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Goal : An analog of the Madsen-Weiss theorem for certain 3-manifolds.

Theorem : Let M be a compact connected orientable 3-manifold con-

taining S1
× S2 as a connected summand. Then

lim
n
Hi(BDiff(#nM relD3)) = Hi(Ω∞0 S∞BSO(4)+)

Different Thom spectrum from the one in the Madsen-Weiss the-

orem. Ebert showed that the Madsen-Tillmann spectrum doesn’t

give the right answer for odd-dimensional manifolds.

Components of Diff(#nM relD3) are not contractible, so no corol-

lary about mapping class groups.

Homology stability hasn’t yet been proved for these 3-manifolds.



Starting point : Galatius’ theorem, the analog of the Madsen-Weiss

theorem for Aut(Fn) :

lim
n
BAut(Fn)

+
≃ Ω∞0 S∞, one component of Ω∞S∞

Equivalently, the inclusion of the symmetric group Σn֓ Aut(Fn)

induces isomorphisms Hi(Σn) ≅ Hi(Aut(Fn)) for n >> i .

Will talk about two extensions:

(I) Relative version, for “relative graphs": attach 0-cells and 1-

cells to a fixed base space X .

(II) Handlebody version, where “handlebody" means a d -dimensional

thickening of a graph, for fixed d ≥ 3.

Relative Graphs

Motivation: connection with algebraic K-theory.

K(Z) = BGL∞(Z)
+
= lim

n
BAut(Zn)+ ( × Z )

“Nonabelian algebraic K-theory": replace Zn by Fn .

Galatius’ theorem computes this to be Ω∞S∞ .

Waldhausen’s A(∗) :

A(∗) = lim
n,k
BHomEq(∨n S

k,∗)+ ( × Z )

when k = 0, HomEq(∨n S
0,∗) = Σn

when k = 1, HomEq(∨n S
1,∗) ≃ Aut(Fn)



BHomEq(∨n S
1) classifies fibrations with fibers ≃ ∨n S

1 .

More geometric: Fibrations with fibers actual finite graphs ≃ ∨n S
1 .

Such graphs form a category Gn with morphisms generated by graph

isomorphisms and collapsing subtrees (so-called simple maps).

BGn classifies these more geometric fibrations.

Culler-Vogtmann: BGn ≃ BHomEq(∨n S
1)

Remark: This fails for fibrations with fibers higher-dimensional finite

complexes. The difference is measured by WhPL(f ibers) .

More generally,

A(X) = lim
n,k
BHomEq(X ∨n S

k relX)+ ( × K0(Z[π1X]) )

Again take k = 1. More geometric version: Graphs on X — attach a

finite graph to X by identifying some of its vertices with points in X .

Category Gn(X) , graphs on X that are ≃ X∨n S
1 relX , morphisms as

before. (Assume X path-connected for simplicity.)

Topological category: attachments to X can vary continuously.

X X X



Conjecture: BGn(X) ≃ BHomEq(X ∨n S
1 relX) .

True when X = point via the basepointed version of Culler-Vogtmann.

Theorem : limn BGn(X)
+
≃ Ω∞0 S∞ .

Independent of X — surprise!

When X = point this is Galatius’ theorem, and the proof follows his

general plan and later improvements by Galatius and Randal-Williams.

Sketch of proof :

Start with a nice geometric model for BGn(X) , a space of graphs in

R
∞ with data on attaching to X .

Edges of graphs are smooth curves. Allow variation of graphs by

smooth isotopy, but also want to allow subtrees to shrink continu-

ously to points.

Two different ways to do this:

Very general: Allow arbitrary motion of the subtree inside a shrink-

ing ball. This is what Galatius did.

Much more restrictive: Shrinking that can easily be thickened to

handlebodies.

Will use the latter type, called conical collapsing. Inverse operation:

conical expansion.



Round Handlebodies: Thicken vertices to 0-handles which are round

balls, truncated along disjoint disks where the 1-handles attach. Thicken

the edges to 1-handles with round cross-sectional disks.

Assume edges are linear near vertices.

Example of a conical expansion:



A conical expansion is determined by inserting cones such that:

the vertices of the cones are at the given vertex of the graph

cones are disjoint from the graph and from each other, except at

the vertex

cones can be nested.

Then translate the part of the graph inside a cone along the axis of

the cone, with the vertex tracing out a new edge.

More complicated example:

An example of a nonconical expansion:

conical version



Attachment to X : label some vertices with points in X .

Allow these labeled vertices to split into several labeled vertices: Do a

conical expansion, delete the edges of a subtree and label its vertices

with continuously varying labels in X .

x x
1 x

2

x
3

An isolated labeled vertex can be deleted since it denotes attaching

nothing to X .

Notation:

G
k(X) — the space of all such labeled graphs in R

k .

G(X) = ∪kG
k(X)

Gn(X) ⊂ G(X) , the graphs ≃ X ∨n S
1 (after attaching to X ).

Proposition : Gn(X) ≃ BGn(X) .



Relate Gn(X) to Ω∞S∞ by a scanning process. The rough idea: Given

a finite graph K ⊂ R
k , look at it up close by moving a magnifying

lens (a jeweler’s loupe ) over all of Rk , recording what appears in the

lens.

Regarding the lens as a smaller copy of Rk , one sees a graph in R
k

whose edges can extend to infinity. Moving the lens, the graph can

slide out to infinity and disappear entirely.

Enlarge G
k(X) to a space G

k,k(X) of such graphs whose edges can

extend to infinity. Put a “compact-open" topology on G
k,k(X) allow-

ing parts of graphs to slide to infinity.

For each choice of a lens size we get a scanning map

G
k(X)→ ΩkGk,k(X)

K ⊂ Rk ֏
(
R
k
∪ {∞}→ G

k,k(X)
)

This is homotopic to a composition

G
k(X)→ ΩGk,1 → Ω2

G
k,2 → · · · → ΩkGk,k

where G
k,ℓ(X) ⊂ G

k,k(X) is the subspace of graphs contained in



R
ℓ
× (−1,1)k−ℓ , graphs that can go to infinity in only the first ℓ co-

ordinates. Natural map G
k,ℓ(X)→ ΩGk,ℓ+1(X) by translating graphs

from −∞ to +∞ in the (ℓ+ 1)st coordinate.

Three steps:

(1) Gk,ℓ(X)→ ΩGk,ℓ+1(X) is a (weak) homotopy equivalence when

ℓ > 0.

(2) limn Gn(X)→ Ω0G
∞,1(X) is a homology equivalence.

(3) Gk,k(X) ≃ Sk , the graphs in Rk with ≤ 1 point (unlabeled).

Thus

lim
n

Gn(X) ∼H∗ Ω0G
∞,1

= lim
k
Ω0G

k,1(X)

≃ lim
k
Ωk0Gk,k(X) ≃ lim

k
Ωk0Sk = Ω∞0 S∞

(1) and (2) are proved using classifying spaces of monoids instead of

loopspaces, using the group completion theorem for (2).

For (3) the idea is to expand a suitably chosen small ball (lens) about

the origin to all of Rk . The ball is chosen in a shape to contain only a

small piece of the graph that is a (relative) tree:



Then shrink this tree:

Shrink to labeled vertices, if there are any, then delete these la-

beled vertices.

Shrink a tree with no labels to a point.

Handlebodies

Extra data needed to go from a graph K ⊂ R
k to a d -dimensional

oriented handlebody thickening of K : a field of oriented d -planes

Px ⊂ R
k , x ∈ K , such that Px contains all tangent lines to edges of K

containing x .

To attach to a manifold Xd in a submanifold M ⊂ ∂X , label some

vertices by points of M (with some tangential data). Need distinct

labels on distinct vertices.

X X X

X X X

x
xx 1 x

2



Get a handlebody space H
k(X,M,d) analogous to G

k(X) .

Take (X,M) = (Dd, Dd−1) for simplicity. Write H
k for Hk(Dd, Dd−1, d) .

Same three steps:

(1) H
k,ℓ→ ΩHk,ℓ+1 is a homotopy equivalence when ℓ > 0.

(2) limnHn→ Ω0H
∞,1 is a homology equivalence when d ≥ 3,

where Hn denotes the component of H
∞ consisting of handle-

bodies ≃ ∨n S
1 .

(3) H
k,k

≃ the graphs in R
k with ≤ 1 point (unlabeled), with a

d -plane at that point. This is just SkGrk,d+ , the Thom space of

the trivial k -dimensional bundle over the Grassmannian Grk,d of

oriented d -planes in R
k .

Thus we have

lim
n
Hi(Hn) = Hi(Ω∞0 S∞BSO(d)+)



Applications to 3-manifolds:

d = 3: Hn ≃ BDiff(Vn relD2) for Vn a 3-dimensional handle-

body of genus n . Thus for n >> i we have

Hi(BDiff(Vn relD2)) = Hi(Ω∞0 S∞BSO(3)+)

This is the same as the homology of the mapping class group of

the handlebody.

d = 4: Hn ≃ BDiff(#n(S
1
× S2) relD3) , where #n(S

1
× S2) is the

boundary of a 4-dimensional handlebody ≃ ∨n S
1 . Thus

lim
n
Hi(BDiff(#n(S

1
× S2) relD3)) = Hi(Ω∞0 S∞BSO(4)+)

Generalization of the d = 4 case: Let M be a compact connected

orientable 3-manifold containing S1
× S2 as a connected summand.

Then

lim
n
Hi(BDiff(#nM relD3)) = Hi(Ω∞0 S∞BSO(4)+)


