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This is a Tex version, made in 2004, of a paper that appeared in Pac. J. Math. 99 (1982), 373-377,

with some revisions in the exposition.

Let M be a compact orientable 3 manifold whose boundary ∂M consists of a sin-

gle torus. If a meridian and longitude in this torus are chosen, then isotopy classes of

smoothly embedded circles in ∂M that do not bound disks in ∂M correspond bijec-

tively with elements of QP1
= Q∪{1/0} , regarded as slopes of these curves. We show

in this paper that the set of slopes coming from boundary curves of incompressible,

∂ incompressible surfaces in M is finite.

There is also a generalization to the case that ∂M consists of n tori T1, ··· , Tn .

Given a curve system in ∂M consisting of finitely many disjoint smoothly embedded

circles that do not bound disks in ∂M , then by choosing parallel orientations for the

circles in each component of ∂M , we get an element of H1(∂M) . Ignoring orientations

amounts to factoring out multiplication by ±1 in each component, yielding a quotient

of H1(∂M) which can be identified with the set CS(∂M) of isotopy classes of curve

systems in ∂M . Each factor H1(Ti) of H1(∂M) is the integer lattice in H1(Ti;R) ≈ R
2 ,

and H1(Ti;R)/ ± 1 is a cone, so CS(∂M) can be viewed as the integer lattice in a

product of cones, the space H1(∂M ;R)/Zn2 where Zn2 acts by inversions in the factors

H1(Ti;R) .

Theorem 1. The subset of CS(∂M) consisting of curve systems that bound incom-

pressible, ∂ incompressible surfaces in M is contained in the image of the union of a

finite number of rank n subgroups of H1(∂M) ≈ Z
2n .

Corollary. In the case that ∂M is a single torus, there are just finitely many slopes

realized by boundary curves of incompressible, ∂ incompressible surfaces in M .

One may compare the assertion of the theorem with the fact (a consequence of

duality) that the image of the boundary map H2(M, ∂M)→H1(∂M) has rank equal

1



to one-half the rank of H1(∂M) . This image will be one of the rank n subgroups of

H1(∂M) referred to in the theorem since all elements of H2(M, ∂M) are represented

by incompressible, ∂ incompressible surfaces.

The proof of the theorem will follow fairly easily from a fundamental result of

[FO] about branched surfaces in 3 manifolds, which are closed subsets locally diffeo-

morphic to the model in the first figure below.

A branched surface B is said to carry a surface S if S lies in a fibered regular neigh-

borhood N(B) of B , indicated in the second figure, and is transverse to all the fibers

of N(B) . If S meets all the fibers of N(B) it is said to have positive weights. The result

of [FO] is that in a compact irreducible 3 manifold M with incompressible boundary

there exist finitely many branched surfaces (Bi, ∂Bi) ⊂ (M, ∂M) such that the sur-

faces carried with positive weights by these Bi ’s are exactly all the incompressible,

∂ incompressible surfaces in M , up to isotopy. A refinement in [O] is that the Bi ’s

can be chosen so that all the surfaces they carry, whether of positive weights or not,

are incompressible and ∂ incompressible.

Let B be one of these branched surfaces Bi . Then ∂B = B ∩ ∂M is a train track,

or branched 1 manifold, in ∂M with two key properties:

(1) There is no smooth disk D ⊂ ∂M with D ∩ ∂B = ∂D .

(2) There is no disk D ⊂ ∂M , smooth except for one outward cusp point in ∂D , such

that D ∩ ∂B = ∂D .

The latter condition is explicitly given in [FO]. If condition (1) failed, then any sur-

face carried by B with positive weights would have a boundary circle which was con-

tractible in ∂M . By incompressibility, this circle would bound a disk component of

the surface, contrary to the construction of B in [FO]. Condition (2) can be phrased as

saying that the train track ∂B has no monogons. Sometimes train tracks are required

to have no digons as well, but we have to allow these here.

Let S be a surface carried by B with positive weights. No component of ∂S can
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be contractible in ∂M , since otherwise there would be a smooth disk D ⊂ ∂M with

∂D ⊂ ∂B , and somewhere inside this disk condition (1) or (2) would be violated. Thus

in each component torus Ti of ∂M which B meets, ∂S consists of a number of parallel

circles.

To simplify notation in what follows, if Ti is one of the tori of ∂M we let ∂iB =

∂B ∩ Ti , and similarly ∂iS = ∂S ∩ Ti for any surface S carried by B .

Lemma 1. There is an orientation ω of ∂B such that, for each surface S carried by

B and each torus Ti of ∂M , all the circles of ∂iS , with the orientations induced from

ω , are homologous in Ti .

Proof: Choose a surface S carried by B with positive weights. We can construct a

fibered regular neighborhood N(∂S) of ∂S in ∂M from a fibered regular neighborhood

N(∂B) of ∂B in ∂M by removing certain fibered rectangles and annuli. Inverting this

process, we can build N(∂B) from N(∂S) by adding fibered rectangles and annuli.

∂S ∂SN ( )

No fiber of an added rectangle can join a component of N(∂S) to itself, otherwise

condition (2) would be violated. This implies in particular that all the complementary

regions of N(∂B) in each Ti are rectangles or annuli. If we choose parallel orientations

for all the circles of ∂iS , this determines an orientation ωi for ∂iB which induces the

chosen orientation of ∂iS . An orientation for Ti then gives an orientation for all the

fibers of N(∂iB) .

We may choose an oriented simple closed curve γi in Ti meeting N(∂iB) in a

union of fibers, such that the orientation of γi agrees with the orientation of the

fibers. To do this, start with any fiber of N(∂iB) , continue across a complementary

rectangle or annulus to another fiber of N(∂iB) on the opposite side of this rectangle

or annulus, and so on. Eventually the curve so constructed must either close up or

come arbitrarily close to closing up, in which case by rechoosing a part of the curve

in one of the complementary rectangles or annuli we can make it close up.

The statement of the lemma now follows from the existence of γi , since for an
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arbitrary surface S carried by B , if we orient ∂iS via ωi , then all the points of γi∩∂iS

have intersection numbers of the same sign. ⊔⊓

Lemma 2. Let S1 and S2 be surfaces carried by B , with boundaries oriented as in

Lemma 1. Then the algebraic inersection number ∂S1 · ∂S2 , computed using an

orientation of ∂M as the boundary of M , is zero.

Proof: Perturb S1 and S2 slightly to be transverse and still transverse to fibers of

N(B) . There are two possible configurations for the orientations of ∂S1 and ∂S2 at

the ends of an arc α of S1 ∩ S2 , shown in the following figure, where the fibers of

N(B) are vertical:

® ®

In both cases the intersection numbers ±1 at the two ends of α have opposite sign.

Thus all points of ∂S1 ∩ ∂S2 cancel algebraically in pairs. ⊔⊓

Proof of the Theorem: Let us first do the simpler case that ∂M consists of a sin-

gle torus. In this case Lemma 2 implies that for any two surfaces carried by B , the

boundary circles of one surface have the same slope as the boundary circles of the

other surface. Thus each of the finitely choices for B has a unique boundary slope

for the surfaces it carries, so there are only finitely many boundary slopes in all.

Now consider the general case that ∂M has n boundary tori. Orienting the bound-

ary curves of surfaces carried by B as in Lemma 1, these curves generate a subgroup

of H1(∂M) on which the intersection form is identically zero by Lemma 2. Passing

to real coefficients, the subspace of H1(∂M ;R) spanned by these boundary surfaces

then has dimension at most n by a standard elementary linear algebra argument. So

the subgroup of H1(∂M) generated by the boundary curves for B has rank at most

n . As there are only finitely many choices for B , the result follows. ⊔⊓

One can be more precise about the global structure of the subset BCS(M) of

CS(∂M) consisting of curve systems that bound incompressible surfaces. For B one of

the branched surfaces Bi considered above, the surfaces carried by B are determined

by assigning nonnegative integer weights ai to the components of B − B′ , where B′
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is the branching locus of B . These weights must satisfy certain equations of the form

ai+aj = ak coming from the branching of B , and every set of weights satisfying these

equations gives rise to a surface carried by B . Thus if B − B′ has N components, the

surfaces carried by B correspond to the integer points of a convex polyhedral cone

cB in RN which is the intersection of the orthant [0,∞)N with the linear subspace of

R
N defined by the branch equations.

After choosing orientations for the train tracks ∂iB as in Lemma 1, then by taking

boundary curves we obtain a linear map cB→H1(∂M ;R) = R
2n . The image of this

map is another polyhedral cone, and the union of these images, for varying orienta-

tions on ∂B and different choices of B , is a conical polyhedral complex. This projects

onto another conical polyhedral complex in H1(∂M ;R)/Zn2 whose integer points are

BCS(M) . The theorem implies that this complex X(M) has dimension at most n ,

one-half the dimension of the ambient space H1(∂M ;R)/Zn2 . Since the branching

equations have integer coefficients, the rays from the origin through integer points of

X(M) are dense in X(M) . We can then projectivize by passing to the space of these

rays, and the projective classes of bounding curve systems will be dense in this pro-

jectivization PX(M) of X(M) . The corresponding projectivization of H1(∂M ;R)/Zn2

is the projective lamination space PL(∂M) , a sphere S2n−1 containing the polyhedral

complex PX(M) .

The original version of this paper concluded with three questions which have

subsequently been answered:

(1) Is there a generalization of the theorem to 3 manifolds having boundary compo-

nents of higher genus? This was done in [F].

(2) For knot exteriors in S3 , must the boundary slopes always be integers? This

was asked because at the time the only examples that had been computed had

this property, but in [HO] it was shown that every rational number occurs as a

boundary slope for some Montesinos knot.

(3) Are there nontrivial knots having only one boundary slope? It was shown in [MS]

that the answer is no. But there are knots with only two boundary slopes, namely

torus knots.
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