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ABSTRACT. We compute the rational homology in dimensions less than seven of the

group of automorphisms of a finitely generated free group of arbitrary rank. The only

non-zero group in this range is H4(Aut(F4);Q), which is one-dimensional.

§1. Introduction
In [7] a space An was introduced on which the group Aut(Fn) of automorphisms of

a free group of rank n acts with finite stabilizers. An is a basepointed version of the
“Outer space” introduced in [3] to study the group of outer automorphisms Out(Fn); the
definition of Outer space, in turn, was motivated by the definition of the Teichmüller space
of a surface, on which of the mapping class group of the surface acts with finite stabilizers.

Like Teichmüller space and Outer space, the space An is contractible, and it follows
from an easy spectral sequence argument that the quotient Qn = An/Aut(Fn) has the same
rational homology as Aut(Fn). The space Qn is the analog for basepointed graphs of the
classical Riemann moduli space, the quotient of Teichmüller space by the mapping class
group. There is a natural cell structure on Qn in which the vertices are the isomorphism
classes of basepointed graphs with fundamental group Fn, and the higher-dimensional cells
have combinatorial descriptions in terms of collapsing forests. Since the description of Qn
is straightforward, one may attempt to compute the rational homology of Aut(Fn) by
explicitly computing the cells and boundary maps of Qn. However, as n increases the task
of enumerating isomorphism classes of graphs and forests gets out of hand very quickly,
and one can do only the very simplest calculations.

In [8] a filtration of An was introduced by Aut(Fn)-invariant subspaces An,k which
behave homotopically like the k-skeleton of An. In particular, the subspace An,k is (k−1)-
connected, so that for the quotient Qn,k = An,k/Aut(Fn) we have Hi(Aut(Fn);Q) ∼=
Hi(Qn,k;Q) if i < k. These “skeleta” Qn,k have two distinct computational advantages
over Qn. First of all, they are much smaller, making many more computations feasible.
Secondly the spaces Qn,k do not continue to grow with n: there is a natural inclusion
Qn,k ↪→ Qn+1,k which was shown in [8] to be a homeomorphism for n ≥ 2k and a homotopy
equivalence for n ≥ 3k/2. In particular, this shows that the rational homology of Aut(Fn)
is stable, i.e. Hi(Aut(Fn);Q) is independent of n for n ≥ 3(i + 1)/2. We exploit these
observations to obtain the main result of this paper, some low-dimensional calculations for
Aut(Fn):

Theorem 1.1. H4(Aut(F4);Q) ∼= Q. For all other i and n with 1 ≤ i ≤ 6 and n ≥ 1,
Hi(Aut(Fn);Q) = 0.

It was shown in [7] that the map from Aut(Fn) to Out(Fn) is an isomorphism on
homology in dimensions i << n, so that Theorem 1.1 also shows the stable homology of
Out(Fn) is zero in dimensions less than seven.

Question. Is the stable rational homology of Aut(Fn) and Out(Fn) trivial in all dimen-
sions?
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As a byproduct of the proof that H3(Aut(Fn);Q) = 0, we also improve the rational
homology stability range to obtain:

Proposition 1.2. The map Hi(Aut(Fn);Q) → Hi(Aut(Fn+1);Q) induced by inclusion
is an isomorphism for n ≥ 5(i+ 1)/4.

It follows by finiteness of the quotients Qn that Hi(Aut(Fn);Q) and Hi(Aut(Fn);Q)
are finite-dimensional vector spaces over Q. The stable cohomology with any coefficient
field is a Hopf algebra, as we shall show by a standard argument, so Hopf’s theorem
implies that the stable rational cohomology is a tensor product of a polynomial algebra
on even-dimensional generators and an exterior algebra on odd-dimensional generators. In
view of our calculations, it would be somewhat surprising if this algebra turned out to be
nontrivial. (The stable cohomology with Zp coefficients is known to be nontrivial for all
primes p since it contains the cohomology of the infinite symmetric group Σ =

⋃
n Σn, as

noted in [7].)
Homology stability and the Hopf algebra structure on stable cohomology are two of a

number of formal properties which Aut(Fn) shares with both SLn(Z) and with mapping
class groups. Borel computed the stable rational cohomology of SLn(Z) to be an exterior
algebra on generators of dimension 5, 9, 13, · · ·. The stable rational cohomology of mapping
class groups is known to contain a polynomial algebra with one generator in each even
dimension ([10],[11]), and to equal this polynomial algebra in dimension less than 6 ([5],[6]).
There are natural maps Aut(Fn) → GL(n,Z) and Mg,1 → Aut(F2g), where Mg,1 is the
mapping class group of a surface of genus g with one boundary circle. If the stable rational
homology of Aut(Fn) is non-trivial, we can still ask:

Question. Do the natural maps Aut(Fn)→ GL(n,Z) and Mg,1 → Aut(F2g) induce trivial
maps on stable rational homology?

This question is also interesting in the unstable range.
There are few previous computations of rational homology for Aut(Fn). It is straight-

forward to compute that the abelianization of Aut(Fn) is finite, so that H1(Aut(Fn);Q) =
0. Results of Gersten [4] show that H2(Aut(Fn);Q) = 0 for n ≥ 5, and Kiralis [9] showed
H2(Aut(F4);Q) = 0.

As we shall describe, the calculations for Hi(Aut(Fn);Q) were done with computer
assistance for i = 4, 5, 6, and we thank Craig Jensen for checking and extending some of the
programs. In particular, the calculation of H6(Aut(Fn);Q) would not have been possible
without his help.

2



§2. Background

Complexes, quotients and degree

For the convenience of the reader, we briefly recall here the definitions of the various
spaces we use. For details and proofs, we refer to [8].

Points of An are equivalence classes of pairs (g,Γ), where Γ is a basepointed metric
graph whose basepoint v0 has valence at least 2 and all other vertices have valence at least
3, and g:Fn → π1(Γ, v0) is an isomorphism. Pairs (g,Γ) and (g′,Γ′) are equivalent if there
is a basepoint-preserving homothety h: Γ→ Γ′ with h∗◦g = g′, where h∗ is the induced map
on π1. An automorphism α of Fn acts on An by changing the markings: (g,Γ)α = (gα,Γ).
An decomposes into a disjoint union of open simplices, where the simplex containing (g,Γ)
is obtained by varying the (nonzero) lengths of the edges of Γ. An open simplex (g,Γ) is
in the closure of (g′,Γ′) if it may be obtained by collapsing some edges of Γ′ to zero. This
face relation gives the open simplices in An the structure of a partially ordered set, whose
geometric realization SAn is called the spine of An. Qn is defined to be the quotient of
SAn under the action of Aut(Fn).

The degree of a basepointed graph Γ with basepoint v0 is defined by

degree(Γ) =
∑
v 6=v0

|v| − 2,

where the sum is taken over all non-basepoint vertices of Γ, and |v| denotes the valence of
v. An easy Euler characteristic argument shows that the degree may also be computed by
the formula degree(Γ) = 2n−|v0|. The complex SAn,k is the subcomplex of SAn spanned
by graphs of degree at most k. SAn,k is invariant under Aut(Fn) with quotient Qn,k. The
main theorem of [8] implies that SAn,k is (k − 1)-connected, giving

Proposition 2.1. Hi(Qn,k;Q) ∼= Hi(Aut(Fn);Q) for k > i, and Hk(Qn,k;Q) maps onto
Hk(Aut(Fn);Q). tu

In particular, to compute Hk(Aut(Fn);Q) we need only compute Hk(Qn,k+1;Q). If
we are very lucky, and Hk(Qn,k;Q) = 0 we can stop there (so far, this has only happened
for k ≤ 3).

Hopf algebra structure

Let Aut =
⋃
nAut(Fn). Then Hi(Aut(Fn);G) = Hi(Aut;G) for n >> i and any

coefficient group G by [7], hence also Hi(Aut(Fn);R) = Hi(Aut;R) for n >> i and any
commutative coefficient ring R with identity.

Proposition 2.2. H∗(Aut;R) is a commutative associative Hopf algebra.

Proof. The free group F∞ =
⋃
n Fn is the free product of its subgroups Fodd and Feven

generated by the odd- and even-numbered basis elements of F∞. Using this free prod-
uct decomposition, define a homomorphism µ : Aut × Aut → Aut by µ(φ, ψ) = φ ∗ ψ.
The homomorphism µ induces a map of classifying spaces Bµ : BAut × BAut → BAut.
The claim is that the coproduct Bµ∗ : H∗(Aut;R) → H∗(Aut;R) ⊗ H∗(Aut;R) makes
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H∗(Aut;R) into a Hopf algebra. Note that since Bµ∗ is induced by a map of spaces, it is
an algebra homomorphism.

The map φ 7→ µ(φ, 1) induces the identity on homology since every homology class in
Aut is realized in Aut(Fn) for some finite n, and the restriction of φ 7→ µ(φ, 1) to Aut(Fn)
is realizable by conjugation in Aut, inducing the identity on homology. Similarly, the map
φ 7→ µ(1, φ) induces the identity on homology. Both maps then induce the identity on
cohomology as well, so the standard proof that the cohomology of an H-space is a Hopf
algebra applies to show that H∗(Aut;R) is a Hopf algebra (see e.g. [12], p. 267). tu

§3. The cubical chain complex

The simplices of SAn,k naturally group themselves into cubes to give SAn,k the struc-
ture of a cubical complex, with one cube, denoted (g,Γ,Φ), for each pointed marked graph
(g,Γ) and forest Φ in Γ. Specifically, the cube (g,Γ,Φ) is the full subcomplex of SAn,k
spanned by all basepointed marked graphs which can be obtained from (g,Γ) by collapsing
a subforest of Φ. The dimension of (g,Γ,Φ) is the number of edges in Φ, so that the
maximal cubes in SAn,k are k-dimensional and correspond to maximal trees in graphs of
degree k all of whose non-basepoint vertices are trivalent.

The stabilizer of the cube (g,Γ,Φ) under the action of Aut(Fn) is naturally isomorphic
to the group Aut(Γ,Φ) of automorphisms of Γ which fix the basepoint and send Φ to itself.
We think of the unmarked cube (Γ,Φ) as embedded in Ri where i is the number of edges
of the forest Φ, each unit coordinate vector is an edge of the cube, the graph ΓΦ obtained
by collapsing each edge of Φ is at the origin, and the graph Γ is diagonally opposite. The
group Aut(Γ,Φ) acts linearly on the cube by permuting the coordinates of Ri, fixing the
diagonal from ΓΦ to Γ. The quotient of the cube (Γ,Φ) under this action is thus a cone
C(Γ,Φ) with base B(Γ,Φ), the quotient of the boundary of the cube by the stabilizer of
the cube. The possibilities for the homotopy type of B(Γ,Φ) are limited by the following
proposition.

Proposition 3.1. The quotient of an i-sphere by a finite linear group has the rational
homology of an i-sphere or ball. The latter possibility holds if and only if the action
includes orientation-reversing homeomorphisms.

Proof. Consider the equivariant homology spectral sequence for the action of the group G
on a space X (cf. [2], p. 173-175): Vertical and horizontal filtrations of the double complex
C∗(X) ⊗G C∗(EG) give two spectral sequences. The first has E2

p,q = Hp(G;Hq(X,M)).
The second has E2

p,q = Hp(X/G;Hq); here Hq is the system of local coefficients σ 7→
Hq(Gσ;M), where Gσ is the stabilizer of σ. For M = Q and G finite, the second spectral
sequence degenerates to Hp(X/G;Q). For X = Si, the E2

p,q-term in the first spectral
sequence is zero unless (p, q) = (0, 0) or (0, i). If the action of G on S preserves orientation,
E2

0,i = Q; otherwise, E2
0,i = 0. Since both spectral sequences converge to the same thing,

S/G must have the rational homology of a sphere or of a disk, as was to be shown. tu

Corollary 3.2. C(Γ,Φ) is a cone on a rational homology ball if and only if there is
an automorphism of Γ fixing the basepoint which induces an odd permutation of the

4



(unoriented) edges of Φ. If there is no such automorphism, then C(Γ,Φ) is a cone on a
rational homology sphere.

Proof. This is immediate from the description of C(Γ,Φ), since an odd permutation of
the edges induces an orientation-reversing homeomorphism of the boundary of the cube
(Γ,Φ). tu

An element of Aut(Γ,Φ) which induces an odd permutation of the edges of Φ will be
called an odd symmetry of (Γ,Φ).

Two cubes (Γ,Φ) and (Γ′,Φ′) are isomorphic if there is a basepoint-preserving iso-
morphism h: Γ → Γ′ sending Φ to Φ′. The quotients of the i-dimensional cubical skeleta
of SAn by the action of Aut(Fn) give a filtration Q0 ⊂ Q1 ⊂ · · · ⊂ Qk of Qn,k, with Qi

obtained from Qi−1 by attaching one cone C(Γ,Φ) along its “boundary” B(Γ,Φ) for each
isomorphism type of i-dimensional cubes (Γ,Φ). We define a cubical chain complex C∗
with terms

Ci = Hi(Qi, Qi−1) ∼=
⊕
(Γ,Φ)

Hi(C(Γ,Φ), B(Γ,Φ)),

where the sum is over all isomorphism types of i-dimensional cubes, and boundary maps
the boundary maps of the triple (Qi+1, Qi, Qi−1).

Proposition 3.3. Hi(C∗) = Hi(Qn,k).

Proof. In light of Proposition 3.1, the proof is identical to the standard proof that one
can compute homology using the complex of cellular chains (see e.g.[1], p. 202).

By Corollary 3.2, cubes (Γ,Φ) with odd symmetry contribute nothing to the cubical
chain complex, while cubes with no odd symmetries each contribute one copy of Q. In
order to do explicit calculations in this chain complex we need to choose basis elements
for the various Q summands, which we do as follows. For each cube (Γ,Φ) with no odd
symmetries, the projection map from the boundary of this cube to its quotient B(Γ,Φ)
induces an isomorphism on rational homology. Hence, when we cone off, the quotient map
induces an isomorphism H∗((Γ,Φ), ∂(Γ,Φ);Q) ≈ H∗(C(Γ,Φ), B(Γ,Φ);Q). An orientation
of the cube (Γ,Φ) determines a fundamental class for the cube with Z coefficients, whose
image in H∗(C(Γ,Φ), B(Γ,Φ);Q) we take to be the basis element for this summand of the
chain complex. With this convention for choosing basis elements, computing the boundary
map in the chain complex becomes simply a matter of listing the various codimension one
faces of (Γ,Φ), with appropriate signs reflecting orientations, and omitting faces which
happen to have odd symmetries.
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§4. k-dimensional cycles and collapsing free faces
In this section we show how to simplify the process of finding the top-dimensional

cycles in Qn,k. Since the inclusion Qn,k → Qn,k+1 induces a surjection on homology in
dimension k by Proposition 2.1, these k-dimensional cycles include all potential homology
classes in Hk(Qn,k+1) ∼= Hk(Aut(Fn))

The k-dimensional cubes in SAn,k are marked triples (g,Γ, T ), where Γ is a graph of
degree k with k+ 1 vertices, and T is a maximal tree in Γ. We begin our computations by
listing all isomorphism classes of cubes (Γ, T ) with Γ and T as above. We then eliminate
all cubes (Γ, T ) which have an odd symmetry to obtain a list of all of the Q-summands in
the cubical k-chains for Qn,k, by Corollary 3.2.

We now simplify the chain complex by a process which is the algebraic analog of
collapsing cells across free faces. For each remaining cube C = (Γ, T ), we look for a
(k−1)-dimensional face D of C with no odd symmetry such that any marked cube having
a face of type D is either equivalent to one of type C under the action of Aut(Fn) or has
already been collapsed in a previous step. If we find such a face D then C may be collapsed,
i.e. the Q summands corresponding to C and D can be cancelled without changing the
homology of the chain complex.

A cube (Γ, T ) has two types of codimension-one faces: those of the form (Γ, T −{e})
obtained by deleting an edge e of T , and faces (Γe, Te) obtained by collapsing an edge e
of T . A face (Γ, T − {e}) is free if it has no odd symmetry and if all other cubes of the
form (Γ, T ′) with T ′ ⊃ T −{e} have already been collapsed. A face (Γe, Te) is free if it has
no odd symmetry and if every other cube (Γ′, T ′) with a face isomorphic to (Γe, Te) has
already been collapsed.

The following lemmas apply the above remarks to successively collapse many cubes
(Γ, T ), and thus eliminate the corresponding Q-summands from the cubical chain complex.

Lemma 4.1. If Γ contains a wedge summand of degree one or two, then (Γ, T ) may be
collapsed.

Proof. By Corollary 3.2, we may assume (Γ, T ) has no odd symmetry. The only possibil-
ities for wedge summands of degree one or two are shown in Figure 1.

e

ee

Figure 1
If Γ contains a wedge summand of degree 1, let e be an edge of this summand. Up to
automorphism of Γ, T is the only maximal tree which contains T −{e}, so that (Γ, T −{e})
is a free face of (Γ, T ). If Γ contains a degree 2 wedge summand, let e be an edge of this
summand not adjacent to the basepoint. Then T must contain e, since otherwise (Γ, T )
has an odd symmetry. The face (Γ, T −{e}) is a free face, since up to automorphism of Γ,
the only other tree that contains T − {e} has an odd symmetry. tu

In particular, since Hk(Qn,2;Q) maps onto Hk(Aut(Fn);Q) for k = 1, 2 by Proposition
2.1, this lemma shows that H1(Aut(Fn);Q) = H2(Aut(Fn);Q) = 0 for all n.

6



Lemma 4.2. If Γ contains a double edge joining two non-basepoint vertices, then (Γ, T )
may be collapsed.

Proof. We may assume (Γ, T ) has no odd symmetry, by Corollary 3.2. Let e and e′ be
distinct edges joining non-basepoint vertices v and w. (See Figure 2)

f fg g
e

e

e' e'
v w

Figure 2
Suppose T is a tree of Γ which contains one of e, e′, say T contains e. We claim that
(Γe, Te) is a free face. Any symmetry of Γe must fix the vertex ē which is the image of
e, since this is the only non-basepoint valence four vertex. After possibly composing with
the automorphism which inverts the image of e′, such a symmetry lifts to a symmetry of Γ
which sends e to itself. Thus any odd symmetry of (Γe, Te) gives rise to an odd symmetry
of (Γ, T ), which cannot exist by our initial assumption. The only graph which collapses to
(Γe, Te) is (Γ, T ) itself, since SAn contains no graphs with separating edges, showing that
(Γe, Te) is a free face of (Γ, T ).

Now assume that all pairs (Γ, T ) with T containing e or e′ have been collapsed. If T
does not contain e or e′, it must contain edges f and g terminating at v and w respectively,
with f, g 6= e, e′. Any symmetry of (Γ, T − {f}) must fix v, since v is the only vertex of Γ
which is not in T−{f}, and in fact must fix f . As before, this implies that (Γ, T−{f}) has
no odd symmetries, since any odd symmetry of (Γ, T−{f}) would induce an odd symmetry
of (Γ, T ). The face (Γ, T −{f}) is contained only in (Γ, T ) and in (Γ, T ∪{e}−{f}), which
has been collapsed, i.e. (Γ, T − {f}) is now a free face. tu

Lemma 4.3. Suppose Γ contains a triangle with no vertices at the basepoint, and that
T contains exactly one edge of this triangle. Then (Γ, T ) may be collapsed.

Proof. We may assume that (Γ, T ) has no odd symmetries, by Corollary 3.2, and that all
pairs (Γ′, T ′) such that Γ′ has a double edge away from the basepoint, have been collapsed
using Lemma 4.2.

Let a be the edge of the triangle which is contained in T , and let b and c be the other
two edges. (See Figure 3)

a a

b bc c

Figure 3
We claim that (Γa, Ta) is a free face. Any symmetry of (Γa, Ta) must fix the image ā of
a, since that is the only non-basepoint vertex of valence 4. After possibly composing with
a symmetry exchanging the images of b and c in Γa, this symmetry can be lifted to a
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symmetry of (Γ, T ) which fixes a. Since neither b nor c are in T , the symmetry (Γa, Ta)
is odd if and only if the lifted symmetry is odd. Therefore (Γa, Ta) can have no odd
symmetries. The only pairs (Γ, T ) which may be obtained from (Γa, Ta) by blowing up the
image of a are (Γ, T ) and a pair (Γ′, T ′) such that Γ′ has a double edge. Since this latter
pair has already been collapsed, (Γa, Ta) is a free face. tu

Lemma 4.4. Suppose Γ contains a triangle with one vertex at the basepoint and one
double edge. If T contains exactly one edge of the triangle, which is either the edge not
adjacent to the basepoint or one edge of the double edge, then (Γ, T ) may be collapsed.

Proof. If the double edge is not adjacent to the basepoint Lemma 4.2 applies, so we
may assume the double edge has one vertex at the basepoint. If T contains the edge a not
adjacent to the basepoint (see Figure 4), then any symmetry of (Γa, Ta) must fix the image
ā of a in Γa and, after possibly composing with a permutation of the edges connecting the
basepoint to ā, can be lifted to a symmetry of (Γ, T ) fixing a.

a a

e e

Figure 4
Thus (Γa, Ta) can have no odd symmetries. Furthermore, (Γ, T ) is the only cube with a
face of type (Γa, Ta), i.e. (Γa, Ta) is a free face.

If T contains one of the double edges e, then any symmetry of (Γ, T − {e}) can be
lifted to a symmetry of (Γ, T ) fixing e, and the only other maximal tree which contains
T − {e} is T ′ = T − {e} ∪ {a}. Since (Γ, T ′) has just been collapsed, (Γ, T − {e}) is a free
face. tu
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§5. Degree 3 computations

Lemma 5.1. If Γ contains a wedge summand of degree 3, then (Γ, T ) can be collapsed.

Proof. By Corollary 3.2, we may assume (Γ, T ) has no odd symmetry. Write Γ = Γ0 ∨Γ′,
where Γ0 has degree 3, inducing a decomposition T = T0∨T ′. The possibilities for (Γ0, T0)
are shown in Figure 5.

1a

2a

2b

3a

3b

4a

4c

4e

4b

4d

5a 5b

5c 5d

6a 6b

6c 6d

Figure 5
If (Γ0, T0) is one of 4a, 4b, 6a or 6b it has an odd symmetry, which extends to an odd

symmetry of (Γ, T ) contradicting our assumption. If (Γ0, T0) is one of 5a, 5b, 5c or 5d,
then (Γ, T ) may be collapsed by Lemma 4.2, and if (Γ0, T0) is one of 1a, 2a, 2b, 3a or 3b,
then Lemma 4.1 applies. Lemma 4.3 applies for (Γ0, T0) = 6c, and Lemma 4.4 applies for
(Γ0, T0) = 4c or 4e.

For the remaining possibilities (Γ0, T0) = 4d and 6d, every face of the form (Γ0, T0 −
{e}) is now free; these correspond to free faces of (Γ, T ) which may be used to collapse
(Γ, T ). tu

Corollary 5.2. H3(Aut(Fn);Q) = 0 for all n.
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Proof. Observe that all cubes may be collapsed in order of increasing rank, so that
H3(Qn,3;Q) = 0 for all n. The corollary now follows from Proposition 2.1. tu

Lemmas 4.1 and 5.1 say that we need not consider graphs with wedge summands of
degree ≤ 3 when computing k-dimensional cycles in Qn,k. It is also true that we do not
need to consider such graphs when determining whether such k-cycles are boundaries of
(k + 1)-chains in Qn,k+1 since applying Lemmas 4.1-4.4 and 5.1 to graphs of degree k + 1
involves no graphs of degree k. In particular, computing Hi(Aut(Fn);Q) for i ≤ 6 involves
only graphs of degree ≤ 7, so we may restrict attention to graphs which are indecomposable,
i.e. such that the basepoint is not a cut vertex.

Lemma 5.1 can also be used to improve the stability range for rational homology.
Recall that the imbedding SAn,k → SAn+1,k given by attaching an extra loop at the
basepoint of a marked graph and identifying it with the (n + 1)st generator of Fn+1 is
natural with respect to the inclusion Aut(Fn) → Aut(Fn+1). In [8] it is shown that this
map is a homotopy equivalence for n ≥ 3k/2, so induces an isomorphism on homology in
this range. We improve this to

Proposition 5.3. The stabilization Hi(Aut(Fn);Q) → Hi(Aut(Fn+1);Q) is an isomor-
phism for n ≥ 5(i+ 1)/4.

The key point is the following

Lemma 5.4. If n > (m+ 1)k/m, then a graph Γ of degree k and rank n must contain a
wedge summand of degree ≤ m− 1.

Proof. We may assume that Γ has no loops at the basepoint and that all vertices of Γ
other than the basepoint are trivalent. Let Γ∗ be the full subgraph of Γ spanned by the
non-basepoint vertices, so that components of Γ∗ correspond to wedge summands of Γ.

Since the basepoint of Γ has valence 2n− k, we have

#(components of Γ∗) ≥ χ(Γ∗) = v(Γ∗)− e(Γ∗)
= (v(Γ)− 1)− (e(Γ)− (2n− k))
= χ(Γ)− 1 + 2n− k
= n− k.

Thus if we assume n > (m + 1)k/m, or equivalently n − k > k/m, then Γ∗ has more
than k/m components. If each component has at least m vertices, Γ∗ will then have more
than k vertices, a contradiction since the degree of Γ is the number of vertices of Γ∗, all
non-basepoint vertices of Γ being trivalent. So some component of Γ∗ has fewer than m
vertices, in other words some wedge summand of Γ has degree less than m. tu

Proof of Proposition. Since calculating Hi(Aut(Fn);Q) involves only graphs of degree
≤ i + 1, we see that after collapsing graphs with wedge summands of degree ≤ 3, the
calculation is independent of n if n ≥ 5(i+ 1)/4. tu
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For n large, Proposition 2.1 and Proposition 5.3 together give

H1(Aut(Fn)) ∼= H1(Q2,2) H4(Aut(Fn)) ∼= H4(Q7,5)
H2(Aut(Fn)) ∼= H2(Q4,3) H5(Aut(Fn)) ∼= H5(Q8,6)
H3(Aut(Fn)) ∼= H3(Q5,4) H6(Aut(Fn)) ∼= H6(Q9,7).

where all homology groups are taken with coefficients in Q.

§6. Summary of Degree 4 computations
Hand calculations as above begin to be impractical once we reach degree 4. In section 7 we
will describe how the calculations can be done by computer, but let us now just describe
the end result of the calculations in degree 4, and in particular describe a non-trivial cycle
in H4(Aut(F4);Q).

The complexes Qn,4 are rationally acyclic for n ≤ 3, so that H4(Aut(Fn);Q) = 0 for
n ≤ 3. However, there are two 4-dimensional cycles z1 and z2 in Q4,4, and one additional
one z3 in Q5,4. The cycle z1 is the sum of the three cubes (Γ, Ti) shown in Figure 6; its
boundary is computed explicitly in Example 7.5.

(Γ, T1) (Γ, T2) (Γ, T3)

Figure 6

The three trees Ti are all of the maximal trees contained in the darkened subgraph in
Figure 7, so we can indicate the cycle z1 by simply drawing Figure 7.

Figure 7

In this shorthand notation, the cycle z2 is shown in Figure 8; it is the sum of eight
different 4-dimensional cubes.

Figure 8
Neither z1 nor z2 bounds, but the linear combination 7z1 − 3z2 is a boundary in Q4,4, so
the rational homology is one-dimensional.

When we increase the rank to 5, the image of z1 under the imbedding Q4,4 → Q5,4

now bounds. There is an additional cycle z3, shown in Figure 9; it is the sum of six cubes
and is a boundary, so is trivial in homology. Stably we have H4(Aut(Fn);Q) = 0 for n ≥ 5.
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Figure 9

§7. Computations in degree 4 and higher
There are undoubtedly many different ways to implement on a computer the program
described in this paper for computing the homology of Aut(Fn). In this section, we give
brief descriptions of the algorithms we used. In many cases, the form of the algorithm was
strongly influenced by the ready-made functions available in the version of Mathematica
we had at the time.

Representing graphs

We represent a graph with r vertices as a list of pairs {i, j}, for 1 ≤ i, j ≤ r, where {i, j}
is in the list if and only if there is an edge joining the ith vertex to the jth vertex.

For example, the list

{{1, 2}, {2, 3}, {3, 3}, {3, 1}, {1, 2}}

corresponds to the graph on three vertices shown in Figure 10:
2

1

3

Figure 10
In order to obtain a unique representation of each isomorphism type of basepointed

graph, we always label the basepoint with 1, write the edge {i, j} with i ≤ j and put the
list in lexicographical order. This is not yet enough to guarantee uniqueness; for instance
the following sorted edge lists both represent graphs isomorphic to the graph shown above:

{{1, 2}, {1, 3}, {1, 3}, {2, 2}, {2, 3}}
{{1, 2}, {1, 2}, {1, 3}, {2, 3}, {3, 3}}

To find a unique representative, we start with an arbitrary representative, apply all possible
permutations of the labels {2, . . . , r}, sort each resulting edge list, and then sort the list of
edge lists lexicographically. The edge list which is first lexicographically is the canonical
representative, or normal form of the graph. In our example, the normal form is

{{1, 2}, {1, 2}, {1, 3}, {2, 3}, {3, 3}}.

Lemma 7.1. Two graphs are isomorphic if and only if they have the same normal forms.

Proof. If two graphs have the same normal form, they are clearly isomorphic. Conversely,
suppose h: Γ→ Γ′ is an isomorphism. Let v1, . . . , vk be the vertices of Γ, and v′1, . . . , v

′
k be
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the vertices of Γ′, and define a permutation σ of {1, . . . , k} by sending i→ j if h(vi) = v′j .
Let E be the edge list representing Γ, with a copy of {i, j} ∈ E for each edge connecting vi
with vj ; then σ(E) represents Γ′. We obtain the normal form for Γ (resp. Γ′) by applying
all permutations of {1, . . . , k} to E (resp. σ(E)), so that the list of edge lists for Γ and Γ′

are the same, resulting in the same normal form. tu

For an example of Mathematica code which computes the normal form of a graph G
given as an edge list, see the Appendix.

Given a graph Γ in normal form, we compute the group of automorphisms of Γ as
follows. The subgroup Σ of Aut(Γ) generated by automorphisms which fix all vertices is
normal. It is a direct product of symmetric groups Σs for every multiple edge of multiplicity
s, and of (Z/2)t o Σt for every bouquet of t loops at a vertex. Two elements of Aut(Γ)
represent the same element of the quotient Aut0(Γ) = Aut(Γ)/Σ if and only if they have
the same effect on the vertices of Γ. We have

Lemma 7.2. A permutation of the vertices of Γ is induced by an automorphism of Γ if
and only if the induced permutation of a sorted edge set E representing Γ, when sorted,
is again equal to E.

Proof. This follows since a function permuting the vertices of Γ, permuting the edges of
Γ and preserving the incidence relations is an automorphism of Γ. tu

To find representatives for all elements of Aut0(Γ) then, we start with the normal form
representation for Γ and a list of all permutations of 2, . . . , n, apply each permutation to
the normal form, sort the resulting list and check whether it is equal to the normal form.
If so, we add this permutation to the list of automorphisms of Γ (for Mathematica code,
see the Appendix).

We will also need a relative notion of normal form for pairs (Γ,∆), where ∆ is a
subgraph of Γ. Starting with an edge list representing Γ and a sublist representing ∆, we
apply all permutations of 2, . . . , r, sort the resulting pairs of lists, then take the one which
is first lexicographically as the normal form for the pair (Γ,∆). If Γ is already in normal
form we need only apply permutations representing elements of Aut0(Γ) to ∆ and sort to
obtain the normal form for (Γ,∆). The proof of Lemma 7.1 can be modified slightly to
give

Lemma 7.3. (Γ,∆) and (Γ′,∆′) have the same normal form if and only if there is an
isomorphism h: Γ→ Γ′ with h(∆) = ∆′. tu

Degree k maximal graphs

Recall that a graph represents a maximal vertex of SAn,k if it has degree k and exactly
k + 1 vertices; we call such a graph maximal of degree k. Note that every non-basepoint
vertex of a maximal graph is trivalent. In order to generate a list of all degree k maximal
graphs, we must find all indecomposable maximal graphs of degree at most k. We have:

Lemma 7.4. Every indecomposable maximal graph of degree k can be obtained from an
indecomposable degree k − 1 maximal graph Γk−1 by one of the following operations:
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1. Attach a new edge connecting the basepoint of Γk−1 with a point on the interior of
some edge adjacent to the basepoint.

2. Partially fold together two edges of Γk−1 which are adjacent to the basepoint, i.e.
identify small segments of these edges to form a new edge adjacent to the basepoint.

Proof. Let Γk be an indecomposable maximal graph of degree k. Collapsing any edge
adjacent to the basepoint always produces a degree k− 1 maximal graph, which may not,
however, be indecomposable.

If Γk has a double edge at the basepoint, collapse one of the two edges and remove
the resulting loop at the basepoint to obtain Γk−1; then Γk−1 is indecomposable and Γk
is obtained from Γk−1 by operation (1).

If Γk has no double edges at the basepoint, we claim there is an edge e adjacent
to the basepoint so that collapsing e produces an indecomposable graph Γk−1; then Γk
can be recovered from Γk−1 by operation (2). To find e, let Γ∗ be the subgraph of Γk
spanned by all non-basepoint vertices. Γ∗ is trivalent except at vertices v1 . . . , vr, which
are bivalent and correspond to edges e1, . . . , er in Γk adjacent to the basepoint. Since Γk
is indecomposable, Γ∗ is connected. If any vertex vi is not a cut vertex of Γ∗, then the
graph obtained from Γk by collapsing e = ei is indecomposable. So assume that all vi are
cut vertices, and choose i such that Γ∗ − vi has a component Γ+

∗ which contains no other
vj . Then the edge of Γ∗ adjacent to vi and contained in Γ+

∗ is a separating edge of Γk.
This is a contradiction, since graphs in SAn have no separating edges. tu

Given a list of indecomposable degree k − 1 maximal graphs, we can now generate a
list of all indecomposable degree k maximal graphs. To implement this on the computer,
we assume our degree k − 1 maximal graphs are given by a list of normal forms. For each
Γ = {{1, 2}, . . . , {i, j}, . . .} in this list, we produce a new list of normal forms by:
• for each edge {1, i} of Γ, replace {1, i} by the three edges {1, k}, {1, k} and {i, k},

then normalize;
• for each pair of edges {1, i}, {1, j} of Γ with i 6= j, replace the pair by the three edges
{1, k}, {i, k} and {j, k}, then normalize.

Mathematica code for this is given in the Appendix.
We now remove duplicates from our new list to obtain a list of all indecomposable

maximal degree k graphs. Using the lists for degrees ≤ k, we construct a list of all maximal
degree k graphs. By Lemmas 4.1 and 5.1 we do not need to include graphs with wedge
summands of degree 1, 2 or 3. Furthermore, by Lemma 4.2 we may eliminate all graphs
with a double edge away from the basepoint;
• If {i, j} occurs twice in a normalized graph, with i > 1, eliminate this graph.

Mathematica code for this is given in the Appendix.

Maximal trees in Γ

A cube (g,Γ, T ) in SAn,k is maximal-dimensional if Γ is a maximal degree k graph and T
is a maximal tree in Γ. Thus we now need to find all maximal trees T in each Γ in our list.
There are several standard ways of accomplishing this. We used the fact that a maximal
tree has k edges and has the property that if you prune its free edges, you will eventually
prune away the entire tree:

14



• Consider each subset T of k edges of Γ. Eliminate edges {i, j} where i or j occurs
exactly once (these are free edges) and continue until there are no more free edges.
If the resulting list is empty, T was a maximal tree.

Since we want a unique representative for each cube (Γ, T ), we now normalize each
pair in our list and remove duplicates.

By Lemma 3.1, we do not need cubes (Γ, T ) with odd symmetry. To identify these,
we need to decide whether there is an automorphism of Γ which preserve the basepoint
and sends T to itself, interchanging an odd number of pairs of edges of T .

• Apply each permutation representing an automorphism of Γ to T and sort. If
the result is T , the automorphism preserves T . The automorphism corresponds
to an odd symmetry if and only if the sign of the permutation of edges required
to sort T lexicographically is odd.

We now eliminate cubes (Γ, T ) from our list in which T satisfies the conditions of
Lemma 4.3 or Lemma 4.4.

• Check whether Γ contains a subset of the form {i, j}, {i, k}, {j, k} (1 < i < j < k).
If so, check whether T contains exactly one of {i, j}, {j, k} or {i, k}.

• Check whether Γ contains a subset of the form {1, i}, {1, i}, {1, j}, {i, j}, and if
so whether T contains exactly one of {1, i} or {i, j}.

We now have a list of all k-dimensional cubes (Γ, T ) which may contribute to cycles in
Qn,k. For k = 3, this list contains only two cubes, which were denoted 4d and 6d in Figure
5. For k = 4 there 22 cubes, involving 5 isomorphism types of graphs Γ. For k = 5 there
are 144 cubes, using 9 isomorphism types of graphs, for k = 6 there are 864 cubes using
26 isomorphism types of graphs, and for k = 7 there are 5861 cubes using 59 isomorphism
types of graphs.

The boundary map

The next task is to compute the boundary map ∂k : Ck(Qn,k) → Ck−1(Qn,k). The
boundary of a cube (Γ, T ) has two types of faces, those of the form (Γ, T −{e}) and those
of the form (Γe, Te), with the face (Γ, T − {e}) opposite to the face (Γe, Te).

Using the choice of basis for the chain complex given at the end of section 3, the
boundary map is given by

∂k(Γ, T ) =
k∑
i=1

(−1)i((Γ, T − {ei})− (Γei , Tei))

where ei is the ith edge of T . It may happen that (Γ, T − {ei}) or (Γei , Tei) has odd
symmetry even though (Γ, T ) does not; in that case, there is no contribution to ∂k(Γ, T ).

In order to compute the boundary map, we need to put each term on the right-hand
side in normal form. To compute (Γ, T − {e}), simply remove e from T , then normalize.
To compute (Γe, Te) for e = {i, j}, we first replace all occurrences of j by i, then replace
all k with k > j by k − 1, and finally put the result into normal form.

Example 7.5. We compute the boundary of the cycle shown in Figure 6-7 of section 6.
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The graph Γ has normal form {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}, {4, 5}},
and the three trees are

T1 = {{1, 2}, {1, 3}, {1, 4}, {3, 5}}
T2 = {{1, 2}, {1, 3}, {2, 4}, {3, 5}}
T3 = {{1, 2}, {1, 5}, {2, 3}, {4, 5}}.

We have

∂(Γ, T1) =− (Γ, {{1, 3}, {1, 4}, {3, 5}}) + (Γ{1,2}, {{1, 2}, {1, 3}, {2, 4}}))
+ (Γ, {{1, 2}, {1, 4}, {3, 5}})− (Γ{1,3}, {{1, 2}, {1, 3}, {1, 4}})
− (Γ, {{1, 2}, {1, 3}, {3, 5}}) + (Γ{1,4}, {{1, 2}, {1, 3}, {3, 4}})
+ (Γ, {{1, 2}, {1, 3}, {1, 4}})− (Γ{3,5}, {{1, 2}, {1, 3}, {1, 4}})

Up to isomorphism, there are only two possibilities for the graph Γ{i,j} obtained by col-
lapsing the edge {i, j}, namely

Γ1 = {{1, 2}, {1, 2}, {1, 3}, {1, 3}, {1, 4}, {2, 4}, {3, 4}}
Γ2 = {{1, 2}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

We put all the terms in ∂(Γ, T1) in normal form (note that switching the order of two edges
of the tree changes the sign of the cube) to obtain

∂(Γ, T1) = −(Γ, {{1, 2}, {1, 5}, {2, 3}}) + (Γ1, {{1, 2}, {1, 3}, {2, 4}})
− (Γ, {{1, 2}, {1, 3}, {4, 5}}) + (Γ1, {{1, 2}, {1, 3}, {1, 4}})
+ (Γ, {{1, 2}, {1, 3}, {2, 4}}) + (Γ1, {{1, 2}, {1, 4}, {3, 4}}))
− (Γ, {{1, 2}, {1, 3}, {1, 4}}) + (Γ2, {{1, 2}, {1, 3}, {1, 4}})

The second and fourth rows of this expression vanish, since each term in each row has odd
symmetry, leaving

∂(Γ, T1) = −(Γ, {{1, 2}, {1, 5}, {2, 3}}) + (Γ1, {{1, 2}, {1, 3}, {2, 4}})
+ (Γ, {{1, 2}, {1, 3}, {2, 4}}) + (Γ1, {{1, 2}, {1, 4}, {3, 4}}))

We further compute

∂(Γ, T2) = 2(Γ, {{1, 2}, {1, 3}, {2, 4}}) + 2(Γ2, {{1, 2}, {1, 3}, {3, 4}})
+ 2(Γ, {{1, 2}, {2, 3}, {4, 5}}) + 2(Γ1, {{1, 2}, {1, 3}, {2, 4}}))

and
∂(Γ, T3) =2(Γ, {{1, 2}, {1, 5}, {2, 3}}) + 2(Γ2, {{1, 2}, {1, 3}, {3, 4}})

+ 2(Γ, {{1, 2}, {2, 3}, {4, 5}})− 2(Γ1, {{1, 2}, {1, 4}, {3, 4}})).
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It is now easy to check that ∂((Γ, T1)− 1
2 (Γ, T2) + 1

2 (Γ, T3)) = 0. Note that, since we are
using coefficients in Q, we might have chosen 1

2 (Γ, T2) and 1
2 (Γ, T3) as basis elements for

the summands of the chain complex corresponding to (Γ, T2) and (Γ, T3) respectively, to
compensate for the fact that each of these pairs has an even symmetry of order 2.

Reducing the size of the boundary calculation

At this point, we could put everything into a giant matrix: List all cubes (Γ, T ), list all
cubes (Γ, T − {e}) and (Γe, Te) obtained by removing and collapsing edges in the pairs
(Γ, T ) in our list, and compute ∂k for each (Γ, T ). The kernel of ∂k is the cycles Zk. If
we find cycles, we must decide whether they are boundaries, so we compute the boundary
map ∂k+1 : Ck+1(Qn,k+1)→ Ck(Qn,k) in exactly the same way, and see whether our cycles
are in the image. This becomes unwieldly very quickly on the computer, so we now make
some observations which allow us to break up the computation into smaller pieces.

We divide the orbits of (k − 1)-dimensional cubes in SAn,k into three different types,
according to the degree d and the number of vertices v of the corresponding graph. Type
A has d = v = k, i.e. type A consists of pairs (Γ,Φ), where Γ is maximal of degree k
and Φ is a forest with k − 2 edges; type B has d = k and v = k − 1, i.e. consists of pairs
(Γ, T ) where Γ has a basepoint, k − 2 trivalent vertices and one vertex of valence 4, and
T is a maximal tree; and type C has d = v = k − 1, i.e. consists of pairs (Γ, T ) where
Γ is maximal of degree k − 1 and T is a maximal tree. The chains Ck−1 = Ck−1(Qn,k)
decompose into a direct sum

Ck−1 = CAk−1 ⊕ CBk−1 ⊕ CCk−1

and the boundary map ∂k = (∂Ak , ∂
B
k , ∂

C
k ). A k-chain z is a k-cycle if and only if ∂Ak (z) =

∂Bk (z) = ∂Ck (z) = 0. We compute the kernel ZAk of ∂Ak first, then compute the kernel ZABk
of ∂Bk restricted to ZAk , and finally the kernel ZABCk = Zk of ∂Ck restricted to ZABk .

The computation of ∂Ak is straightforward; for each cube (Γ, T ), we have

∂Ak (Γ, T ) =
∑
i

(−1)i(Γ, T − {ei})

where ei is the ith edge of T . Furthermore, we can do the computation separately for each
Γ, since Ck breaks up into a direct sum Ck = ⊕ΓCΓ where CΓ has one Q summand for
each maximal tree T in Γ, and ∂Ak = ⊕Γ∂Γ, where ∂Γ is ∂Ak restricted to CΓ.

The map ∂Bk corresponds geometrically to collapsing edges not adjacent to the base-
point, i.e.

∂Bk (Γ, T ) =
∑
i

(−1)i+1(Γei , Tei)

where ei is the ith edge in T which is of the form {i, j} for i > 1. Here we cannot do
the computation separately for each isomorphism type of graph Γ, since it is possible that
(Γe, Te) = (Γ′e, T

′
e) even though Γ is not isomorphic to Γ′. It is possible that (Γe, Te) has

odd symmetry even though (Γ, T ) does not, in which case there is no contribution to ∂Bk .
Note that all edges of T may be adjacent to the basepoint, in which case ∂Bk (Γ, T ) = 0.
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Similarly, we have
∂Ck (Γ, T ) =

∑
i

(−1)i+1(Γei , Tei)

where ei is the ith edge in T which is of the form {1, j} (i.e. the ith edge of T which is ad-
jacent to the basepoint). Again, it is possible that (Γe, Te) has odd symmetry even though
(Γ, T ) does not, in which case there is no contribution to the corresponding boundary map.

If we do find a k-cycle z, then in order to find out whether it is a boundary we must
compute the boundary map ∂k+1. This task can be simplified by using the decomposition
of the boundary map as ∂k+1 = (∂Ak+1, ∂

B
k+1, ∂

C
k+1). If z = ∂k+1(w) then, since z only

involves maximal graphs of degree k and maximal trees, we must have z = ∂Ck+1(w) and
∂Ak+1(w) = ∂Bk+1(w) = 0. Therefore we compute ZABk+1 = ker(∂Ak+1) ∩ ker(∂Bk+1) and look
for w in ZABk+1, i.e. we decide whether z is in the span of ∂(ZABk+1).

§8. Results of calculations

The following table summarizes the results of the computer calculations described in the
previous section. Let Zn,k denote the cycles in Qn,k and Bn,k the subspace of Zn,k con-
sisting of cycles which are boundaries in Qn,k+1.

k ≤ 3 Zn,k = 0 for all n

k = 4 Zn,k = 0 for n ≤ 3
dim(Zn,k) = 2,dim(Bn,k) = 1 for n = 4
dim(Zn,k) = 3 = dim(Bn,k) for n ≥ 5

k = 5 Zn,k = 0 for n ≤ 4
dim(Zn,k) = 1 = dim(Bn,k) for n = 5
dim(Zn,k) = 2 = dim(Bn,k) for n ≥ 6

k = 6 Zn,k = 0 for n ≤ 4
dim(Zn,k) = 2 = dim(Bn,k) for n = 5
dim(Zn,k) = 7 = dim(Bn,k) for n ≥ 6

Theorem 1.1, stated in the introduction, which gives the homology of Aut(Fn) in
dimensions ≤ 6, follows since Hk(Aut(Fn);Q) = Zn,k/Bn,k.
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Appendix: Examples of Mathematica code

Normal form

The following Mathematica code defines a function Nf[G], which finds the normal form of
a graph G given as a list of edges {i, j}. This code requires applying (v[G] − 1) factorial
permutations to G, where v[G] is the number of vertices of G. The number of permutations
can be reduced somewhat at the cost of complicating the code, by using the fact that any
graph automorphism must preserve distance to the basepoint.

v[G ]:=Length[Union[Flatten[G]]]
supsort[G ]:=Sort[Sort/@G];
one[L ]:=Prepend[L,1];

Sigma[n ]:=one/@Permutations[Range[2,n]]];
(*List of permutations of {1, . . . , n} fixing 1*)

SetAttributes[a,Listable];
Nf[G ]:=Block[{i,Z=supsort[G],P=Sigma[v[G]],W},

For[i=1,i<=Length[P],i++,
a[k ]:=P[[i,k]];W=supsort[a[G]];
If[OrderedQ[{W,Z}],Z=W,Null]];

Return[Z]]

Automorphisms of a graph

The following code computes the permutations of {1, . . . , v[G]} which give automorphisms
of G fixing all vertices (see Lemma 7.2). Sigma[v[G]] is a list of all permutations of
{1, . . . , v[G]} which fix 1, and supsort is the function which sorts a list of edges lexico-
graphically.

SetAttributes[aL,Listable];
aL[k ]:=L[[k]];
cd[X ,G ]:=Block[{L=X},aL[G]]
Aut[G ]:=Block[{P=Sigma[v[G]]},

Select[P,supsort[cd[#,G]]==supsort[G]&]]

Indecomposable maximal degree k graphs

Starting with a list Mk of all indecomposable maximal degree k− 1 graphs, this produces
a list Gk of all indecomposable maximal degree k graphs.

Gk={} (* Gk will hold the degree k graphs *)
For[n=1,n<=Length[Mk], n++, (* Mk is the list of degree k-1 graphs *)
G= Mk[[n]];
v[G ]:=Length[Union[Flatten[G]]];k=v[G]+1;
For[i=1,G[[i,1]]==1, i++,

NewG=Nf[Join[Drop[G,{i,i}],{ {1,k},{G[[i,1]],k},{G[[i,2]],k}}]];
(*Nf is the normal form function *)
AppendTo[Gk,NewG]];

For[j=2, G[[j,1]]==1, j++,
For[i=1,i<j,i++,

NewG=Nf[Join[{{1,k},{G[[i,2]],k},{G[[j,2]],k}},
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Drop[Drop[G,{j,j}],{i,i}]]];
AppendTo[Gk,NewG]]]];

Gk=Sort[Union[Gk]];
Gk=Select[Gk,Count[#,{1,3}]>0 &];

(* This removes any graphs with univalent basepoint *)

Removing double edges

This code removes from the list Gk any graphs with double edges away from the basepoint
For[j=3, j<=v[Gk[[1]]], j++,

For[i=2, i<j, i++,
Gk = Select[Gk,Count[#,{i,j}]< 2 &]]]

Forests

This code decides whether a subset of edges of a graph is a forest.
notfreeQ[L ,i ,j ]:=Count[Flatten[L],i]>1&&Count[Flatten[L],j]>1;
trim[L ]:=Select[L,notfreeQ[L,#1]&];
core[L ]:=FixedPoint[trim,L];
forestQ[L ]:=core[L]=={}

Boundary maps

The function “bdryplus” in the following code computes the ith term in ∂Ak (G,T ). PNor-
malform puts the pair (G,T ) in normal form, keeping track of the sign.

bdryplus[{G , T }, i ] :=
PNormalform[{G, Drop[T, {i}], (−1)i}];

The function “byminus” below computes the ith term of ∂−k (G,T ), which computes both
∂Bk and ∂Ck . The list “edges[G]” is a list of the edges of G, with duplicates removed.

c[ij ][k ]:=
If[k<ij[[2]],k,

If[k==ij[[2]], ij[[1]],
If[k>ij[[2]],k−1]]];

collapse[L ,ij ]:=DeleteCases[insort[Map[c[ij],L,{2}]],{n ,n }];
For[i=1,i<=e[G],i++,

Q[i]=collapse[G,edges[G][[i]]];
R[i]=Nperm[Q[i]]]
(* Q[i] is the unnormalized graph obtained by collapsing ith edge of G *)
(* R[i] is the permutations which put Q[i] in normal form *)

byminus[{G , T }, i ] :=
Block[{p = Position[edges[G], T[[i]]][[1, 1]]}, P = R[p];

Return[PNormalform[{Q[p], collapse[T, T[[i]]], (−1)i}]]] )}
Here PNormalform uses only the permutations in R[p] to find the normal form; these

are all that are needed if (G,T ) was given originally in normal form.
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