Stable Homology of Spaces of Graphs

Allen Hatcher

Stanford July 27, 2012

Goal: An analog of the Madsen-Weiss theorem for certain 3-manifolds.

<u>**Theorem</u>**: Let *M* be a compact connected orientable 3-manifold containing $S^1 \times S^2$ as a connected summand. Then</u>

$$\lim_{n} H_{i}(\mathrm{BDiff}(\#_{n} M \operatorname{rel} D^{3})) = H_{i}(\Omega_{0}^{\infty} S^{\infty} BSO(4)_{+})$$

- Different Thom spectrum from the one in the Madsen-Weiss theorem. Ebert showed that the Madsen-Tillmann spectrum doesn't give the right answer for odd-dimensional manifolds.
- Components of $\text{Diff}(\#_n M \operatorname{rel} D^3)$ are not contractible, so no corollary about mapping class groups.
- Homology stability hasn't yet been proved for these 3-manifolds.

<u>Starting point</u>: Galatius' theorem, the analog of the Madsen-Weiss theorem for $Aut(F_n)$:

 $\lim_{n} BAut(F_{n})^{+} \simeq \Omega_{0}^{\infty} S^{\infty}, \text{ one component of } \Omega^{\infty} S^{\infty}$

Equivalently, the inclusion of the symmetric group $\Sigma_n \hookrightarrow \operatorname{Aut}(F_n)$ induces isomorphisms $H_i(\Sigma_n) \cong H_i(\operatorname{Aut}(F_n))$ for n >> i.

Will talk about two extensions:

(I) Relative version, for "relative graphs": attach 0-cells and 1cells to a fixed base space *X*.

(II) Handlebody version, where "handlebody" means a *d*-dimensional thickening of a graph, for fixed $d \ge 3$.

Relative Graphs

Motivation: connection with algebraic K-theory.

$$K(\mathbb{Z}) = BGL_{\infty}(\mathbb{Z})^{+} = \lim_{n} BAut(\mathbb{Z}^{n})^{+} \qquad (\times \mathbb{Z})$$

"Nonabelian algebraic K-theory": replace \mathbb{Z}^n by F_n .

Galatius' theorem computes this to be $\Omega^{\infty}S^{\infty}$.

Waldhausen's A(*):

$$A(*) = \lim_{n,k} B \operatorname{HomEq}(\vee_n S^k, *)^+ \qquad (\times \mathbb{Z})$$

- when k = 0, HomEq $(\lor_n S^0, *) = \Sigma_n$
- when k = 1, HomEq $(\lor_n S^1, *) \simeq \operatorname{Aut}(F_n)$

BHomEq($\lor_n S^1$) classifies fibrations with fibers $\simeq \lor_n S^1$.

More geometric: Fibrations with fibers actual finite graphs $\simeq \bigvee_n S^1$.

Such graphs form a category G_n with morphisms generated by graph isomorphisms and collapsing subtrees (so-called *simple* maps).

 BG_n classifies these more geometric fibrations.

Culler-Vogtmann: $BG_n \simeq BHomEq(\lor_n S^1)$

<u>Remark</u>: This fails for fibrations with fibers higher-dimensional finite complexes. The difference is measured by $Wh^{PL}(fibers)$.

More generally,

$$A(X) = \lim_{n,k} B \operatorname{HomEq}(X \vee_n S^k \operatorname{rel} X)^+ \qquad (\times K_0(\mathbb{Z}[\pi_1 X]))$$

Again take k = 1. More geometric version: Graphs on X — attach a finite graph to X by identifying some of its vertices with points in X.

Category $G_n(X)$, graphs on X that are $\simeq X \vee_n S^1$ rel X, morphisms as before. (Assume X path-connected for simplicity.)

Topological category: attachments to *X* can vary continuously.

<u>Conjecture</u>: $BG_n(X) \simeq BHomEq(X \lor_n S^1 \operatorname{rel} X)$.

True when X = point via the basepointed version of Culler-Vogtmann.

<u>**Theorem**</u>: $\lim_{n} BG_n(X)^+ \simeq \Omega_0^{\infty} S^{\infty}$.

Independent of X — surprise!

When X = point this is Galatius' theorem, and the proof follows his general plan and later improvements by Galatius and Randal-Williams.

<u>Sketch of proof</u>:

Start with a nice geometric model for $BG_n(X)$, a space of graphs in \mathbb{R}^{∞} with data on attaching to *X*.

Edges of graphs are smooth curves. Allow variation of graphs by smooth isotopy, but also want to allow subtrees to shrink continuously to points.

Two different ways to do this:

- Very general: Allow arbitrary motion of the subtree inside a shrinking ball. This is what Galatius did.
- Much more restrictive: Shrinking that can easily be thickened to handlebodies.

Will use the latter type, called *conical collapsing*. Inverse operation: *conical expansion*.

Round Handlebodies: Thicken vertices to 0-handles which are round balls, truncated along disjoint disks where the 1-handles attach. Thicken the edges to 1-handles with round cross-sectional disks.

Assume edges are linear near vertices.

Example of a conical expansion:

A conical expansion is determined by inserting cones such that:

- the vertices of the cones are at the given vertex of the graph
- cones are disjoint from the graph and from each other, except at the vertex
- cones can be nested.

Then translate the part of the graph inside a cone along the axis of the cone, with the vertex tracing out a new edge.

More complicated example:

An example of a nonconical expansion:

 \times

conical version

Attachment to *X*: label some vertices with points in *X*.

Allow these labeled vertices to split into several labeled vertices: Do a conical expansion, delete the edges of a subtree and label its vertices with continuously varying labels in X.

An isolated labeled vertex can be deleted since it denotes attaching nothing to *X*.

Notation:

- $\mathcal{G}^k(X)$ the space of all such labeled graphs in \mathbb{R}^k .
- $\mathcal{G}(X) = \cup_k \mathcal{G}^k(X)$
- $\mathcal{G}_n(X) \subset \mathcal{G}(X)$, the graphs $\simeq X \vee_n S^1$ (after attaching to *X*).

<u>Proposition</u>: $\mathcal{G}_n(X) \simeq BG_n(X)$.

Relate $\mathcal{G}_n(X)$ to $\Omega^{\infty}S^{\infty}$ by a *scanning* process. The rough idea: Given a finite graph $K \subset \mathbb{R}^k$, look at it up close by moving a magnifying lens (a jeweler's *loupe*) over all of \mathbb{R}^k , recording what appears in the lens.

Regarding the lens as a smaller copy of \mathbb{R}^k , one sees a graph in \mathbb{R}^k whose edges can extend to infinity. Moving the lens, the graph can slide out to infinity and disappear entirely.

Enlarge $\mathcal{G}^{k}(X)$ to a space $\mathcal{G}^{k,k}(X)$ of such graphs whose edges can extend to infinity. Put a "compact-open" topology on $\mathcal{G}^{k,k}(X)$ allowing parts of graphs to slide to infinity.

For each choice of a lens size we get a scanning map

$$\begin{split} & \mathcal{G}^{k}(X) \to \Omega^{k} \mathcal{G}^{k,k}(X) \\ & K \subset \mathbb{R}^{k} \mapsto \left(\mathbb{R}^{k} \cup \{\infty\} \to \mathcal{G}^{k,k}(X) \right) \end{split}$$

This is homotopic to a composition

$$\mathcal{G}^{k}(X) \to \Omega \mathcal{G}^{k,1} \to \Omega^{2} \mathcal{G}^{k,2} \to \cdots \to \Omega^{k} \mathcal{G}^{k,k}$$

where $\mathcal{G}^{k,\ell}(X) \subset \mathcal{G}^{k,k}(X)$ is the subspace of graphs contained in

 $\mathbb{R}^{\ell} \times (-1,1)^{k-\ell}$, graphs that can go to infinity in only the first ℓ coordinates. Natural map $\mathcal{G}^{k,\ell}(X) \to \Omega \mathcal{G}^{k,\ell+1}(X)$ by translating graphs from $-\infty$ to $+\infty$ in the $(\ell + 1)$ st coordinate.

Three steps:

(1) $\mathcal{G}^{k,\ell}(X) \to \Omega \mathcal{G}^{k,\ell+1}(X)$ is a (weak) homotopy equivalence when $\ell > 0$.

(2) $\lim_{n \to \infty} \mathcal{G}_{n}(X) \to \Omega_{0} \mathcal{G}^{\infty,1}(X)$ is a homology equivalence.

(3) $\mathcal{G}^{k,k}(X) \simeq S^k$, the graphs in \mathbb{R}^k with ≤ 1 point (unlabeled).

Thus

$$\begin{split} \lim_{n} \mathcal{G}_{n}(X) &\sim_{H_{*}} \Omega_{0} \mathcal{G}^{\infty,1} \\ &= \lim_{k} \Omega_{0} \mathcal{G}^{k,1}(X) \\ &\simeq \lim_{k} \Omega_{0}^{k} \mathcal{G}^{k,k}(X) \simeq \lim_{k} \Omega_{0}^{k} \mathcal{S}^{k} = \Omega_{0}^{\infty} \mathcal{S}^{\infty} \end{split}$$

(1) and (2) are proved using classifying spaces of monoids instead of loopspaces, using the group completion theorem for (2).

For (3) the idea is to expand a suitably chosen small ball (lens) about the origin to all of \mathbb{R}^k . The ball is chosen in a shape to contain only a small piece of the graph that is a (relative) tree:

Then shrink this tree:

- Shrink to labeled vertices, if there are any, then delete these labeled vertices.
- Shrink a tree with no labels to a point.

Handlebodies

Extra data needed to go from a graph $K \subset \mathbb{R}^k$ to a *d*-dimensional oriented handlebody thickening of *K*: a field of oriented *d*-planes $P_x \subset \mathbb{R}^k$, $x \in K$, such that P_x contains all tangent lines to edges of *K* containing *x*.

To attach to a manifold X^d in a submanifold $M \subset \partial X$, label some vertices by points of M (with some tangential data). Need distinct labels on distinct vertices.

Get a handlebody space $\mathcal{H}^k(X, M, d)$ analogous to $\mathcal{G}^k(X)$.

Take $(X, M) = (D^d, D^{d-1})$ for simplicity. Write \mathcal{H}^k for $H^k(D^d, D^{d-1}, d)$. Same three steps:

(1) $\mathcal{H}^{k,\ell} \to \Omega \mathcal{H}^{k,\ell+1}$ is a homotopy equivalence when $\ell > 0$.

(2) $\lim_{n} \mathcal{H}_{n} \to \Omega_{0} \mathcal{H}^{\infty,1}$ is a homology equivalence when $d \geq 3$, where \mathcal{H}_{n} denotes the component of \mathcal{H}^{∞} consisting of handlebodies $\simeq \bigvee_{n} S^{1}$.

(3) $\mathcal{H}^{k,k} \simeq$ the graphs in \mathbb{R}^k with ≤ 1 point (unlabeled), with a d-plane at that point. This is just $S^k G r_+^{k,d}$, the Thom space of the trivial k-dimensional bundle over the Grassmannian $G r^{k,d}$ of oriented d-planes in \mathbb{R}^k .

Thus we have

$$\lim_n H_i(\mathcal{H}_n) = H_i(\Omega_0^\infty S^\infty BSO(d)_+)$$

Applications to 3-manifolds:

• d = 3: $\mathcal{H}_n \simeq \text{BDiff}(V_n \operatorname{rel} D^2)$ for V_n a 3-dimensional handlebody of genus n. Thus for n >> i we have

$$H_i(\text{BDiff}(V_n \operatorname{rel} D^2)) = H_i(\Omega_0^{\infty} S^{\infty} BSO(3)_+)$$

This is the same as the homology of the mapping class group of the handlebody.

• d = 4: $\mathcal{H}_n \simeq \text{BDiff}(\#_n(S^1 \times S^2) \text{ rel } D^3)$, where $\#_n(S^1 \times S^2)$ is the boundary of a 4-dimensional handlebody $\simeq \lor_n S^1$. Thus

$$\lim_{n} H_i(\mathrm{BDiff}(\#_n(S^1 \times S^2) \operatorname{rel} D^3)) = H_i(\Omega_0^{\infty} S^{\infty} BSO(4)_+)$$

Generalization of the d = 4 case: Let M be a compact connected orientable 3-manifold containing $S^1 \times S^2$ as a connected summand. Then

$$\lim_{n} H_{i}(\mathrm{BDiff}(\#_{n} M \operatorname{rel} D^{3})) = H_{i}(\Omega_{0}^{\infty} S^{\infty} BSO(4)_{+})$$