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Goal: An analog of the Madsen-Weiss theorem for certain 3-manifolds.

Theorem: Let M be a compact connected orientable 3-manifold con-

taining S' x $% as a connected summand. Then

lim H, (BDff (#, M relD?)) = H,(QYS®BSO(4),)

» Different Thom spectrum from the one in the Madsen-Weiss the-
orem. Ebert showed that the Madsen-Tillmann spectrum doesn’t
give the right answer for odd-dimensional manifolds.

= Components of Diff(#, M rel D?) are not contractible, so no corol-
lary about mapping class groups.

» Homology stability hasn’t yet been proved for these 3-manifolds.



Starting point: Galatius’ theorem, the analog of the Madsen-Weiss

theorem for Aut(F,):
1111;nBAut(Fn)+ ~ (QyS®, one component of Q*S%

Equivalently, the inclusion of the symmetric group 2, — Aut(F,)

induces isomorphisms H;(%,) = H;(Aut(F,)) for n >> i.

Will talk about two extensions:

(I) Relative version, for “relative graphs": attach 0-cells and 1-

cells to a fixed base space X.

(II) Handlebody version, where “handlebody” means a d-dimensional

thickening of a graph, for fixed d = 3.

Relative Graphs
Motivation: connection with algebraic K-theory.

K(Z) = BGL,(2)" =limBAut(z")*  (xZ)
“Nonabelian algebraic K-theory": replace Z" by F,,.
Galatius’ theorem computes this to be Q¥S®

Waldhausen’s A(x):

A(x) = linquHomEq(vnSk, )T (XZ)
n,

» when k =0, HomEq(vnSO, *) =2,
» when k =1, HomEq(vnSl, *) = Aut(F,)



BHomEq(V,, S') classifies fibrations with fibers = v, S*.
More geometric: Fibrations with fibers actual finite graphs =~ v, S L

Such graphs form a category G,, with morphisms generated by graph

isomorphisms and collapsing subtrees (so-called simple maps).
BG,, classifies these more geometric fibrations.
Culler-Vogtmann: BG, =~ BHomEq(V, S*)

Remark: This fails for fibrations with fibers higher-dimensional finite

complexes. The difference is measured by WhP%(fibers).
More generally,

A(X) = lim BHomEq (X v, SkrelX)t (% Ky(Z[m X]))
n,

Again take k = 1. More geometric version: Graphs on X — attach a

finite graph to X by identifying some of its vertices with points in X.

Category G, (X), graphs on X thatare = Xv, S ' rel X, morphisms as

before. (Assume X path-connected for simplicity.)

Topological category: attachments to X can vary continuously.



Conjecture: BG, (X) =~ BHomEq(X Vv, S' rel X).

True when X = point via the basepointed version of Culler-Vogtmann.
Theorem: lim, BG, (X)" =~ QFS”.

Independent of X — surprise!

When X = point this is Galatius’ theorem, and the proof follows his

general plan and later improvements by Galatius and Randal-Williams.

Sketch of proof:

Start with a nice geometric model for BG,,(X), a space of graphs in

R* with data on attaching to X.

Edges of graphs are smooth curves. Allow variation of graphs by
smooth isotopy, but also want to allow subtrees to shrink continu-

ously to points.
Two different ways to do this:

» Very general: Allow arbitrary motion of the subtree inside a shrink-
ing ball. This is what Galatius did.

» Much more restrictive: Shrinking that can easily be thickened to
handlebodies.

Will use the latter type, called conical collapsing. Inverse operation:

conical expansion.



Round Handlebodies: Thicken vertices to 0-handles which are round
balls, truncated along disjoint disks where the 1-handles attach. Thicken

the edges to 1-handles with round cross-sectional disks.
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Assume edges are linear near vertices.

Example of a conical expansion:
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A conical expansion is determined by inserting cones such that:

» the vertices of the cones are at the given vertex of the graph
» cones are disjoint from the graph and from each other, except at
the vertex

= cones can be nested.

Then translate the part of the graph inside a cone along the axis of

the cone, with the vertex tracing out a new edge.

More complicated example:
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An example of a nonconical expansion:
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Attachment to X: label some vertices with points in X.

Allow these labeled vertices to split into several labeled vertices: Do a
conical expansion, delete the edges of a subtree and label its vertices

with continuously varying labels in X.
X m1 m2 m3
> >. A %

An isolated labeled vertex can be deleted since it denotes attaching

nothing to X.

Notation:

= GK(X) — the space of all such labeled graphs in R,
= 5(X) = U G4 (X)
» G,(X) C §(X), the graphs = X v,,LS1 (after attaching to X).

Proposition: G, (X) =~ BG,,(X).




Relate G, (X) to Q¥S® by a scanning process. The rough idea: Given
a finite graph K C R¥, look at it up close by moving a magnifying
lens (a jeweler’s loupe) over all of R, recording what appears in the

lens.

Regarding the lens as a smaller copy of R¥, one sees a graph in RX
whose edges can extend to infinity. Moving the lens, the graph can

slide out to infinity and disappear entirely.

Enlarge Gk (X) to a space G¥¥(X) of such graphs whose edges can
extend to infinity. Put a “compact-open" topology on Ghk(X) allow-

ing parts of graphs to slide to infinity.

For each choice of a lens size we get a scanning map
§(X) — Qg4 (x)
K cR¥ — (RFU {o} — G*¥(X))
This is homotopic to a composition

9k(X) - ng,l - 929](,2 . ngk,k

where Sk'g(X ) C GM%(X) is the subspace of graphs contained in



RY x (-1, 1)"_3, graphs that can go to infinity in only the first € co-
ordinates. Natural map 9k'€(X ) — QSMH(X ) by translating graphs

from —o to +o in the (£ + 1) st coordinate.
Three steps:

(1) &Y (x) — QG4+ (X) is a (weak) homotopy equivalence when
£ >0.

(2) lim,, G,,(X) — Q,5%!(X) is a homology equivalence.
(3) G&*(X) ~ S*, the graphs in R¥ with <1 point (unlabeled).
Thus
lim G, (X) ~y, QoG™"!
= lim Q, G5 (X)

~ liFQSSk’k(X) ~ liIEnQISSk = QYS”

(1) and (2) are proved using classifying spaces of monoids instead of

loopspaces, using the group completion theorem for (2).

For (3) the idea is to expand a suitably chosen small ball (lens) about
the origin to all of RX. The ball is chosen in a shape to contain only a

small piece of the graph that is a (relative) tree:
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Then shrink this tree:

= Shrink to labeled vertices, if there are any, then delete these la-
beled vertices.

= Shrink a tree with no labels to a point.

Handlebodies

Extra data needed to go from a graph K C R¥ to a d-dimensional
oriented handlebody thickening of K: a field of oriented d-planes
P, C [Rk, x € K, such that P, contains all tangent lines to edges of K

containing x.

To attach to a manifold X% in a submanifold M c X , label some
vertices by points of M (with some tangential data). Need distinct

labels on distinct vertices.
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Get a handlebody space H* (X, M, d) analogous to Sk(X).
Take (X, M) = (D%, D% 1) for simplicity. Write H* for H*(D%, D% ', d).
Same three steps:

(1) ot - 3kt is a homotopy equivalence when £ > 0.

(2) lim,, H,, — QuH*"' is a homology equivalence when d > 3,
where H, denotes the component of H” consisting of handle-

bodies =~ v, S'.

(3) H** ~ the graphs in R* with < 1 point (unlabeled), with a
d-plane at that point. This is just S kGrf’d, the Thom space of
the trivial k-dimensional bundle over the Grassmannian Gr*% of

oriented d-planes in R,

\A

Thus we have
lim H; (H,,) = H,(QFS*BSO(d),)



Applications to 3-manifolds:

= d = 3: H, = BDIiff(V, relD?) for V,, a 3-dimensional handle-

body of genus n. Thus for n >> i we have
H;(BDiff(V,, rel D)) = H;(QFS*BSO(3),)

This is the same as the homology of the mapping class group of

the handlebody.

= d =4: K, =~ BDiff(#,(S' x $?) rel D?), where #, (S' x §%) is the

boundary of a 4-dimensional handlebody = v, S L. Thus

lim H; (BDff (#, (S' x §*) rel D%)) = H;(QF'SBSO(4),)

Generalization of the d = 4 case: Let M be a compact connected
orientable 3-manifold containing S' x $° as a connected summand.

Then
lim H; (BDiff (#, M relD%)) = H;(QYSBSO(4),)



