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Historical Note. This paper, written in 2013-2015 by the first author after

Bill’s untimely death in 2012, is an exposition of parts of an unfinished

project that the two of us worked on in 2008, with some valuable input also

from Richard Kenyon in the early stages. The project began with a talk by

Richard at the Cornell Topology Festival in May 2008 on branched polymers

(called circle packings in the present paper). Most of the communication was

by email, with over 50 messages from Bill. He also talked about this topic

in his course in the Fall semester of 2008, but unfortunately I did not take

notes during the course and have only a dim recollection of what he said, so

the exposition will be based largely on the email record, apart from details

of proofs that were worked out as the paper was written.

The paper presents only a small fraction of the many things discussed in the

email, which were often left hanging without a clear resolution. The plan

was for me to write up the two theorems included here and then we would

move on to try to prove more, in particular the Conjecture discussed in the

introduction. To my great regret, I did not get around to doing this before

Bill’s illness. In particular, I did not learn from Bill all the details of the

proof of the first theorem, so only the parts I do understand are given here,

although I have been assured by an expert on the relevant tools that there

should be no difficulty in completing the proof.

By a circle packing we mean a finite collection of circles in R
2 whose interiors are disjoint

and whose union is connected. The space of all such configurations of n labeled circles

C
1
, · · · , Cn will be denoted CP(n) , the moduli space of packings of n circles. One might

ask what can be said about the homotopy type of CP(n) . The question can also be asked

for the subspace of ‘equal packings’, EP(n) , the configurations whose circles all have equal

radius, which one can normalize to be 1. Physically, one can think of points in EP(n) as

configurations of n pennies lying flat on a table, with connected union.

There is a map from CP(n) to the space C(n) of configurations of n distinct labeled

points in R
2 , sending a configuration of circles to the centers of these circles. This map

is neither surjective nor injective in general. For example, a configuration of four points
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at the corners of a long thin rectangle cannot be realized as the centerpoints of a circle

packing, while a configuration of n equally-spaced points along a line is realized by a whole

1-parameter family of circle packings. The main result of this paper is:

Theorem 1. The map CP(n) → C(n) is a homotopy equivalence.

As a small preliminary reduction of the problem we can identify configurations that differ

by orientation-preserving similarities of the Euclidean plane to obtain a quotient space

CP(n) with CP(n) homeomorphic to CP(n) × R
2 × (0,∞) × S1 where the last three

factors correspond to translations, rescalings, and rotations of the plane, leaving aside the

trivial case n = 1. We can view CP(n) as a subspace of CP(n) , the configurations that

are normalized to have the first circle centered at the origin and the second circle centered

at (1, 0). The space C(n) splits in the same way, so the theorem is equivalent to the

assertion that the map CP(n) → C(n) is a homotopy equivalence.

The idea of the proof is now the following. Associated to any configuration in CP(n) is its

contact graph, whose vertices are the centers of the circles in the configuration and whose

edges are the line segments connecting the centers of each pair of circles that touch. The

subsets of CP(n) consisting of configurations whose contact graphs vary only by isotopy

form the strata of a stratification of CP(n) . The quotient CP(n) has a similarly-defined

stratification. It follows from Ahlfors–Bers theory for Kleinian groups that each stratum

of CP(n) is homeomorphic to a Euclidean space. The way that the strata fit together is

encoded in a finite simplicial complex G(n) whose vertices correspond to the isotopy classes

of connected graphs in the plane with n labeled vertices, and whose simplices correspond

to chains of inclusions of such graphs. There is a projection CP(n) → G(n) , and showing

that this is a homotopy equivalence constitutes the first half of the proof. (This is where

there are still some details that need to be filled in.) This reduces the problem to the more

combinatorial one of understanding the homotopy type of G(n) . Topological techniques

then show that G(n) has the homotopy type of C(n) .

Since the strata of CP(n) are homeomorphic to Euclidean spaces, one could hope that

they formed the cells of a CW complex structure on CP(n) . This is not the case, however.

There are only finitely many strata since the strata correspond to the vertices of the finite

complex G(n) , so if these strata were the cells of a CW complex, it would be a finite

complex, hence CP(n) would be compact. But CP(n) is not compact when n ≥ 2 since

the ratio of the radii of the first two circles gives a continuous map CP(n) → (0,∞) which

is easily seen to be surjective by considering just configurations of circles with their centers

along a line. As we will see, the dimension of CP(n) is 2n−3 and the dimension of G(n) is

2n− 5 (when these numbers are positive) so one could hope that CP(n) is homeomorphic

to G(n)× R
2 . This is true at least for n = 3.

Let us turn now to the subspace EP(n) ⊂ CP(n) consisting of configurations of unit circles.

One might guess that EP(n) is also homotopy equivalent to C(n) . Perhaps surprisingly,
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this is false once n is sufficiently large. The configuration space C(n) is a K(π, 1) for π

the pure braid group, but we will show by an explicit elementary construction that EP(n)

is generally not a K(π, 1). Specifically:

Theorem 2. π
5
EP(n) is nonzero if n ≥ 8 .

This will be proved by constructing an embedding of S5 in EP(n) whose image consists

of configurations containing 7 circles arranged in a ‘necklace’ around a fixed central circle,

so there is one more circle in the necklace than the maximum number that can touch the

central circle simultaneously. Then we construct a map EP(n) → S5 whose restriction to

this S5 ⊂ EP(n) has degree 1. This gives a direct summand Z in π
5
EP(n) .

The difference between CP(n) and EP(n) is reflected in how the strata of CP(n) intersect

EP(n) . Some strata do not intersect EP(n) at all, for example those corresponding to

contact graphs containing a vertex that is an endpoint of more than six edges. It can also

happen that the strata of CP(n) intersect EP(n) in nontrivial homotopy types. We give

some simple examples in section 1 coming from the theory of planar linkages.

It seems reasonable to ask whether the result in the preceding theorem is optimal:

Conjecture. The map πiEP(n) → πiC(n) is an isomorphism if either n ≤ 7 or i ≤ 4.

This is easy to check by hand for n ≤ 3. For n = 2 both spaces having the homotopy

type of S1 and when n = 3 they have the homotopy type of S1 × (S1 ∨ S1) .

A small part of the conjecture is the assertion that EP(n) is connected for all n . This

seems to be harder to prove than one might expect. In the physical model consisting of

connected configurations of pennies lying flat on a table, one could attempt to deform

an arbitrary configuration to one consisting of a single straight line by taking two parallel

rulers above and below a given configuration and squeezing them closer and closer together

to force the pennies into a line (“penny pinching”). Then it would be a simple matter to

rearrange their order arbitrarily. In general this squeezing process could get stuck in certain

configurations, but one would guess that a small perturbation could then be made to get it

unstuck. Making this rigorous seems difficult, however. A different sort of argument which

seems to work is based on the idea of pulling out a longer and longer string of pennies

from a given configuration.

It is not hard to show that the map π
1
EP(n) → π

1
C(n) is surjective since all one has to

do is construct loops in EP(n) that project to a set of generators for π
1
C(n) . It is a little

simpler, and it suffices, to do this for the full braid group rather than the pure braid group,

so one is talking about configurations of unlabeled points or circles. Then one just has to

lift the standard generators σi transposing the ith and (i+ 1)st points, which is easy to

do starting with a configuration of n circles in a row along a horizontal line. With a little

more work one can check that the standard braid relations among the σi ’s also lift, so the
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map π
1
EP(n) → π

1
C(n) is in fact split surjective.

One could try to prove the Conjecture by studying the map ρ : CP(n) → (0,∞)n sending

a configuration of circles to the n -tuple of radii of the circles. The map ρ is not a

fibration of any sort since if it were, the contractibility of the base (0,∞)n would imply

that all the fibers, including EP(n) , had the homotopy type of CP(n) and hence of C(n) ,

contradicting Theorem 2, at least when n ≥ 8 (and in fact when n ≥ 4 by a small

generalization of Theorem 2 given in section 1). Thus the projection ρ has certain singular

values where the homotopy type of the fibers is not locally constant. The idea would then

be to understand these singularities well enough to show for example that the inclusion

EP(n) → CP(n) induces an injection on π
1
by taking a contraction in CP(n) of a loop in

EP(n) representing an element of the kernel of π1EP(n) → π1CP(n) and deforming this

contraction into the fiber EP(n) . A model for this sort of approach is Morse theory, where

one studies how the homotopy type of the fibers of a projection to R varies.

1. Necklace Configurations

In this section we prove Theorem 2. The argument also works in somewhat greater gener-

ality, in particular for subspaces of CP(n) where all but one of the circles have the same

radius. In these cases it is other homotopy groups besides π
5
that are nontrivial. This is

explained after the proof of Theorem 2.

The starting point is the observation that for circles of equal radius, exactly six circles fit

in a ring or necklace surrounding a central circle, as shown in the first figure below.

The idea is to see what happens when the necklace is enlarged to seven circles surrounding

a central circle, as in the second figure. We do not require that the seven circles have their

centers exactly in a circle, just that each circle touches its two neighbors. The central

circle must also touch at least one of the seven circles in the necklace in order to get a

configuration in EP(8). We allow the limiting case that one of the seven circles moves so

far away from the central circle that its two neighbors touch each other, as in the third

figure.

Let N ⊂ EP(8) be the set of all such necklace configurations with the central circle C
1

surrounded by a ring of seven circles C
2
, · · · , C

8
in that order, normalized so that C

1
is
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centered at the origin and C
2
has its center on the positive x -axis. We claim that N

is homeomorphic to the sphere S5 . Because of the normalizations, a configuration in N

is uniquely determined by the distances δi from Ci to C
1
for i = 2, · · · , 8. Namely, δ

2

determines the position of C
2
on the positive x -axis, then δ

3
determines the position of

C
3
touching C

2
, then δ

4
determines the position of C

4
touching C

3
, and so on. Here

we are assuming the δi ’s are not too large, so δi ranges only from 0 to the value in the

limiting configuration with Ci outside the other six circles that all touch C
1
. At the

end of the process of placing the circles C
2
, · · · , C

8
around C

1
there is also the condition

that these circles close up to form a necklace, so C
8
just touches C

2
without a gap or an

overlap. This imposes a certain constraint on the δi ’s, but we will not need to determine

the exact form of this constraint.

Let us show that for a given nonzero vector (δ
2
, · · · , δ

8
) with each δi ≥ 0 there is a unique

positive scalar multiple λ(δ2, · · · , δ8) that makes the necklace exactly close up. To see this,

observe that when the δi ’s are all sufficiently small the last circle C
8
definitely overlaps

C
2
, as the sum of the angles between the rays from the origin to the centers of successive

Ci ’s is more than 2π . Then as one takes larger and larger scalars λ the angles decrease

strictly monotonically (an exercise), so there is a unique λ for which the angle sum is 2π .

Thus the possible positions for C
2
, · · · , C

8
forming a necklace are parametrized by ∆6 ,

the projectivization of [0,∞)7 . We also have the condition that some δi must be 0 so

that C
1
touches at least one other Ci , so this means that we are in ∂∆6 , a 5-sphere as

claimed.

To show that this sphere N = S5 is nontrivial in π
5
EP(8) we define a map EP(8) → S5

that restricts to a homeomorphism on N . The distance functions δi from Ci to C
1

for i = 2, · · · , 8 are defined for arbitrary configurations in EP(8). They cannot all be

simultaneously 0 since at most six Ci ’s can touch C1 , so we can projectivize to get a map

EP(8) → ∆6 . This must have image in ∂∆6 since for each configuration some δi must be

0. This gives the desired map EP(8) → S5 , and it obviously restricts to a homeomorphism

on N . Thus S5 is a retract of EP(8) (not a deformation retract), giving a Z summand

of π5EP(8).

Now we extend this construction to EP(n) for n > 8. We can enlarge the necklace

configurations in N by placing new circles C
9
, · · · , Cn to the right of C

2
with their centers

along the positive x -axis, with C
9
touching C

2
, then C

10
touching C

9
, and so on. This

gives an embedding N = S5 ⊂ EP(n) .

The distance functions δi from Ci to C
1
for i ≥ 2 give a map EP(n) → [0,∞)n−1 . The

image of this map misses the origin since at most six other Ci ’s can touch C
1
, so we can

projectivize to get a map f : EP(n) → ∆n−2 . This has image in ∂∆n−2 since at least one

Ci must touch C
1
. We cannot have seven or more δi ’s equal to 0 at once, so the image of

f must lie in the complement of the codimension 7 skeleton of ∆n−2 . In ∂∆n−2 this is the

complement of the codimension 6 skeleton of ∂∆n−2 . Call this complement W ⊂ ∂∆n−2 ,
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so f can be viewed as a map EP(n) → W . It is an elementary fact that W has the

homotopy type of a wedge of 5-spheres, namely the 5-skeleton of the (n−2)-simplex dual

to ∆n−2 , but we will not need to use this fact and instead we make the following direct

argument.

Let the simplex ∆n−2 have vertices v
2
, · · · , vn corresponding to the circles C

2
, · · · , Cn .

The sphere f(N) is homotopic in W to a small linking sphere of the simplex 〈v
9
, · · · , vn〉

by letting the values of δ
9
, · · · , δn become large. We can

include W into ∂∆n − ∂〈v
8
, · · · , vn〉 which is homotopy

equivalent to a 5-sphere, the link of 〈v9, · · · , vn〉 . Thus

we have a composition BP (n)
f

−→ W → S5 whose re-

striction to N = S5 has degree 1. It follows that N

generates a Z summand of π
5
EP(n) .

This finishes the proof of Theorem 2.

Varying the Size of the Central Circle

Consider the subspace CPr(n) of CP(n) consisting of configurations where C
1
has radius

r and the other circles all have radius 1. For small values of r and n = 4 one can form

configurations as in the figure below, with C
1
inside the curvilinear triangle formed by

arcs of C
2
, C

3
, C

4
.

Modulo translations and rotations of the plane, such configurations obviously form a circle

S1 ⊂ CPr(4), with C
1
moving inside the triangle so as to stay in contact with at least one

of the other circles. This circle represents an element of the kernel of π
1
CPr(4) → π

1
C(4),

and it is nontrivial in π
1
CPr(4) by the same sort of argument as before. This works in

CPr(n) for n > 4 as well.

As r increases nothing changes until r reaches the value r = r
3
where C

1
is exactly

large enough to touch all three of C
2
, C

3
, C

4
simultaneously. The S1 in CPr(4) then

degenerates to a point, so we have an explicit contraction in CP(4) of the S1 in CPr(4).

Now for r = r
3

we add another circle C
5

to form a necklace of four circles around
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C
1
. Arguing as before, the set of such configurations is an S2 ⊂ CPr(5) giving a direct

summand Z ⊂ π
2
CPr(5) for r

3
≤ r < r

4
where r

4
is the value of r for which four

unit circles exactly fit around C
1
. Letting r continue to increase, we obtain in this way

an infinite sequence of values r
3
< r

4
< · · · with subgroups Z ⊂ πk−2

CPr(k + 1) for

rk−1
≤ r < rk . These subgroups survive in πk−2

CPr(n) for n > k + 1 as well.

Noncontractible Strata

From the theory of planar linkages of rigid rods connected by pivots at their ends it is not

hard to produce noncontractible strata in the quotient EP(n) of EP(n) by translations

and rotations of R
2 . Consider for example configurations whose contact graphs have the

form in the figure below, consisting of a rigid supporting base with three rigid trusses that

are hinged to rotate where they touch each other and the base.

When the base is held fixed there is one degree of freedom in these configurations, and they

form a stratum of EP(n) homeomorphic to a circle. More generally, with k trusses whose

total length is slightly longer that the distance between the support points at the ends of

the base, the stratum is homeomorphic to a sphere Sk−2 . This can be seen by induction

on k , each increase in k producing a suspension of the previous space of configurations.

One of the basic results about planar linkages is that every closed connected smooth

manifold can be realized as a component of the space of configurations of some linkage,

and one could ask whether the same is true for strata of the spaces EP(n) .

2. Circle Packings and Contact Graphs

In order to show that the map CP(n) → C(n) is a homotopy equivalence we will define

two spaces of graphs G(n) and GC(n) together with maps as in the following diagram:
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Consider finite connected graphs embedded in R
2 with n vertices, labeled 1, · · · , n , and

edges that are smooth arcs. We mean the term ‘graph’ here in the strict sense of a 1-

dimensional simplicial complex, so there are no edges whose two endpoints coincide, nor

are there pairs of edges with the same two endpoints. In addition, positive weights are

assigned to the edges. The set of all isotopy classes of such weighted graphs is G(n) ,

topologized so that the weight on an edge is allowed to go to 0 and that edge is deleted,

provided this still yields a connected graph. If we only allow isotopies that fix the vertices,

we obtain a space GC(n) which is something of a hybrid of G(n) and C(n) , with natural

maps to both of these spaces, where the map to G(n) is the quotient map and the map to

C(n) assigns to a graph its set of vertices. If we further factor out translations, rotations,

and rescalings we obtain GC(n) with maps to G(n) and C(n) as shown in the diagram.

The idea for defining a map CP(n) → GC(n) is to send a circle packing to its contact

graph. However, weights must be assigned in order to get a continuous map, and we do

this in the following way. Instead of joining two vertices at the centers of circles in a circle

packing by an edge only when the circles touch, insert the edge whenever the distance

between the two circles is sufficiently small, say at most one-tenth the minimum radius of

any of the circles in the packing. Then assign a weight to this edge which decreases from

1 when they touch to 0 when they are at distance one-tenth the minimum radius. With

these modifications to contact graphs we obtain a map CP(n) → GC(n) . Composing this

map with the quotient map GC(n) → G(n) we obtain a map CP(n) → G(n) .

Now we show that each of the maps (1)–(3) in the diagram is a homotopy equivalence in

turn. Commutativity of the diagram will then imply that CP(n) → C(n) is a homotopy

equivalence.

(1) To each configuration in CP(n) we associate the Kleinian group generated by the

hyperbolic reflections across the circles in the configuration. Here we are thinking of the

upper half-space model for hyperbolic space H
3 , and by a reflection across a circle in R

2

we mean the hyperbolic reflection of H3 across the plane in H
3 bounded by the circle. As

one varies the configuration of circles within a given stratum of CP(n) consisting of config-

urations with isotopic contact graphs, the corresponding Kleinian group varies accordingly.

It follows from Ahlfors-Bers theory that, after factoring out orientation-preserving similar-

ities of R
2 , the space of such variations is contractible, a product of Teichmüller spaces,

one for each component of the complement of the union of the disks bounded by the circles

Ci in the configuration. This complement is a fundamental domain for the restriction of

the action to the domain of discontinuity. For the unbounded complementary component

there is also the choice of the point at infinity, so one is dealing with a Teichmüller space

for a surface with a marked point in this case, but it is still contractible, homeomorphic

to a Euclidean space.

Consider first the case of a bounded complementary component. This can be viewed as

an ideal polygon in the hyperbolic plane. The moduli space of such polygons with s
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sides, modulo Möbius transformations, is homeomorphic to R
s−3 . As parameters one

can choose the lengths of s − 3 disjoint common perpendiculars to pairs of nonadjacent

sides of a polygon. These vary independently over the interval (0,∞) and determine the

polygon completely. The choice of a set of s − 3 disjoint common perpendiculars is not

unique, but there is a finite simplicial complex Ps whose vertices correspond to common

perpendiculars and whose simplices correspond to sets of disjoint perpendiculars. The

top-dimensional simplices of Ps then correspond to the different parametrizations of the

moduli space. It is well known that Ps is a triangulation of the sphere Ss−4 . This sphere

forms a natural boundary for the moduli space, compactifying it to a closed ball. Going

to a point in the boundary of this ball is achieved by letting the lengths of a set of disjoint

common perpendiculars go to zero. Assuming that the circles in the given configuration

that form the boundary of the ideal polygon in question are all distinct, then the pairs of

circles corresponding to the shrinking common perpendiculars come together and touch as

the length of each of these perpendiculars goes to zero.

For example when s = 4 we have P
4
= S0 , two points corresponding to the two choices for

the perpendicular joining opposite edges of a 4-gon. As the length of one perpendicular

goes to 0 the length of the other goes to ∞ . The four sides of the 4-gon belong to four

circles of the configuration. Letting the length of a perpendicular go to 0 means that

two nonadjacent circles are coming together to touch. The contact graph then changes by

adding one of the two diagonals of a quadrilateral in the graph.

When s = 5 the polyhedron P
5
is S1 subdivided as a pentagon with vertices the five

common perpendiculars and edges the pairs of disjoint common perpendiculars. Shrinking

one common perpendicular turns the ideal 5-gon into an ideal triangle and an ideal 4-gon.

Shrinking a second perpendicular disjoint from the first then splits the 4-gon further into

two triangles. In terms of contact graphs we are adding two diagonals to a pentagon in

the graph.

It can happen that two sides of a polygon belong to the same circle of a configuration.

The simplest example occurs for a 5-gon as in the figure below.

If this happens, there is a common perpendicular joining the two sides that lie in the same

circle. Shrinking the length of this perpendicular to zero would have the effect of shrinking

the circle or circles cut off by the perpendicular to points, which is not allowed. This
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means that the corresponding face of the compactified moduli space is not part of CP(n) .

For the corresponding contact graphs, shrinking this perpendicular to zero would add an

edge to the graph whose two endpoints coincide, and such graphs cannot occur as contact

graphs.

Contact graphs are also not allowed to have two edges joining the same pair of vertices.

The situation that might lead to this is when one would attempt to shrink a perpendicular

joining two sides that belong to circles that already touch, as in the first figure below,

or when one would shrink two perpendiculars joining sides that belong to the same two

circles as in the second figure. In both situations shrinking the perpendiculars to zero

would cause one or more circles in the configuration to shrink to points.

Summarizing, faces of the compactified moduli spaces are omitted when they would create

contact graphs that are not simplicial graphs.

In the case of the unbounded complementary component, if this has s sides then the

dimension of the moduli space is s − 1, with the extra two dimensions coming from the

location of the point at infinity within the ideal polygon, thinking of this polygon as lying in

S2 rather than R
2 . Parameters are the lengths of disjoint common perpendiculars between

nonadjacent sides and also common perpendiculars between adjacent sides or from a side

to itself.

There is again a polyhedron whose top simplices correspond to these parametrizations.

This polyhedron is a sphere Ss−2 compactifying the moduli space to form a closed (s−1)-

ball. There are always faces of this ball that cannot be realized by deformations of the

circle configurations, deformations that would produce inadmissible contact graphs with

edges forming loops or edge pairs sharing both endpoints.

............. A lot needs to be added here to complete the argument for part (1) .....................
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(2) For this part of the proof we will replace G(n) and GC(n) by their spines , which

are subspaces to which they deformation retract. In the case of G(n) the spine is a

finite simplicial complex, the geometric realization of the partially ordered set consisting of

isotopy classes of connected graphs in R
2 with n vertices labeled 1, · · · , n , under the partial

ordering given by inclusion. The deformation retraction to this spine can be achieved in

two steps. First, a collection of weights on edges can be rescaled so that it sums to 1.

The normalized weights can then be viewed as barycentric coordinates. Each graph thus

determines a simplex, with certain faces omitted whenever deleting the corresponding set

of edges from the graph produces a disconnected subgraph. What remains of the simplex

deformation retracts onto the subcomplex of the barycentric subdivision corresponding to

the partially ordered set of connected subgraphs.

A similar construction works for GC(n) , producing a spine which is a (semi-)simplicial

space rather than a simplicial complex. For notational convenience we use the same sym-

bols G(n) and GC(n) to denote these spines.

The map GC(n) → G(n) is a simplicial map from a simplicial space to a simplicial complex,

so it will be a homotopy equivalence if its fibers are contractible. There is one fiber F

for each isotopy class of graphs (weights are fixed in a fiber and can be ignored), where

the equivalence relation on graphs in F is isotopy fixing the vertices. The graph can be

assumed to be a maximal tree since specifying the isotopy classes of any edges not in a

maximal tree results in a homeomorphic space F .

The projection F → C(n) sending an embedded tree to its vertices is a covering space.

We will show this is the universal cover, and this will imply that F is contractible since

C(n) is a K(π, 1).

The group π1C(n) = π1C(n) × Z is the pure braid group Pn . We can also view Pn as

the mapping class group of a disk with n punctures, where the punctures are not allowed

to be permuted and diffeomorphisms restrict to the identity on the boundary of the disk.

Dropping this last condition gives the quotient group π
1
C(n) . This ‘relaxed’ mapping

class group acts on F by taking trees to their images under diffeomorphisms fixing the

punctures. This is a faithful action since if a diffeomorphism fixes a tree, it is isotopic

to the identity fixing the punctures but not fixing the boundary of the disk. The action

of π
1
C(n) on a fiber of the covering space by lifting loops is the same as the action by

the mapping class group. Since this is a faithful action, elementary covering space theory

implies that the covering space is the universal cover.

(3) The projection GC(n) → C(n) is a fiber bundle whose fiber consists of isotopy classes

of weighted graphs with a fixed vertex set. Let us denote this fiber by X(n) . It will

suffice to prove that X(n) is contractible. We will show this by enlarging X(n) to a space

Y(n) whose contractibility is more easily seen, then we will show that the relative groups

πi(Y(n),X(n)) are zero, hence πiX(n) ≈ πiY(n) = 0 for all i , which implies that X(n) is
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contractible.

The space Y(n) has the same definition as X(n) except that graphs are allowed to have

more than one edge joining the same pair of endpoints, provided that the disk bounded by

any two such edges contains at least one vertex in its interior. We use the term multigraph

for such a graph.

To show Y(n) is contractible we use the surgery process from [H] which gives a path in

Y(n) from an arbitrary graph to a fixed maximal graph. First choose representatives of

the isotopy classes of these two graphs that intersect transversely in the minimum number

of points (apart from vertices). These intersection points are then eliminated one by one

by cutting each edge of the arbitrary graph wherever it meets the fixed graph and pushing

the newly created pair of endpoints to the vertices along the fixed edges, as in the figure

below. Note that the two new edges can be isotoped to be disjoint from the old one and

all the other edges in the given graph.

Such a surgery is realized by a continuous path in Y(n) by gradually shifting the weight

on the edge being surgered to each edge in the new pair of edges. Note that each surgery

preserves the connectedness of the graph. During the surgery process pairs of isotopic

edges may be created, and these are to be replaced by a single edge, adding the two

weights. Edges connecting a vertex to itself may also be created, but these can simply be

discarded without affecting connectedness of the graph. To make the surgery process well

defined, choose orientations for the edges of the fixed graph and surger in the direction

indicated by the orientation. Also, choose an ordering for the edges of the fixed graph, and

first surger to eliminate all intersections with the first edge, then all intersections with the

second edge, and so on. When the surgery process is finished the arbitrary given graph is

replaced by a graph disjoint from the fixed graph, and hence isotopic to a subgraph of it

since the fixed graph was chosen to be maximal. To complete the deformation, weights are

deformed linearly from those on the subgraph to those on the fixed graph. This surgery

process in fact depends continuously on the arbitrary given graph; see [H] for details.

If the surgery process stayed within X(n) we would be done, but unfortunately it does

not. Thus we need a procedure for eliminating pairs of edges joining the same two vertices.

Simply discarding all such pairs of edges does not work since this might produce a discon-

nected graph. Discarding only one edge of a pair cannot be done in a way that depends

continuously on the given graph. This is illustrated in the following figure, where the three

graphs across the top show a path in Y(n) with ends in X(n) , in which a continuous choice
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of which edge to discard cannot be made. What we will do instead is deform this path to

one where discarding both edges of the pair does not disconnect the graph, as shown in

the lower part of the figure.

A pair of edges joining two vertices p and q bounds a disk D . Let X′(k) be the space

of isotopy classes of weighted graphs in D with k fixed vertices in the interior of D in

addition to the two vertices p and q in ∂D , such that the graphs have at most two

components, the components containing p and q . We further specify that no edges join

p directly to q . The subspace of X′(k) consisting of graphs with only one component

is denoted X′

1
(k) . Allowing multigraphs instead of just graphs results in a larger space

Y′(k) ⊃ X′(k) .

Lemma. Every map K → X′(k) from a finite polyhedron K to X′(k) is homotopic to a

map to the subspace X′

1
(k) .

Proof. For the given family of graphs in X′(k) parametrized by K we perform the surgery

process, deforming this family to a constant family consisting of a fixed maximal graph in

X′

1(k) . This deformation takes place in the space Y′(k) provided that we orient the edges

of the fixed target graph toward vertices in the interior of the disk D , so that no edges

joining the two boundary vertices are created. It will suffice to deform the resulting map

K × I → Y′(k) into X′(k) staying fixed over K × ∂I where it already maps to X′(k) .

We will show that this is possible more generally for any map of a finite polyhedron L to

Y′(k) .

We may assume the given map f :L → Y′(k) is PL in the sense that the weights on edges

are PL functions on L after we extend these functions to be 0 where the edges are not

part of the multigraph. (One way to do this would be to replace Y′(k) by its spine, a

simplicial complex, and take a PL map to this simplicial complex.) If the multigraphs in

the family defined by f do not consist entirely of graphs in X′(k) , choose a pair of edges

a and b joining the same two vertices such that the number m of vertices in the interior

of the disk bounded by a∪ b is minimal for the family. These two edges live over an open

set in the domain L with closure a subpolyhedron A containing a subpolyhedron A
0
⊂ A

where at least one of the weights on a and b is zero. Thus we have a map g :A → X′(m)

by restricting just to vertices and edges in the disk bounded by a ∪ b . By induction on k
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there is a homotopy gt of g to a map with image in X′

1
(m) . The induction can start with

the case k = 1 where the spine of X′(1) is homeomorphic to a closed interval with X′

1
(1)

as its midpoint.

Now we perform three successive homotopies of f :

(1) By a homotopy supported in a neighborhood of A
0
in A we can reduce the weight on

the edge a to 0 near the part of A
0
where this weight is 0 and similarly for b . Note that

this does not destroy connectedness of graphs since any edges with nonzero weights over

A
0
have nonzero weights over a neighborhood of A

0
.

(2) If we damp down the homotopy gt in a smaller neighborhood of A
0
by taking shorter

and shorter initial segments as we approach A
0
, we can extend this damped down homo-

topy to a homotopy of f which is constant outside A .

(3) Now outside this smaller neighborhood of A
0

in A we deform the f produced in

the previous step by letting the weights on both a and b go to zero. This preserves

connectedness of graphs since g
1
has image in X′

1
(m) . The result is a new f in which a

and b are never simultaneously edges over A .

These steps give a deformation of f which eliminates the pair of edges a and b from the

finitely many pairs of edges joining the same endpoints, without introducing any new such

pairs. After finitely many repetitions of this process we eventually obtain a homotopy of

f into X′(k) . This homotopy is fixed where f already maps to X ′(k) . This finishes the

proof of the lemma. ⊔⊓

The same arguments applied to a map (Di, ∂Di) → (Y(n),X(n)) give a homotopy to a

map with image in X(n) , staying fixed over ∂Di . This shows that πi(Y(n),X(n)) = 0, as

desired.
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