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Allen Hatcher

Question : For a smooth compact manifold M can one determine the homotopy

type of its diffeomorphism group Diff(M)?

Why this is interesting:

Automorphisms are always interesting!

Diff(M) is the structure group for smooth bundles with fiber M . Smooth bun-

dles classified by maps to BDiff(M) . Characteristic classes: H∗(BDiff(M)) .

Relationship with algebraic K-theory.

Naive guess: Diff(M) has the homotopy type of a finite dimensional Lie group, per-

haps the isometry group for some Riemannian metric on M .

Simplest case: Diff(Sn) ≃ O(n+ 1)?

Remark: Diff(M) is a Fréchet manifold, locally homeomorphic to Hilbert space,

hence it has the homotopy type of a CW complex and is determined up to home-

omorphism by its homotopy type.

Outline of the talk:

I. Low dimensions (≤ 4)

II. High-dimensional stable range, e.g., πiDiff(Mn) for n >> i . (Little known out-

side the stable range. Full homotopy type of Diff(Mn) not known for any com-

pact Mn with n > 3.)

III. Any dimension, but stabilize via # . (Madsen-Weiss, ... )
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I. Low Dimensions.

Exercise: Diff(S1) ≃ O(2) and Diff(D1) ≃ O(1)

Surfaces :

Smale (1958):

Diff(S2) ≃ O(3) Diff(D2) ≃ O(2) Diff(D2 rel ∂) ≃ ∗

These are equivalent via two general facts:

Diff(Sn) ≃ O(n+ 1)×Diff(Dn rel ∂)

Fibration Diff(Dn rel ∂)→Diff(Dn)→Diff(Sn−1)

Other compact orientable surfaces:

Diff(S1
× S1) has π0 = GL2(Z) , components ≃ S1

× S1 .

Diff(S1
× I) has π0 = Z2 × Z2 , components ≃ S1 .

Components of Diff(M2) contractible in all other cases (Earle-Eells 1969, Gra-

main 1973).

π0Diff(M2) = mapping class group, a subject unto itself. Won’t discuss this.

Problem: Compute H∗BDiff(M2) , even with Q coefficients.

Non-orientable surfaces similar.

3-Manifolds :

Cerf (1969): The inclusion O(4)֓ Diff(S3) induces an isomorphism on π0 . Equiv-

alently, π0Diff(D3 rel ∂) = 0.

Essential for smoothing theory in higher dimensions.

Extension of Cerf’s theorem to higher homotopy groups (H 1983):

Diff(S3) ≃ O(4) Diff(D3) ≃ O(3) Diff(D3 rel ∂) ≃ ∗
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Another case (H 1981):

Diff(S1
× S2) ≃ O(2)×O(3)×ΩSO(3)

In particular Diff(S1
× S2) is not homotopy equivalent to a Lie group since

H2i(ΩSO(3)) ≠ 0 for all i .

Reasonable guess: Diff(M) for other compact orientable 3-manifolds that are prime

with respect to connected sum should behave like for surfaces.

This is known to be true in almost all cases:

Diff(M3) has contractible components unless M is Seifert fibered via an S1 ac-

tion.

Haken manifolds: H, Ivanov 1970s.

Hyperbolic manifolds: Diff(M) ≃ Isom(M) . Gabai 2001.

If M is Seifert fibered via an S1 action, the components of Diff(M) are usually

homotopy equivalent to S1 . Most cases covered by Haken manifold result.

Exceptions:

Components of Diff(S1
× S1

× S1) ≃ S1
× S1

× S1

Components of Diff(S1
× S1

× I) ≃ S1
× S1 .

Spherical manifolds. Expect Diff(M) ≃ Isom(M) from the case M = S3 .

Known for lens spaces and dihedral manifolds: Ivanov in special cases,

Hong-Kalliongis-McCullough-Rubinstein in general. Unknown for tetrahe-

dral, octahedral, dodecahedral manifolds, including the Poincaré homology

sphere.

Also unknown for some small nilgeometry manifolds.

Proved for the small non-Haken manifolds with two other geometries,

H
2
×R and S̃L2(R) , by McCullough-Soma (2010).

π0Diff(M) known for all prime M .
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Non-prime 3-manifolds:

Say M = P1# · · ·#Pk#(#nS
1
× S2) with each Pi ≠ S

1
× S2 .

There is a fibration

CS(M)→BDiff(M)→BDiff(
∐

i

Pi)

where CS(M) is a space parametrizing all the ways of constructing M explicitly as

a connected sum of the Pi ’s and possibly some S3 summands. Allow connected

sum of a manifold with itself to get S1
× S2 summands.

Idea due to César de Sá and Rourke (1979), carried out fully (with different defini-

tions) by Hendriks and Laudenbach (1984).

CS(M) is essentially a combinatorial object, ≃ finite complex.

Easily get a finite generating set for π0Diff(M) from generators for each π0Diff(Pi)

and generators for π1CS(M) .

π1Diff(M) usually not finitely generated (McCullough), from π2CS(M) being not

finitely generated.

More work needed to understand CS(M) better.

4-Manifolds :

Situation seems similar to current state of the classification problem for smooth

4-manifolds, but Diff(M4) has been studied much less.

Just as the smooth 4-dimensional Poincaré conjecture is unknown, so is it unknown

whether Diff(D4 rel ∂) is contractible or even connected.

Quinn (1986): If two diffeomorphisms of a closed simply-connected smooth 4-manifold

are homotopic, then after connected sum with a large enough number of copies of

S2
× S2 they become isotopic. (In the topological category this stabilization is not

necessary.)
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Ruberman (1998): Examples where the stabilization is necessary. More recent re-

finement by Auckly-Kim-Melvin-Ruberman (2014): For a connected sum of at least

26 copies of CP2 with certain orientations, there exist infinitely many isotopy classes

of diffeomorphisms which all become isotopic after connected sum with a single

copy of S2
× S2 .
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II. High Dimensional Stable Range.

Dimension ≥ 5 .

Gluing map π0Diff(Dn rel ∂)→Θn+1 , group of exotic (n+ 1) -spheres.

Surjective for n ≥ 5 by the h-cobordism theorem (Smale 1961).

Injective for n ≥ 5 by Cerf (1970):

Theorem . Let C(M) = Diff(M × I relM × 0∪ ∂M × I) . If π1M
n
= 0 and n ≥ 5 then

π0C(M) = 0.

Elements of C(M) are called concordances or pseudoisotopies.

Since Θn+1 6= 0 for most n , it follows that π0Diff(Dn rel ∂) 6= 0 for most n ≥ 5.

Exceptions: n = 5,11,60. Others?

Cerf’s theorem implies π1Diff(Dn rel ∂)→π0Diff(Dn+1 rel ∂) surjective for n ≥ 5.

Thus Diff(Dn rel ∂) also noncontractible for n = 5,11,60.

In fact Diff(Dn rel ∂) is noncontractible for all n ≥ 5. This was probably known 30

or 40 years ago, but a stronger statement is:

Crowley-Schick (2012): πiDiff(Dn rel ∂) 6= 0 for infinitely many i , for each n ≥ 7.

Question: Is π2Diff(D4 rel ∂)→π1Diff(D5 rel ∂) nontrivial?

Usually π0C(M) 6= 0 when π1M 6= 0 and n ≥ 5 (H and Igusa, 1970s).

Examples:

π0Diff(S1
×Dn−1 rel ∂) ⊃ Z∞2 for n ≥ 5.

π0Diff(Tn) ⊃ Z∞2 for n ≥ 5.

These are diffeomorphisms that are homotopic to the identity ( rel ∂ ) but not iso-

topic to the identity, even topologically.

Concordance Stability (Igusa 1988): C(Mn)֓ C(Mn
× I) induces an isomorphism
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on πi for n >> i .

Denote the limiting object by C(M) = ∪kC(M × Ik) .

The Big Machine .

Main foundational work: Waldhausen in the 1970s and 80s, with many other subse-

quent contributors.

Idea: Compare Diff(M) with a larger space D̃iff(M) , the simplicial space whose

k -simplices are diffeomorphisms M × ∆k→M × ∆k taking each M × face to itself

but not necessarily preserving fibers of projection to ∆k .

D̃iff(M) is accessible via surgery theory.

Fibration

Diff(M)→D̃iff(M)→D̃iff(M)/Diff(M)

Weiss-Williams (1988): In the stable range,

D̃iff(M)/Diff(M) ≃ BC(M)//Z2 = (BC(M)× S
∞)/Z2

where Z2 acts on C(M) by switching the ends of M × I (and renormalizing).

Nice properties of C :

Definition extends to arbitrary complexes X .

A homotopy functor of X .

An infinite loopspace.

C(X) is related to algebraic K-theory via Waldhausen’s ‘algebraic K-theory of topo-

logical spaces’ functor A(X) .

Special case with an easy definition: Let G(∨kS
n) be the monoid of basepoint-preserving

homotopy equivalences ∨kS
n→ ∨k S

n . Stabilize this by letting k and n go to in-

finity, producing a monoid G(∨∞S
∞) . Then A(∗) = BG(∨∞S

∞)+ where + denotes

the Quillen plus construction.
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The homomorphism G(∨∞S
∞)→π0G(∨∞S

∞) = GL∞(Z) = ∪kGLk(Z) induces a map

A(∗)→K(Z) = BGL∞(Z)
+ .

More generally there is a natural map A(X)→K(Z[π1X]) = BGL∞(Z[π1X])
+ .

Theorem (Waldhausen 1980s) : A(X) ≃ Ω∞S∞(X+)×Wh(X) where C(X) ≃ Ω2Wh(X)

and X+ = X ∪ point.

Dundas (1997): There is a homotopy-cartesian square relating the map

A(X)→K(Z[π1X]) to topological cyclic homology TC(−) :

A(X)→K(Z[π1X])

↓ ↓

TC(X)→TC(Z[π1X])

This means the homotopy fibers of the two horizontal maps are the same.

Thus the difference between A(X) and K(Z[π1X]) can be measured in terms of

topological cyclic homology which is more accessible to techniques of homotopy

theory.

The vertical maps are cyclotomic traces defined by Bökstedt-Hsiang-Madsen (1993),

who first defined TC .

Some Calculations .

Simplest case: X = ∗ , so M = Dn .

Waldhausen (1978): A(∗)→K(Z) is a rational equivalence, hence also Wh(∗)→K(Z) .

Thus from known calculations in algebraic K-theory we have

πiC(D
n)⊗Q = πi+2Wh(∗)⊗Q =

{
Q if i ≡ 3 mod 4

0 otherwise

Analogous to Diff(Sn) ≃ O(n+ 1)×Diff(Dn rel ∂) one has

Diff(Dn) ≃ O(n)× C(Dn−1)
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Corollary: There are infinitely many distinct smooth fiber bundles Dn→E→S4k

that are not unit disk bundles of vector bundles, when n >> k ≥ 1. These are all

topological products S4k
×Dn since CTOP (D

n) ≃ ∗ by the Alexander trick.

From the fibration

Diff(Dn+1 rel ∂)→C(Dn)→Diff(Dn rel ∂)

we conclude that either π4k−1Diff(Dn rel ∂)⊗Q 6= 0 or π4k−1Diff(Dn+1 rel ∂)⊗Q 6= 0

when n >> k . Which one? Depends just on the parity of n , by:

Farrell-Hsiang (1978): In the stable range

πiDiff(Dn rel ∂)⊗Q =

{
Q if i ≡ 3 mod 4 and n odd

0 otherwise

Rognes (2002): Modulo odd torsion:

i 0 1 2 3 4 5 6 7 8 9 10

πiWh(∗) 0 0 0 Z2 0 Z 0 Z2 0 Z× Z2 Z8 × Z2 × Z2

11 12 13 14 15 16 17 18

Z2 Z4 Z Z4 Z2 × Z2 Z8 × Z2 Z× Z2 × Z2 Z32 × Z2 × Z2 × Z2

First 3-torsion is Z3 in π11Wh(∗) , first 5-torsion is Z5 in π18Wh(∗) .

Next step: Apply this to compute πiDiff(Dn rel ∂) for small i << n .

Other manifolds M have been studied too, e.g., spherical (Hsiang-Jahren), Euclidean

(Farrell-Hsiang), hyperbolic (Farrell-Jones) ............................
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III. Stabilization via Connected Sum.

Narrower goal: Compute H∗(BDiff(M)) . This gives characteristic classes for smooth

bundles with fiber M .

Madsen-Weiss Theorem : Let Sg be the closed orientable surface of genus g . Then

Hi(BDiff(Sg)) ≅ Hi(Ω∞0 AG+∞,2) for g >> i (roughly g > 3i/2) where:

AGn,2 = ‘affine Grassmannian’ of oriented affine 2-planes in Rn .

AG+n,2 = one-point compactification of AGn,2 . (Point at ∞ is the empty plane.)

Ω∞AG+∞,2 = ∪nΩnAG+n,2 via the natural inclusions AG+n,2֓ΩAG+n+1,2 translat-

ing a plane from −∞ to +∞ in the (n+ 1)st coordinate.

Ω∞0 AG+∞,2 is one component of Ω∞AG+∞,2 .

Remarks:

AG+n,2 is the Thom space of a vector bundle over the usual Grassmannian Gn,2

of oriented 2-planes through the origin in Rn , namely the orthogonal comple-

ment of the canonical bundle.

Theorem usually stated in terms of mapping class groups, but the proof is via

the full group Diff(Sg) .

Homology isomorphism but not an isomorphism on π1 . In fact the theorem

can be stated as saying that the plus-construction applied to BDiff(S∞) gives

Ω∞0 AG+∞,2 .

Easy consequence (the Mumford Conjecture):

H∗(BDiff(S∞);Q) = Q[x2, x4, x6, · · ·]

Zp coefficients much harder: Galatius 2004.

Largely open problem: H∗(BDiff(Sg)) outside the stable range?
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Higher Dimensions .

For any smooth closed (oriented) n -manifold there is a natural map

BDiff(M)→Ω∞0 AG+∞,n

Elements of H∗(Ω∞0 AG+∞,n) pull back to characteristic classes in H∗(BDiff(M)) that

are ‘universal’ — independent of M . So one can’t expect H∗(Ω∞0 AG+∞,n) to give the

full story on H∗(BDiff(M)) for arbitrary M .

Problem : Find refinements of Ω∞0 AG+∞,n geared toward special classes of manifolds

that give analogs of the Madsen-Weiss theorem for those special classes.

Galatius, Randal-Williams (2012): Let Mg = #g(S
n
× Sn) . Then

Hi(BDiff(Mg relD2n)) ≅ Hi(Ω∞0 ÃG
+

∞,2n) for g >> i and n > 2

where ÃG∞,2n denotes replacing G∞,2n by its n -connected cover.

Again H∗(−;Q) is easily computed to be a polynomial algebra on certain even-

dimensional classes, starting in dimension 2.

Question: Does this also work for n = 2? The Whitney trick works in dimension 4

after stabilization by #(S2
× S2) .

3-Manifolds .

Two cases known:

Let Vg = standard handlebody of genus g . Then

Hi(BDiff(Vg)) ≅ Hi(Ω∞0 S∞(G∞,3)+) for g >> i

Let Mg = #g(S
1
× S2) . Then

Hi(BDiff(Mg relD3)) ≅ Hi(Ω∞0 S∞(G∞,4)+) for g >> i

(Homology stability proved by Chor Hang Lam, 2014.)
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