A 50-Year View of Diffeomorphism Groups

Allen Hatcher

Question: For a smooth compact manifold M can one determine the homotopy

type of its diffeomorphism group Diff(M)?

Why this is interesting:

» Automorphisms are always interesting!

» Diff(M) is the structure group for smooth bundles with fiber M. Smooth bun-
dles classified by maps to BDiff(M). Characteristic classes: H™* (BDiff(M)).

» Relationship with algebraic K-theory.

Naive guess: Diff(M) has the homotopy type of a finite dimensional Lie group, per-
haps the isometry group for some Riemannian metric on M.
Simplest case: Diff(S™) ~O(n +1)?

Remark: Diff(M) is a Fréchet manifold, locally homeomorphic to Hilbert space,
hence it has the homotopy type of a CW complex and is determined up to home-

omorphism by its homotopy type.

QOutline of the talk:

I. Low dimensions (< 4)

II. High-dimensional stable range, e.g., m;Diff(M") for n >> i. (Little known out-
side the stable range. Full homotopy type of Diff(M") not known for any com-
pact M™ with n > 3.)

III. Any dimension, but stabilize via #. (Madsen-Weiss, ... )
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l. Low Dimensions.
Exercise: Diff(S') =~ O(2) and Diff(D') ~ O(1)
Surfaces:

Smale (1958):
Diff(S%) ~ O(3)  Diff(D?) ~ 0(2)  Diff(D%reld) ~

These are equivalent via two general facts:

» DIff(S™) ~ O(n + 1) x Diff(D" rel 9)

= Fibration Diff(D" rel 3) — Diff(D") — Diff (S" ')
Other compact orientable surfaces:

= Diff(S' x ') has 1y = GL,(Z), components =~ S' x §'.

= Diff(S' x I) has m, = Z, X Z,, components = S*.

= Components of Diff(M?) contractible in all other cases (Earle-Eells 1969, Gra-
main 1973).

1o Diff (M %) = mapping class group, a subject unto itself. Won’t discuss this.
Problem: Compute H,BDiff(M?), even with Q coefficients.
Non-orientable surfaces similar.

3-Manifolds:

Cerf (1969): The inclusion O(4) — Diff(S?) induces an isomorphism on . Equiv-
alently, TrODiff(D3rela) =0.

Essential for smoothing theory in higher dimensions.

Extension of Cerf’s theorem to higher homotopy groups (H 1983):
Diff(S%) ~0(4)  Diff(D?) ~0(3)  Diff(D3reld) ~ %



Another case (H 1981):
Diff(S' x $%) ~ 0(2) x O(3) x QSO (3)

In particular Diff(S' x $?) is not homotopy equivalent to a Lie group since
H,;(Q50(3)) # 0 for all i.

Reasonable guess: Diff (M) for other compact orientable 3-manifolds that are prime

with respect to connected sum should behave like for surfaces.

This is known to be true in almost all cases:

= Diff(M?) has contractible components unless M is Seifert fibered via an S' ac-
tion.
= Haken manifolds: H, Ivanov 1970s.
= Hyperbolic manifolds: Diff(M) ~Isom(M). Gabai 2001.

= If M is Seifert fibered via an S' action, the components of Diff(M) are usually
homotopy equivalent to S'. Most cases covered by Haken manifold result.
Exceptions:
= Components of Diff(S! x S x §!) ~ §! x § x st
= Components of Diff(S' x S' x 1) ~ st x §t.
= Spherical manifolds. Expect Diff(M) ~ Isom(M) from the case M = S°.
Known for lens spaces and dihedral manifolds: Ivanov in special cases,
Hong-Kalliongis-McCullough-Rubinstein in general. Unknown for tetrahe-
dral, octahedral, dodecahedral manifolds, including the Poincaré homology
sphere.
= Also unknown for some small nilgeometry manifolds.
= Proved for the small non-Haken manifolds with two other geometries,

H? x R and SL,(R), by McCullough-Soma (2010).

» 17,Diff (M) known for all prime M.



Non-prime 3-manifolds:

Say M = P# - - - #P,#(#,S' x §°) with each P; = §' x §°.
There is a fibration

CS(M)— BDiff(M) — BDiff(] [ P;)
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where CS(M) is a space parametrizing all the ways of constructing M explicitly as
a connected sum of the P;’s and possibly some $% summands. Allow connected

sum of a manifold with itself to get S! x §° summands.

Idea due to César de Sa and Rourke (1979), carried out fully (with different defini-
tions) by Hendriks and Laudenbach (1984).

CS(M) is essentially a combinatorial object, ~ finite complex.

Easily get a finite generating set for myDiff (M) from generators for each ,Diff(P;)

and generators for m;CS(M).

1, Diff (M) usually not finitely generated (McCullough), from 1,CS (M) being not
finitely generated.

More work needed to understand CS(M) better.

4-Manifolds:

Situation seems similar to current state of the classification problem for smooth

4-manifolds, but Diff(M*) has been studied much less.

Just as the smooth 4-dimensional Poincaré conjecture is unknown, so is it unknown

whether Diff(D4 rel 0) is contractible or even connected.

Quinn (1986): If two diffeomorphisms of a closed simply-connected smooth 4-manifold
are homotopic, then after connected sum with a large enough number of copies of
$? x $? they become isotopic. (In the topological category this stabilization is not

necessary.)



Ruberman (1998): Examples where the stabilization is necessary. More recent re-
finement by Auckly-Kim-Melvin-Ruberman (2014): For a connected sum of at least
26 copies of CP? with certain orientations, there exist infinitely many isotopy classes
of diffeomorphisms which all become isotopic after connected sum with a single

copy of S% x 2.



Il. High Dimensional Stable Range.

Dimension > 5.

Gluing map m,Diff(D" rel9) —©,,,,, group of exotic (n + 1)-spheres.
Surjective for n > 5 by the h-cobordism theorem (Smale 1961).
Injective for n > 5 by Cerf (1970):

Theorem. Let C(M) = Diff(M x ItelM x 0 U oM x I). If myM" =0 and n > 5 then

Elements of C(M) are called concordances or pseudoisotopies.

Since ©,,,, # 0 for most n, it follows that 1 Diff(D" rel9) # 0 for most n > 5.

Exceptions: n = 5,11,60. Others?

Cerf’s theorem implies 7, Diff (D" rel@)—»rrODiff(D"”rela) surjective for n > 5.

Thus Diff(D" rel9) also noncontractible for n = 5,11, 60.

In fact Diff (D" rel 9) is noncontractible for all n > 5. This was probably known 30

or 40 years ago, but a stronger statement is:
Crowley-Schick (2012): mr;Diff(D" rel9) # 0 for infinitely many i, for each n > 7.

Question: Is 1,Diff(D*rel ) — v, Diff(D° rel ) nontrivial?

Usually myC(M) # 0 when m;M # 0 and n > 5 (H and Igusa, 1970s).

Examples:

= TTDIff(S* x D" 'reld) > Z3 for n > 5.
» 7, Diff(T") > 73 for n > 5.

These are diffeomorphisms that are homotopic to the identity (rel o) but not iso-

topic to the identity, even topologically.

Concordance Stability (Igusa 1988): C(M™) — C(M™ x I) induces an isomorphism
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on m; for n >> 1.

Denote the limiting object by C¢(M) = U, C(M X 1.

The Big Machine.

Main foundational work: Waldhausen in the 1970s and 80s, with many other subse-

quent contributors.

Idea: Compare Diff(M) with a larger space ﬁTff(M ), the simplicial space whose
k-simplices are diffeomorphisms M X AR M x A¥ taking each M x face to itself

but not necessarily preserving fibers of projection to Ak,
ﬁf(M ) is accessible via surgery theory.
Fibration

Diff(M) — Diff (M) — Diff(M) /Diff (M)

Weiss-Williams (1988): In the stable range,

Diff(M) /Diff (M) ~ BC(M)//Z, = (BC(M) x §%)/Z,
where Z, acts on C(M) by switching the ends of M x I (and renormalizing).
Nice properties of C:

= Definition extends to arbitrary complexes X.
= A homotopy functor of X.

= An infinite loopspace.

C(X) is related to algebraic K-theory via Waldhausen’s ‘algebraic K-theory of topo-

logical spaces’ functor A(X).

Special case with an easy definition: Let G(v;S™) be the monoid of basepoint-preserving

homotopy equivalences v;S"— v, S". Stabilize this by letting k and n go to in-
finity, producing a monoid G(v_S*). Then A(*) = BG(v_S*)" where + denotes

the Quillen plus construction.



The homomorphism G (v ,S%)—1m,G(V,S”) = GL(Z) = U,GL,(Z) induces a map
A(x%)—K(Z) =BGL_(Z)".

More generally there is a natural map A(X)—K(Z[m;X]) = BGL (Z[; X])".

Theorem (Waldhausen 1980s): A(X) =~ Q®S®(X,)xWh(X) where C(X) =~ Q*Wh(X)

and X, = X U point.

Dundas (1997): There is a homotopy-cartesian square relating the map

A(X)—K(Z[m; X]) to topological cyclic homology TC(-):

A(X) — K(Z[m,X])
! !
TC(X)—TC(Z[m;X])

This means the homotopy fibers of the two horizontal maps are the same.

Thus the difference between A(X) and K(Z[1,X]) can be measured in terms of
topological cyclic homology which is more accessible to techniques of homotopy

theory.

The vertical maps are cyclotomic traces defined by Bokstedt-Hsiang-Madsen (1993),
who first defined TC.

Some Calculations.

Simplest case: X = %,so M = D".

Waldhausen (1978): A(x)— K(Z) is a rational equivalence, hence also Wh(x)—K(Z).

Thus from known calculations in algebraic K-theory we have

. _ _ 1 Q ifi=3mod4
mCDT) ® Q = 1m;,,Wh(x) ® Q = {0 otherwise

Analogous to Diff(S") = O(n + 1) x Diff(D" rel ) one has

Diff(D") ~ O(n) x C(D™ 1)
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Corollary: There are infinitely many distinct smooth fiber bundles D" — E — S**
that are not unit disk bundles of vector bundles, when n >> k > 1. These are all

topological products $* x D" since Crpp(D™) =~ *x by the Alexander trick.

From the fibration
Diff (D™ ! rel ) — C(D™) — Diff (D" rel 9)

we conclude that either 7r,, ;Diff(D"reld) ® Q # 0 or 11,;,_;Diff(D"" ' reld) ® Q # 0

when n >> k. Which one? Depends just on the parity of n, by:

Farrell-Hsiang (1978): In the stable range

. Diff (D" rel 3) ® Q = {Q ifi = 3_mod 4 and n odd
0 otherwise

Rognes (2002): Modulo odd torsion:

i |01 23 456 7 8 9 10
mWh(x) | 0 0 0 Z, 0 Z 0 Z, 0 ZxZ, ZgxZ,xZ,
11 12 13 14 15 16 17 18

7, 7, 7 7, Z,XZ, ZgXZy ZXTyxXLy T3y XLy XLyXZy

First 3-torsion is Z5 in 1r;; Wh(*), first 5-torsion is Zs in 1;gWh(x*).
Next step: Apply this to compute 7;Diff(D" rel 9) for small i << n.

Other manifolds M have been studied too, e.g., spherical (Hsiang-Jahren), Euclidean

(Farrell-Hsiang), hyperbolic (Farrell-Jones) .......cccceccvvveeeuenne



l1l. Stabilization via Connected Sum.
Narrower goal: Compute H, (BDiff(M)). This gives characteristic classes for smooth

bundles with fiber M.

Madsen-Weiss Theorem: Let S, be the closed orientable surface of genus g. Then

H;(BDiff(S,)) = H;(Qy AG,, ,) for g >> i (roughly g > 3i/2) where:

» AG, , = ‘affine Grassmannian’ of oriented affine 2-planes in R".

0 AG;LZ = one-point compactification of AG, ,. (Point at oo is the empty plane.)

= OYAG,,, = U,Q"AG,, , via the natural inclusions AG, , — QAG,,,, translat-
ing a plane from —o to +o in the (n + 1) st coordinate.

» Q7 AG, , is one component of Q¥AG,, ,.

Remarks:

= AG, , is the Thom space of a vector bundle over the usual Grassmannian G,, ,
of oriented 2-planes through the origin in R™, namely the orthogonal comple-
ment of the canonical bundle.

» Theorem usually stated in terms of mapping class groups, but the proof is via
the full group Diff(S,).

» Homology isomorphism but not an isomorphism on 7. In fact the theorem
can be stated as saying that the plus-construction applied to BDiff(S,,) gives
Oy AG,, .

Easy consequence (the Mumford Conjecture):

H, (BDiff(S,,); Q) = Q[XZ,X4,X6, o]

Z, coefficients much harder: Galatius 2004.

Largely open problem: H, (BDiff(S,)) outside the stable range?
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Higher Dimensions.

For any smooth closed (oriented) n-manifold there is a natural map
BDIff(M) — QF AGY ,,

Elements of H*(Qg AG, ,,) pull back to characteristic classes in H* (BDiff(M)) that
are ‘universal’ — independent of M. So one can’t expect H* (Qg AG;LO,n) to give the

full story on H™* (BDiff(M)) for arbitrary M.

Problem: Find refinements of Qg AG;,n geared toward special classes of manifolds

that give analogs of the Madsen-Weiss theorem for those special classes.

Galatius, Randal-Williams (2012): Let M, = #,(S "% S™). Then
H;(BDiff(M, rel D*")) = Hi((28°24\é:o,2n) for g >> i and n > 2

where A\(J}m,zn denotes replacing G, », by its n-connected cover.

Again H,(—;Q) is easily computed to be a polynomial algebra on certain even-

dimensional classes, starting in dimension 2.

Question: Does this also work for n = 2? The Whitney trick works in dimension 4
after stabilization by #(S° x §%).

3-Manifolds.

Two cases known:
= Let V, = standard handlebody of genus g. Then
H;(BDIiff(V,)) = H;(QyS" (G 3),) for g >>1i
= Let M, = #,(S' x S*). Then
H, (BDiff (M, rel D*)) = H;(Q§S* (G 4),) for g >>i

(Homology stability proved by Chor Hang Lam, 2014.)
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