H. A compact subgroup of/L(n,C) is conjugate in
GL(n,C) to a subgroup of the (real) orthogonal gravip) [resp, for even
n, the (unitary) symplectic grougp(n/2)] , iff it leaves invariant a non-
degenerate symmetric [resp skew-symmetric | bilinear formi'an

(The invariance is now meant in the global senge;, gw) = b(v, w) for
everyg in G; not in the infinitesimal as earlier for Lie algebras. As before,
symmetric or skew invariant forms correspond to invariants in the second
symmetric or exterior power df.)

Proof: We begin by finding a positive definite Hermitean fotm) on
C™ that is invariant unde&. The existence of this is a standard fact. A
short proof (L. Auerbach) is as follows: L&toperate on the vector space
of all Hermitean forms (by the usual formua: (v, w) = h(g=-v, g~ t-w)).

Let C stand for the convex hull of the set 6ftransforms of some chosen
positive definite form; this is a compact set, consisting entirely of positive
definite forms, and is invariant undét Its barycenter is the requiréd-).

Now letb be a symmetric [resp skew] form as of Theor&mThe equa-
tion b(v,w) = (Av,w) defines, as usual, a conjugate-linear automorphism
A of C", self-adjoint [resp skew-adjoint] wr to the positive definite form
Re(-,-) onCE = R?n.

In the symmetric case the eigenvaluesidre all real; because dfiv =
—iAv there are as many positive ones as negative onedVUat the real
span of the eigenvectors to positive eigenvalues; it is of dimensimd
a real form ofC”. The groupG leaveslV invariant. We transfornd into
O(n) by taking an orthonormal basis @f, wr to Re(:,) (hereRe means
“real part”), and sending it to the usual orthonormal basiRaf

In the skew case4? is a symmetric operator ok’ and has negative
eigenvalues. We can modifyf by real factors on the eigenspacesAsf
so thatA? is —id. For any unit vectow we have thenAv,v) = 0 and
b(Av,v) = —1. The spac€(v, Av)) and its(-,-)-orthogonal complement
are bothA-stable. It follows now by induction thatis even and that there
is an orthonormal basi&, v, ..., v,} of C™ with b(vy,vs) = b(vs,vs) =

- = —1 and all otherb(v;,v;) = 0. Sending they; to the usual basis
vectors ofC™ transforms into a subgroup ofp(n/2). (We note thatC"
can now be interpreted as quaternion sgat€, with A corresponding to
the quaternion unif, and that in this interpretatiofip(n) consists of the
C"-unitary quaternionic linear maps #f*/? to itself.),/
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From our earlier results we deduce with the help of Theorem H that
all representations of Spim) for n = +1 or 0 mod 8, of SO(n) for n =
2 mod 4, and of the compact groups,, Fy, Es can be transformed into
real-orthogonal form.

We also note: The spin representatidnof B, is orthogonal foi = 0 or
3 mod 4 and symplectic foi = 1 or 2 mod 4; the half-spin representations
Ajf of D; are orthogonal fot = 0 mod 4, symplectic forl = 2 mod 4, and
not self-contragredient for odd
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Appendix

Linear Algebra

The purpose of this appendix is to list some facts, conventions and nota-
tions of linear algebra in the form in which we like to use them. We follow
pretty much the book by P. R. Halmos [9]. We u&éthe real numbers)
andC (the complex numbers) as scalars. Al8bstands for the natural
numbers{1,2,3,...} andZ stands for the integers; finallg/n or Z/nZ
stands for the cyclic group of order the integers mod the natural number
n. We write[F™ for the standard n-dimensional vector space over the field
F (with F = R or = C for us). Its elements are written &8, xs,...,x,)

with z; in F and are considered as column vectors (occasionally the in-
dices begin withy). We denote by; thei-th standard coordinate vector
(0,...,0,1,0,...,0) with a1 at thei-th place, and by; thei-th coordinate
function which assigns to each vectorith coordinate.

Vector space$V, ¥, ... ) are of finite dimension unless explicitly stated
not to be so. For a subsgf of a vector spac#&, we denote by(M)) the
linear span ofV/ in V. For a complex vector spadé we write Vi for the
real vector space obtained frdmby restriction of scalars fror@ to R; for
a real vector spac® we write W for the complex vector space obtained
from W by extension of scalars frofto C, i.e. the tensor produdt ®g C
(or, simpler, the space of all formal combinatiansiv with u, v in W and
the obvious linear operations).

An operatoris a linear transformation of a vector space to itself. Trace
and determinant of an operatdrare writtentr A anddet A. The identity
operatoris denoted byl or by id. Wr to a basis of the vector space an
operator is represented by a matrix; similarly for linear transformations
from one space to another. We writéor the identity matrix.

diag(A1, A2, ..., Ap) Stands for they x n diagonal matrix with the\; on
the diagonal; the,; could be (square) matrices.

Thedualor transposedf a vector spac#, the space of linear functions
onV, is denoted by T (this deviates from the usual notatioor *; “dual”
being a functor, we like to indicate its effect on objects and morphisms by
the same symbol). We note thiat } and{w;} aredual base®f F" and its
dual.
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For a linear transformatiod from V to W (sending the vectos to
A(v) = A-v = Av) we write AT for thetransposedr dual of A, from W T
to V' (defined byAu(v) = u(Av) for xin WT andv in V). For invertible
Athe map(A~1)T, = (AT)~!, is thecontragredieniof A, denoted by4".
We use also a related notion, thinitesimal contragredienti® of any
operatorA (not assumed invertible), defined to bel ™.

Theadjoint M* of a matrix) is the transposed complex-conjugate.

As usualker A denotes théernelor nullspaceof A (the set of vectors

in V that are sent to 0 byt) and:m A denotes thémage spacef VV under

A (the set of allAv, asv runs through”). There is the natural identifica-
tion of V' with its second duaV’' " " (this holds by our assumption on the
dimension), which permits us to writdy) = p(v) for v in V andp in
VT, and to identifyAT T with A. Composition of linear transformations is
written Ao B or A - B or AB. Similarly matrix product is writterd/ - N or
MN.

Bilinear maps generally go from the Cartesian product W of two
vector space¥® andW to a third spacé/. A bilinear formon V' (denoted
by b,0(-,-),(-,-),...) is a bilinear map fronV x V to the base field. Such
a form defines two linear transformations frdmto the dualv’ " by the
device of holding either the first or the second variable of the bilinear form
fixed: tob we havey : V — VT by v/ (u)(v) = b(u,v) andb” by b (u)(v) =
b(v, u); the two maps are transposes of each otheii(viaV " T. The form
is symmetric iff the two maps are equal, and skew-symmetric, if they are
negatives of each other. (We occasionally use “quadratic form” for “bilin-
ear symmetric form”; that is permissible since our fields are not of charac-
teristic2.)

A sesquilinear form(for aV overC) is a map fromV’ x V to C that is
linear in the second variable and conjugate-linear in the first variable.

A bilinear formb on V is invariant under an operatod if b(Av, Aw) =
b(v,w) for all v,w in V. We also use a related “infinitesimal” notianis
invariant in the infinitesimal sengar infinitesimally invariantunder A if
b(Av,w) + b(v, Aw) = 0 for all v, w in V. (Cf.81.3.)

A non-degenerate symmetric bilinear form, gayis called aninner
productor also ametricon V. One has then the canonical induced isomor-
phism (occasionally called thi€illing isomorphisn) p «—— h, between
VT andV, defined byb(h,,v) = p(v) for v in V andp in V. Defining the
formbon VT by b(p, o) = b(h,, h,) makes this isomorphism an isometry.
An invertible operatord on V' is an isometry precisely if it goes into its
contragredient under this isomorphism. We use the terms inner product
and metric also foHermitean formdi.e., sesquilinear forms witkw, v)
equal to the conjugate, w)~ of (v,w)], and occasionally for degenerate
forms.
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Let A be an operator of. The nilspaceof A consists of the vectors
annulled (sent t®) by some power ofd. An eigenvectorof A is a non-
zero vectorv with Av = nv for some scalay, (the eigenvalueof A for
v). Theeigenspacé/,, for a given scalar, is the nullspace (NB, not the
nilspace) ofd — 5 (i.e., of A — 5 - id); this is the subspace 0 of, if 7 is not
eigenvalue ofA. Theprimary decompositiortheorem says that a complex
V is direct sum of the nilspaces of the operatédrs  with  running over
the eigenvalues ot ( or over all ofC, if one wants). This is refined by the
Jordan form A can be written uniquely a$ + N, whereS is semisimple
(= diagonizable) N is nilpotent (some power ofV is 0), andS and N
commute fN = NS). The eigenvalues of are those of4, including
multiplicities (thecharacteristic polynomiat 4(z) = det(A —z-id) equals
that of S). Nilpotency is equivalent to the vanishing of all eigenvalues; in
particular the trace i8.

If a subspacé/ of V is invariant or stableunderA (i.e., A(U) c U),
then there is the induced operatbon U, and also on thguotient space
V/U (= the space of cosetst U), with A(v+U) = Av+U. The canonical
quotient mapr : V — V/U (sendingv to v + U) satisfiesd o m = 70 A.

The last relation is a special casesgfuivariance Let vV andV’ be two
vector spaces. To eaehin some sef\/ let there be assigned an operator
A, onV and an operatod,, on V'’ ("M operates oV and onV'"). A
linear mapB : V — V' is calledequivariant(wr to the given actions of
M) if Bo A, = A}, o B holds for allm. (One also says3 intertwinesthe
two actions.)

A vector space with a given family of operators is caléahpleor irre-
ducible(wr to the given operators) if there is no non-trivial (i.e., different
from 0 and the whole space) subspace that is stable under all the operators.

A diagramV’ — V — V” of vector spaces, with maps A and B, is
exact if im A = ker B. A finite or infinite diagram-- - V; — V1 — ---
is exact, if each section of length 3 is exactsiort exact sequencee.
an exact sequence of the fom— U — V — W — 0, means that is
identified with a subspace &f and thatV is identified withV/U.

A splitting of a mapA : V — W is a mapB : W — V such that
Ao B =idw. This is important in the case of short exact sequences where
splitting eitherU — V or V' — W amounts to representinig as direct
sum of U andW. This is particularly important if one has an assignment
of operators orV andW as above, and one tries to find an equivariant
splitting of V. — V/U.

Letm — A,,, formin M, be an assignment of operatorsioyas above.
Leto=V,c Vi Cc Vo, C---CV, =V be a strictly increasing sequence of
subspaces df, all stable under thd,,,, and suppose that the sequence is
maximal in the sense that no stable subspace can be interpolated anywhere
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in the sequence. Then each quotient is simple or irreducible unddr,the
and the Jordan-Hoelder Theorem says then that the collegtion/V;}

of quotient spaces is uniquely determined up to order and equivariant iso-
morphisms.

All these notions apply in particular to the case that we have to do with
frequently, wherel/ is a group and where the assignment— A,, is a
representation of/, i.e., where the relatiod,,.,,, = A,, o A,,,» holds for
all m andm’ in M.

A conein a (real) vector space is a subset that is closed under addition
and under multiplication by positive real numbers; cones are of course
convex sets. A very special case idalf-space a set of the form{v :

p(v) > 0}, consisting of the points where some non-zero linear function

p takes non-negative values. The cones that we have to do with are finite
intersections of half-spaces. Such a cone has for boundary (in the sense of
convex sets, i.e. the usual point set boundary wr to the subspace spanned
by the cone) a finite number of similar cones, of dimension one less than
that of the cone itself, each lying in the nullspace of one of the defining
linear functions. These faces are called wadls or faces of codimension

1. They in turn have faces etc., until one comes to the faces of dimension
one, the edges, and the face of dimension 0, the vertex (the origin, 0).

More precisely, these are te®sedcones. We will also have to do with
opencones, the interiors of the closed ones; they can be introduced in a
slightly different way, namely as the components of the complement of
the union of a finite number of hyperplanes in the given vector space. (A
hyperplanes the nullspace of a non-zero linear function.)

For two vector spacds andV one has théensor product/ ® W (sim-
ilarly for more factors), and the associated concept of the tensor product
A ® B of two linear mapsi and B. (Main fact: Bilinear map¥ x W — U
correspond to linear mapse W — U.)

There is also the notion of theymmetric powers”V and theexterior
powers/\"V of a vector spac# (with the associated notion of symmetric
powerS” A and exterior powef\" A of a linear map4). We will treat them
either as the usual quotient spaces ofithike tensor powelb’ ®” of V (i.e.,

V@ modulo the tensors that contain some w — w ® v, resp some ® v
as factor) or as the spaces of all symmetric, resp skew-symmetric elements
in V®7, For the standard properties of these constructions see, e.g., [17].

We note two general facts.

(1) Schur’s lemmdwhich we will use often): Letn — A,, andm’ — A,
be assignments of operators on vector spatesdV’, as above, and
let B: V — V'’ be equivariant wr to these operators. Theny] iandV”’
are irreducible under the operatofsjs either0 or an isomorphism. In
particular, ifV is a complex vector space, irreducible under an assign-
mentm — A,, of operators, and® is an operator of, equivariant wr
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to theA,,, thenB is a scalar operator, of the forem idy with somec in
C.

(2) Inavector spac¥ with a (positive definite) inner produ¢t -) we have

the notion of adjointd* of an operatori, defined by(Av, w) = (v, A*w),

and hence the notion of self-adjoift = A*) and skew-adjoint4 =

—A*) operators. There is thepectral theoremA self-adjoint operator

has real eigenvalues, and the eigenvectors can be chosen to form an

orthonormal basis fov'.

(Note also the correspondence between self-adjoint operators and sym-
metric bilinear [resp Hermitean] forms in a real [resp complex] vector
space, given by(u,v) = (Au, v)).
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Aut(DD), 87

Aut(A), 87

a— string of 3, 37
a-minimal, 39

(abstract) contragredience, 51
abstract fundamental system, 66
accidental isomorphisms, 70
act, 9

adjacent, 75

adjoint, 2, 14, 86, 148
affine group of the line, 6
algebra, 1

alternation operator, 118
angular momentum, 28
annihilator, 92

annuller, 92

anti-involution, 31
antiquark, 130
antisymmetric, 118
Auerbach, 144
automorphism, 8
automorphism group, 84, 87

backward cone, 123
basis, 59

bilinear, 148

Borel sub Lie algebra, 98
Bose, 137

bracket, 1

Brauer, 128

Cartan, 33,43, 89
Cartan decomposition, 56
integers, 39, 66
matrix, 66, 73

product, 107
semigroup, 107
sub (Lie) algebra, 33
's first criterion, 22
's second criterion, 23
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-Killing classification, 43

-Stiefel diagram, 61, 90
Casimir, 29
Casimir operator, 29, 103, 120

Cayley numbers, 110
cells, 90

center, 10

center lattice, 90
centralizer, 10, 85
change of base field, 11
character, 58, 116, 117
character ring, 105,117,134
characteristic, 17
characteristic polynomial, 149
Chevalley, 48, 89

Chevalley involution, 51
classical diagrams, 69

classical Lie algebras, 3,74
classification, 27
Clebsch-Gordan series, 31,126

Clifford algebras, 109
closed Weyl chambers, 61
cohomology space, 103
commutation relations, 25
commute, 10

compact, 51
complementary, 11
complete reduction, 29
completely reducible, 13
complex extension, 11
complex orthogonal group, 5
complexification, 11
cone, 150

conjugate, 11
conjugate-linear
automorphism, 11
conjugation, 54
connected, 68
connectivity group, 107
contragredient, 13,51, 148
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convexity, 97
coroots, 38
Coxeter, 68

decomposable, 66
degeneracy subspace, 24
degree of singularity, 64
derivation, 16, 27
derived series, 17
determinant, 147
diagram automorphism, 87
differential operators, 28
dihedral groups, 45

direct sum, 10, 13, 42
dominant, 65, 91
dual, 42,147, 148

dual bases, 147

dual or reciprocal root system, 42
dual representation, 13

dual trace, 132

duality, 51
duality theory, 92
Dynkin, 68

Dynkin diagram, 68

eigenspace, 149
eigenvalue, 149
eigenvector, 148
eightfold way, 130
endomorphism, 8
Engel's theorem, 19
equivalent, 13,42
equivariant, 13, 149
Euclidean space, 66
even, 82

exact, 149

exceptional diagrams, 69
extended Weyl group, 90
extensions, 18

exterior power, 150
extreme, 65, 96

face, 150
faithful, 12
first isomorphism theorem, 10

first kind, 31

fix vector, 86

four big classes, 69

Fourier series, 117

fractional linear
transformations, 8

Freudenthal’'s formula, 124

fundamental cell, 93
coroots, 61
representations, 107
system, 59
weights, 91

Weyl chamber, 61, 90

general, 57,58

general linear group, 5
generators, 73

generic, 87

generic Dynkin diagram, 87
Grothendieck ring, 105
groupring, 116

half-space, 150

half-spin representations, 110
Halmos, 147
Harish-Chandra, 89
harmonic, 28

height,, 90

heighto, 61
Hermitean form, 148
highest, 65, 96

Hodgex-operation, 136
homomorphism, 8

hyperplane, 41, 150
ideal, 8

identity operator, 147
image, 10, 148

improper orthogonal matrix, 88
infinitesimalC — S diagram, 61
contragredient, 13, 137, 148
invariance, 7,148
rotations, 3
tensor product, 13
infinitesimally invariant, 2
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inner automorphisms,
inner derivations, 16
inner product, 148
integral forms, 90
intermediate, 131
internal direct sum,
intertwine, 13, 149
invariant, 13, 14, 134, 149
involution, 53
irreducible, 13, 149
irrep, 13,94
isomorphism, 8
isotypic summands, 98
iterated or long brackets,

58, 84

11

17

Jacobi identity, 1
joint eigenvector,
Jordan form, 149

21

kernel,
Killing, 33,43

Killing form, 14

Killing isomorphism, 148
Klimyk's formula, 124, 128
Korkin, 82
Kostant’s formula,
Kroneckers, 91

9, 148

123

L'Hopital, 122
Laplace operator,
lattice, 60, 90
length, 63, 96, 98
level, 93
lexicographical order,
Lie algebra, 1
Abelian, 1
adjoint, 14
affine — of the line,
classical, 74
compact, 51
derived, 17
exceptional, 74
general linear, 2
Lorentz, 4
nilpotent, 17

28, 120

49

4
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orthogonal, 2
orthogonal symmetric,
principal 3-D sub, 141
quotient, 8
semisimple,
simple, 18
solvable, 17
special linear, 2
special unitary,
sub Lie algebra,
symmetric, 57
symplectic, 3
trivial, 2
unitary, 2
Lie’'s theorem, 20
long bracket, 17
Lorentz group, 6
Lorentz inner product,
lower central series,
lowest form, weight,

57

18

2
7

4
17
91

Mal'cev, 137
matrix representation,
maximal, 65
maximal torus,
metric, 148
minimal weight,
multiplication, 1
multiplicity, 30, 94, 126

12
117

139

negative roots, 49
nilpotent, 149
nilradical, 18
nilspace, 148
non-commutativity,
non-trivial, 13, 149
normal real form, 40, 58
normalization, 50
normalizer, 10, 34, 85
nullspace, 19, 148

7

one-parameter group, 6,116

open cone, 150
operate, 9
operator, 147
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opposition element, 88 Riemannian symmetric space, 57
orbit, 5 root, 35
order, 49 dominant, 65
orthogonal, 36, 41, 57,137 elements, 40
orthogonal group, 5 extreme, 65
outer automorphisms, 88 highest, 65
lattice, 60, 90

pairing, 92 space, 35
partition function, 123 system, 41
Patera, 137 vectors, 38
periods, 117
Poincaré-Birkhoff- Schur’s lemma, 150
Witt theorem, 98 second isomorphism theorem, 10
Pontryagin dual, 117 second kind, 31
positive, 49 self-contragredient, 137
positive definite, 82 self-dual, 137
positive roots, 49 self-equivalences
preservation of brackets, 9 (automorphisms), 70
primary decomposition, 149 semidirect sum, 19
product, 1 semisimple, 13, 18, 149
Pythagorean, 75 Serre, 73

_ sesquilinear, 54, 148
quadratic, 9 shifted action, 124
quarks, 130 short exact sequence, 10, 149
quaternionic vectorspace, 31 similarity, 42
quaternions, 4 simple, 13, 18, 42, 59, 66, 149
quotient map, 149 simply transitive, 62
quotient space, 149 singular, 34

, i singular plane, 61, 90
R. Brauersalgorlthm, 128 skew, 118
radical, 17,24, 102

skew-Hermitean, 2
skew-symmetry, 1
special linear group, 5
special (real) orthogonal group, 5
special unitary group, 6
spectral theorem, 151
: spherical harmonics, 29
reflection, 41 spin group, 135
regular, 34, 57, 64 spin representation, 109
relations, 73 splitting, 149

rep, 13,94 stabilizer, 86
representation, 9 stable, 13,149
representation ring, 105, 117 Steinberg’s formula, 127
retraction, 11 string, 37, 96

Richardson, 52 strongly dominant, 91

rank, 33,41

real form, 11,52

real restriction, 11
realification, 11
reduced root system, 41
reducible, 13
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strongly orthogonal, 46 group, affine, 90

structure constants, 5 reflections, 42
subdiagram, 70 Weyl-Chevalley normal form, 43,
supra-triangular matrices, 17 48

symmetric, 118 Whitehead, JHC, 103
symmetric group, 75,77,79

symmetric power, 150 Zolotarev, 82

symmetric spaces, 57
symmetry operator, 113
symplectic, 3,137
symplectic group, 6
symplectic pair, 3

tensor product, 13, 150
tensor sum, 13

Tits, 73

trace, 147

trace form, 15,102
translation, 90
translation lattice, 90
transpose conjugate, 2
transposed, 147,148
tree, 71

triangular, 21

trivial representation, 12
type ll, 82

unimodular, 82

unitary group, 6

unitary perpendicular, 31
unreduced root system, 41
upper-triangular matrices, 17

van der Waerden, 29
Verma module, 98
virtual representation, 105

wall, 61, 150

weight, 68, 90, 94
space, 94
vector, 94

Weyl, 48,52, 113

Weyl chambers, 61, 90
character formula, 119
degree formula, 122
group, 42
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Symbol Index

e
=
TR

1
14, 35, 148
4

REE T
Je
o
\'

W
ol

13, 148

[
N
[00]

49, 59

49, 59
,0), 61
,n), 90
, 150

'V, 150
Ny, 107

[_qvp]v 39
¢, 10,13
®, 13,150

VINADER

2

>>
<

ad, 14
adg, 14
A, 53
Aff(1), 6
A @ A, 45
Ay, 45
A,, 3
AT, 148
AL, 148
Qoos 39
ABas 39
b(-,-), 147
By, 45
B,, 3
CSA, 33
cfj, 5
cv, b2
C,, 3

Ca, 48
D'(R), 61

SYMBOL INDEX

Dy, 27

Dy, 27

D,, 3

Ds, 26
Dy, 27
det, 147
det[X,Y], 4

diag()\l, )\2, .

esX 6
F, 59
GL(n,F), 5
Go, 45
H, 4

im, 148
ha, 37
H,, 38
hy, 37
i,5,k, 4
13’1, 4
I,, 52
J., 28
ker, 148
L,, 28

s An),

147



R, 42
R+, 59
R, 59
Rg, 105
Rgcarr, 135
R,, 3
R,, 3

R,, 3
SL(n,F), 6
SO(n,C), 6
SO(n,R), 6
Sp(n), 6
Sp(n,F), 6
SU(2), 8
SU(n), 6
Sz, 3

Sy, 3

S. 3

Se, 41
S, 41

tr, 147
TR, 132
t,, 15
U(n), 6
Uy, 48
Uny, 52
Vo, 52
VA, 100
Ve, 11
Ve, 11
w,, 64
X+, 4
X, 4
X4, 61
Xiq, 38
exp(sX), 6
Vv, 11
trMTN, 52
a, 1
off(1), 4
a®,b, 19
at, 24

b, 1

g 1

SYMBOL INDEX

3

o o o aaaaasaaal

=~
<.

™,
g(a)
g0,

go(X

g1 D g2,

o
gCl
IR

17
17
24
106
17
17
17
38
35
), 34

35
11
11

11
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z, 147
Z/n,Z/nZ, 147
H"/?2, 144
7z, 116

D, 105
D;, 45
D4, 45
Ds, 45
G, 117
gW, 134
7, 90
79 91
7, 91
£, 134
P, 123
R, 90
S;, 88
T, 90
w, 42
W., 90
W, 64
w,, 64
Z, 90

{o/}, 42
a?ﬂ?’yl 35

a-string, 37, 96

B(H,), 39
r,, 102
A, 27,35
0, 91

Ag, 35

SYMBOL INDEX

A;, 109
Afr, 110
A7, 110
€, 124
n,, 128
0, 43

0, 89

k, 14

A, 21,33,35
A, 91
A, 135
A%, 135

A;, 108, 109, 110, 135

u, 65
i =i(r +1—1),
m, b4

py 91

o, 54

¥, 67

7, 54

o, 9

oAy, 107
oY, 13

e~, 141

01 D2, 13
01 ® 2, 13
@C 14

PR 14

d, 89

x, 116

x~, 134
Xe» 116
xa(z), 149
Q, 2

w;, 147



