
There are two Eilenberg-Moore spectral sequences that we shall consider, one

for homology and the other for cohomology. In contrast with the situation for the

Serre spectral sequence, for the Eilenberg-Moore spectral sequences the homology

and cohomology versions arise in two different topological settings, although the two

settings are in a sense dual. Both versions share the same underlying algebra, however,

involving Tor functors.

The first occurrence of a Tor functor in algebraic topology is in the universal

coefficient theorem. Here one has a group Tor(A, B) associated to abelian groups A
and B which measures the common torsion of A and B . The formal definition of

Tor(A, B) in terms of tensor products and free resolutions extends naturally from the

context of abelian groups to that of modules over an arbitrary ring, and the result is

a sequence of functors TorRn(A, B) for modules A and B over a ring R . In case R is a

principal ideal domain such as Z the groups TorRn(A, B) happen to be zero for n > 1,

and TorR1 (A, B) is the Tor(A, B) in the universal coefficient theorem. This same Tor

functor appears also in the general form of the Künneth formula for the homology

groups of a product X×Y . The Eilenberg-Moore spectral sequences can be regarded

as generalizations of the Künneth formula to fancier kinds of products where extra

structure is involved. The rings R that arise need not be principal ideal domains, so

the Torn groups can be nonzero for large n .

For the case of homology the E2 page of the spectral sequence consists of groups

E2
p,q = TorH∗(G)p,q

(
H∗(X),H∗(Y)

)
, where the index p has the same meaning as the

subscript in Torn and the second index q arises from the fact that the various ho-

mology groups involved are graded, so Torp =
⊕
qTorp,q . In order for the notation

TorH∗(G)p,q
(
H∗(X),H∗(Y)

)
to make sense H∗(G) must be a ring, and the simplest situa-

tion when this is the case is when G is a topological group and homology is taken with

coefficients in a commutative ring, so the product in G induces, via the cross product

in homology, a product in H∗(G) , the Pontryagin product. We also need H∗(X) and

H∗(Y) to be modules over H∗(G) , and the most natural way for this structure to arise

is if G acts on X and Y , the actions being given by maps G×X→X and G×Y→Y
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inducing the module structures on homology. These are the ingredients needed in

order for the terms in the E2 page to be defined, and then with a few additional hy-

potheses of a more technical nature (namely that the coefficient ring is a field and the

action of G on Y is free, defining a principal bundle Y→Y/G ) the spectral sequence

exists and converges to H∗(X×GY) , where X×GY is X×Y with the diagonal action

of G factored out. One can think of X×GY as the topological analog of the tensor

product of modules. Thus the spectral sequence measures whether the homology of

a ‘tensor product of spaces’ is the tensor product of the homology of the spaces.

For cohomology with coefficients in a commutative ring we always have a ring

structure coming from cup product, so we can replace the topological group G by

any space B . In order for H∗(X) and H∗(Y) to be modules over H∗(B) it suffices

to specify maps X→B and Y→B . Converting one of these maps into a fibration, we

can use the other map to construct a pullback square with fourth space Z , and then,

again with some technical hypotheses, there is an Eilenberg-Moore spectral sequence

having Ep,q2 = TorH
∗(B)

p,q
(
H∗(X),H∗(Y)

)
and converging to H∗(Z) .

When X is a point the two spectral sequences specialize in the following ways:

For a principal bundle G→Y→Y/G one has a spectral sequence converging to

H∗(Y/G;k) with E2
p,q = TorH∗(G)p,q (k,H∗(Y ;k)) , for k a field.

For a fibration F→Y→B with B simply-connected one has a spectral sequence

converging to H∗(F ;k) with Ep,q2 = TorH
∗(B)

p,q (k,H∗(Y ;k)) , with k again a field.

In some situations these spectral sequences can be more effective than the Serre spec-

tral sequence. If one has a fibration and one is trying to compute homology or co-

homology of the base or fiber from the homology or cohomology of the other two

spaces, then in the Serre spectral sequence one has to argue backward from E∞ to

E2 , whereas here one is going forward, which is usually easier. In some important

cases where the differentials in the Serre spectral sequence are fairly complicated

the differentials in the Eilenberg-Moore spectral sequence are all trivial, and one has

only the problem of computing the Tor groups in E2 . This is generally easier than

computing differentials.

The original derivations of these spectral sequences by Eilenberg and Moore were

fairly algebraic, but here we shall follow (not too closely) a more topological route first

described in [Smith 1970] and [Hodgkin 1975].
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3.1 The Homology Spectral Sequence
If G is a topological group, its homology H∗(G;k) with coefficients in a commu-

tative ring k has a ring structure with multiplication the Pontryagin product, which is

the composition of cross product with the map induced by the group multiplication:

H∗(G;k)×H∗(G;k) ×-----→H∗(G×G;k) -→H∗(G;k)

Similarly, if G acts on a space X , the map G×X→X defining the action gives the

homology H∗(X;k) the structure of a module over H∗(G;k) , via the composition

H∗(G;k)×H∗(X;k) ×-----→H∗(G×X;k) -→H∗(X;k)

If we take k to be a field, the Künneth formula gives an isomorphism H∗(X×Y ;k) ≈
H∗(X;k)⊗kH∗(Y ;k) , and we may ask whether there is an analog of this formula that

takes the module structure over H∗(G;k) into account, so that ⊗k is replaced by

⊗H∗(G;k), when actions of G on X and Y are given. We might expect that X×Y
would have to be replaced by some quotient space of itself taking the actions into

account since H∗(X;k)⊗H∗(G;k)H∗(Y ;k) is a quotient of H∗(X;k)⊗kH∗(Y ;k) .
Since the ring H∗(G;k) need not be commutative, even in the graded sense, we

need to pay attention to the distinction between left and right modules. This matters

in the definition of A⊗RB , where in the case that R is noncommutative, A must

be a right R module and B a left R module, and we obtain A⊗RB from A⊗ZB by

imposing the additional relations ar ⊗b = a⊗ rb . Topologically, we should then

consider a right action X×G→X and a left action G×Y→Y . If we start with a left

action on X we can easily convert it into a right action via the formula xg = g−1x ,

and conversely a right action can be made into a left action, so there is no intrinsic

distinction between left and right actions.

The topological analog of A⊗RB is the quotient space X×GY of X×Y under the

identifications (xg,y) ∼ (x, gy) . This definition leads naturally to the following

question:

Is H∗(X×GY ;k) isomorphic to H∗(X;k)⊗H∗(G;k)H∗(Y ;k)? Or if they are not iso-

morphic, how are they related?

Consider for example the important special case that Y is a point, so X×GY is just

the orbit space X/G . Then we are asking whether H∗(X/G;k) is H∗(X;k)⊗H∗(G;k)k ,

which is H∗(X;k) with the action of H∗(G;k) factored out. It is easy to find in-

stances where this is not the case, however. A simple one is CPn , regarded as the

orbit space of an action of G = S1 on X = S2n+1 . Here H∗(CPn;k) is quite a bit larger

than H∗(S
2n+1;k)⊗H∗(S1;k)k , which is just H∗(S

2n+1;k) since the action of H∗(S
1;k)

cannot produce any nontrivial identifications, for dimension reasons.

The isomorphism H∗(X×GY ;k) ≈ H∗(X;k)⊗H∗(G;k)H∗(Y ;k) does sometimes

hold. A fairly trivial case is when X is a product Z×G with G acting just on the

second factor, (z, g)h = (z, gh) . Then X×GY is homeomorphic to Z×Y via the map
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(z, g,y), (z, gy) with inverse (z,y), (z,1, y) . In this case the isomorphism

H∗(X×GY ;k) ≈ H∗(X;k)⊗H∗(G;k)H∗(Y ;k) becomes(
H∗(Z ;k)⊗kH∗(G;k)

)⊗H∗(G;k)H∗(Y ;k) ≈ H∗(Z ;k)⊗kH∗(Y ;k)

which is a special case of the algebraic isomorphism (A⊗kR)⊗RB ≈ A⊗kB . This

special case will play a role in the construction of the spectral sequence. One can in

fact view the spectral sequence as an algebraic machine for going from this rather

uninteresting special case to the general case.

Constructing the Spectral Sequence

To save words, let us call a space with an action by G a G space. A G map

between G spaces is a map f that preserves the action, so f(xg) = f(x)g for right

actions and similarly for left actions.

It will be convenient to have basepoints for all the spaces we consider, and to have

all maps preserve basepoints. To be consistent, this would require that elements of G
act by basepoint-preserving maps, in other words basepoints are fixed by the group

actions. This excludes many interesting actions, but there is an easy way around this

problem. Given a space X with a G action, let X+ be the disjoint union of X with

a new basepoint x0 , and extend the action to fix x0 , so x0g = x0 for all g ∈ G .

This trick makes it possible to assume all actions fix basepoints. It also allows us to

use reduced homology since H̃∗(X+;k) ≈ H∗(X;k) . So in what follows we assume all

maps and all actions preserve the basepoint.

In basepointed situations it is often best to replace the product X×Y by the

smash product X ∧ Y , the quotient of X×Y with {x0}×Y ∪ X×{y0} collapsed to a

point, the basepoint in X ∧ Y . Notice that X+ ∧ Y+ = (X×Y)+ . For actions fixing the

basepoint the quotient X ∧GY is defined, and X+ ∧GY+ = (X×GY)+ . So we will be

working with X ∧G Y rather than X×GG .

Recall the definition of TorRn(A, B) . One chooses a resolution

··· -→F1 -→F0 -→A -→0

of A by free right R modules and then tensors this over R with B , dropping the final

term A⊗RB , to get a chain complex

··· -→F1⊗RB -→F0⊗RB -→0

whose nth homology group is TorRn(A, B) . If R is a graded ring and A and B are

graded modules over R , as will be the case in our application, then a free resolution

of A can be chosen in the category of graded modules, with maps preserving grading.

Tensoring with B stays within the graded category, so there is an induced grading of

TorRn(A, B) as a direct sum of its qth grading subgroups TorRn,q(A, B) .
The ideal topological realization of this algebraic construction would require a

sequence of G spaces and G maps ···→K1→K0→X such that applying the functor
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H∗(−;k) gave a free resolution of H∗(X;k) as a module over H∗(G;k) . To start the

inductive construction of such a sequence we would want a G space K0 with a G map

f0 :K0→X such that f0 induces a surjection on homology and H∗(K0;k) is a free

H∗(G;k) module. Algebraically, the simplest way to construct a free R module F0

and a surjective R module homomorphism F0→A is to take F0 to be a direct sum of

copies of R , one for each element of A . One can regard this direct sum as a family of

copies of R parametrized by A . The topological analog of this is to choose K0 to be

the product X×G , a family of copies of G parametrized by X . For the map f0 :K0→X
we choose the action map (x, g), xg . This will be a G map if we take the action

of G to be trivial on the X factor, so (x, g)h = (x, gh) . This action does not fix the

basepoint, but we can correct this problem by taking K0 to be the quotient of X×G
with {x0}×G collapsed to a point. For this new K0 there is an induced quotient map

f0 :K0→X since the action of G on X fixes x0 .

If the coefficient ring k is a field the Künneth formula gives an isomorphism

H̃∗(K0;k) ≈ H̃∗(X;k)⊗kH∗(G;k) . From this we see that H∗(K0;k) is free as a module

over H∗(G;k) since G acts trivially on the factor H̃∗(X;k) . The map f0 induces a

surjection on homology since it is a retraction with respect to the inclusion X↩K0 ,

x, (x,1) . Another way of seeing that f0∗ is surjective is to identify it with the

map H̃∗(X;k)⊗kH∗(G;k)→H̃∗(X;k) induced by the action, and this map is surjective

since the identity element of G gives an identity element of H0(G;k) .
Thus if we let X1 be the mapping cone of f0 we have short exact sequences

0 -→H̃∗(X1;k) ∂-----→H̃∗(K0;k) f0∗------------→H̃∗(X;k) -→0

For basepoint reasons we should take the reduced mapping cone, the quotient of the

ordinary mapping cone with the cone on the basepoint collapsed to a point. The

actions of G on X and K0 extend naturally to an action on the mapping cone since it

is the mapping cone of a G map. For future reference let us note the following:

(∗) If H̃i(X;k) = 0 for i < n then the same is true for K0 , and H̃i(X1;k) = 0 for

i < n+ 1.

The first statement holds by the isomorphism H̃∗(K0;k) ≈ H̃∗(X;k)⊗kH∗(G;k) , and

the second follows from the short exact sequence displayed above.

Now we iterate the construction to produce a diagram

−−→ −−→ −−→

−−−→X X0 −−−→X1 −−−→X2

K0 K1 K2

= . . .

with associated short exact sequences

0 -→H̃∗(Xp+1;k) -→H̃∗(Kp;k) -→H̃∗(Xp;k) -→0

These can be spliced together as in the following diagram to produce a resolution of

H̃∗(X;k) by free H∗(G;k) modules:
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−−→
−−→ −−→

−−→−−→
−−→ −−→

−−→−−−→−−−→ −−−→ −−−→ −−−→. . .

. . .
. . .

1KH ( )
∼
∗2KH ( )

∼
∗ 0KH ( )

∼
∗

2XH ( )
∼
∗ 1XH ( )

∼
∗

X 0

0 00

H ( )
∼
∗

The next step is to apply ∧GY . Since the map Kp→Xp is a G map with mapping

cone Xp+1 , there is an induced map Kp ∧GY→Xp ∧GY and its mapping cone is

Xp+1 ∧GY . The associated long exact sequences of reduced homology may no longer

split since the inclusions Xp↩Kp , x,(x,1) , are not G maps, but we can assemble

all these long exact sequences into a staircase diagram:

-p 1

−−−→
−−→

−−−→

−−−→
−−→

−−−→−−−→−−→
Y

p −−−→ −→−−−→n XH (( )

−−→−−→ p 1+ −−−→ −→−−−→n X G GH ( )∧ YpK( )∧

GYpK )∧ YG∧ K( )YG∧
∼Yp 1+n K GH ( )∧∼

∼
nH
∼

-n 1H

-n 1H
∼

GYpX( )∧-n 1H
∼

∼
-p 1X( )YG∧-n 1H∼

Thus we have a spectral sequence.

Let us set E1
p,q = H̃p+q(Kp ∧GY ;k) . We will show in a moment that E1

p,q = 0 for

q < 0, so the spectral sequence lives in the first quadrant. From the staircase diagram

we see that the differentials have the form dr :Erp,q→Erp−r ,q+r−1 just as in the Serre

spectral sequence.

The E1 page consists of the chain complexes

··· H̃q+2(K2 ∧GY ;k) -→H̃q+1(K1 ∧GY ;k) -→H̃q(K0 ∧GY ;k) -→0

Recall that Kp = (Xp×G)/({xp}×G) with the action (x, g)h = (x, gh) . By an ear-

lier observation we have H∗((Xp×G)×GY ;k) ≈ H∗(Xp×G;k)⊗H∗(G;k)H∗(Y ;k) . The

space (Xp×G)×GY retracts via G maps onto its G subspaces ({xp}×G)×GY and

(X×G)×G{y0} , and collapsing these subspaces produces Kp ∧GY . It follows that

H̃∗(Kp ∧GY ;k) ≈ H̃∗(Kp;k)⊗H∗(G;k)H̃∗(Y ;k) . In particular, the assertion (∗) implies

inductively that H̃i(Kp;k) = 0 for i < p , so the same holds for Kp ∧GY , proving that

E1
p,q = 0 for q < 0.

Under the isomorphism H̃∗(Kp ∧GY ;k) ≈ H̃∗(Kp;k)⊗H∗(G;k)H̃∗(Y ;k) the differ-

ential d1 , which is the composition of two horizontal maps in the staircase diagram,

corresponds to fp∗ ⊗11 where fp is the composition Kp→Xp→ΣKp−1 , the second

map being part of the mapping cone sequence Kp−1→Xp−1→Xp→ΣKp−1 . By the

definition of Torp,q this says that E2
p,q = TorH∗(G;k)

p,q (H̃∗(X;k), H̃∗(Y ;k)) .
In order to prove that the spectral sequence converges to H̃∗(X ∧GY ;k) we need

to impose some restrictions on the action of G on Y . We shall assume that Y has the

form Y+ for a G space Y on which G acts freely in such a way that the projection

π :Y→Y/G is a principal G bundle. This means that each point of Y/G has a neigh-

borhood U for which there is a G homeomorphism π−1(U)→G×U where the latter
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space is a G space via the action g(h,y) = (gh,y) . This hypothesis guarantees that

the projection X×GY→Y/G induced by X×Y→Y , (x,y),y , is a fiber bundle with

fiber X , since X×G(G×U) is just X×U , by an argument given earlier in a slightly

different context.

Theorem 3.1. Suppose X is a right G space and Y is a left G space such that the

projection Y→Y/G is a principal bundle. Then there is a first-quadrant spectral

sequence with E2
p,q = TorH∗(G;k)

p,q
(
H∗(X;k),H∗(Y ;k)

)
converging to H∗(X×GY ;k) .

The convergence statement means that the groups E∞p,q for p + q = n form the

successive quotients in a filtration of Hn(X×GY ;k) .

Proof: We take the preceding spectral sequence for the G spaces X+ and Y+ . The

E2 terms have already been identified, so it remains only to check convergence. At

the top of each A column of the staircase diagram, the columns with the arrows, we

have the groups H∗(X×GY ;k) , so by Proposition 1.2 it will suffice to show that all

the terms sufficiently far down each A column are zero, that is, H̃n(Xp ∧G Y+;k) = 0

for sufficiently large p .

Since Y→Y/G is a principal G bundle, the projection Xp×GY→Y/G is a bundle

with fiber Xp . Since the action of G on Xp fixes the basepoint xp , this bundle has

a section {xp}×Y/G and Xp ∧GY+ is Xp×GY with this section collapsed to a point.

So it will be enough to show that Hi(Xp×GY , {xp}×Y/G;k) = 0 for i < p . The

quickest way to see this is to use the relative Serre spectral sequence for this pair of

fiber bundles, with local coefficients if Y/G is not simply-connected, together with

the earlier fact that Hi(Xp, {xp};k) = 0 for i < p .

Alternatively, for an argument not using the Serre spectral sequence we can start

with the following two more elementary facts, which together imply inductively that

Kp and Xp are (p − 1) connected:

The mapping cone of a retraction of n connected spaces is (n+ 1) connected.

If Z is n connected then so is (Z×W)/({z0}×W) for any space W , assuming

that the point z0 ∈ Z is a deformation retract of some neighborhood.

Since (Xp,xp) is (p − 1) connected, so is the pair (Xp×GY , {xp}×Y/G) , from

the homotopy lifting property. Thus the relative homology groups for this pair vanish

below dimension p , and this says that H̃n(Xp ∧G Y+;k) = 0 for n < p . tu
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3.2 The Cohomology Spectral Sequence
The situation we are interested in here is that the cohomology H∗(X;k) of a space

X is a module over the cohomology ring H∗(B;k) of another space B by means of

a map f :X→B , which allows us to define rx = f∗(r) ` x for r ∈ H∗(B;k) and

x ∈ H∗(X;k) . We shall take B to be fixed and consider different choices for X ,

each choice having a specified map to B . Of particular interest is a pullback diagram

involving a pair of spaces mapping to B , a commutative square as shown

at the right, where Z is the subspace of X×Y consisting of pairs (x,y)

−−−→ −−−→

−−−→
−−−→

X B

Z Y

mapping to the same point in B . Eventually we will be assuming one or

both of the maps X→B and Y→B is a fibration, so Z is the pullback

fibration, but for the moment we do not need any assumptions about fibrations.

The pullback can be regarded as a product of the two maps to B in a categori-

cal sense, since it has the property that if we have a commutative

square with the pullback Z replaced by some other space W , then

there is a unique map W→Z making the enlarged diagram at the

right commute. From this point of view, what we are looking for

−−−→
−−−−−→

−−−−−→ −−−→

−−−→
−−−→

−−−→

X B

Z

W

Y

is a Künneth-type formula for the cohomology of the ‘product’ Z
in terms of the cohomology of X and Y , regarded as modules over the cohomology

of B . When B is a point the pullback Z is just the usual product X×Y . We can ex-

pect things to be quite a bit more complicated for a general space B , and the Künneth

formula that we will obtain will be in the form of a spectral sequence rather than the

simpler form of the classical Künneth formula.

Theorem 3.2. Given a pair of maps X→B and Y→B , the latter being a fibration,

then there is a spectral sequence with Ep,q2 = TorH
∗(B;k)

p,q
(
H∗(X;k),H∗(Y ;k)

)
con-

verging to H∗(Z ;k) if B is simply-connected and the cohomology groups of X , Y ,

and B are finitely generated over k in each dimension.

The finite generation hypothesis is needed since we will be using the Künneth

formula repeatedly, and this needs finiteness assumptions in the case of cohomology,

unlike homology.

The derivation of this spectral sequence will be formally rather similar to what

we did for the spectral sequence in the previous section, once the proper categori-

cal framework is established. Instead of considering arbitrary maps X→B we will

consider only maps that are retractions onto a subspace B ⊂ X . This may seem too

restrictive at first glance, but it actually includes the case of an arbitrary map f :X→B
by enlarging X to XB = X q B with the retraction r :XB→B that equals f on X and

the identity on B . When B is a point this amounts to enlarging X to X+ by adding

a disjoint basepoint. Thus XB is X with a disjoint basespace adjoined. In the situ-

ation we will be considering of retractions r :X→B we can similarly regard B as a

basespace for X instead of just a basepoint .
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To formalize, we will be working in the category CB whose objects are retractions

r :X→B and whose morphisms are commutative triangles as at the right.

The category CB has quotients: Given a pair (X,A) in CB , with the retrac-

−−−→ −−−→−−−→
B

X Y

tion X→B restricting to the retraction A→B , we can form the quotient

space of X obtained by identifying points of A with their images under the retraction

to B . This idea allows us to construct the (reduced) mapping cone of a map f :X→Y
in CB . First form the ordinary mapping cylinder of f and collapse its subspace B×I
to B , then collapse the copy of X at the source end of the mapping cylinder to B
via the retraction X→B . The retractions of X and Y to B induce a retraction of the

resulting mapping cone to B , so we stay within CB .

The pullback of two retractions rX :X→B and rY :Y→B in CB serves as their

product, as we observed earlier, and we shall use the notation X×BY for this product,

to emphasize the analogy with the object X×GY in the previous section. The product

X×BY lies in CB since the retractions rX and rY induce a well-defined retraction of

X×BY to B sending (x,y) to rX(x) = rY (y) .
We can also define a smash product X∧BY in CB as the quotient space of X×BY

obtained by collapsing X×BB = X to B via rX and B×BY = Y to B via rY . For the

operation of adjoining disjoint basespaces we have XB ∧BYB = (X×BY)B .

Since H∗(XB, B) ≈ H∗(X) we will frequently be working with cohomology relative

to the basespace B in what follows. This can be thought of as the analog of reduced

cohomology for the category CB . For a pair (X,A) in CB with quotient X/A in CB

obtained by collapsing A to B via the retraction there is a long exact sequence

··· -→Hn(X/A,B) -→Hn(X, B) -→Hn(A,B) -→···
assuming that A is a deformation retract of a neighborhood in X so that excision can

be applied. Given also a space Y in CB it is easy to check from the definitions that

(X ∧B Y)/(A∧B Y) = (X/A)∧B Y so there is also an exact sequence

··· -→Hn(X/A∧B Y , B) -→Hn(X ∧B Y , B) -→Hn(A∧B Y , B) -→···
We will be using this in the case that X is a mapping cylinder with A its source end,

so that X/A is the mapping cone.

Proof of 3.2: The first step will be to construct a commutative diagram

−−→ −−→ −−→−−→−−−→−−−→ −−−→ −−−→ . . .

. . .
1K 2K00 K

2X1X

XX =

such that applying H∗(−, B;k) to the horizontal row gives a resolution of H∗(X, B;k)
by free H∗(B;k) modules. Then we will apply ∧BY to the diagram and again take

H∗(−, B;k) to get a staircase diagram, which will give the spectral sequence we want.

Let K0 = (X/B)×B , viewed as an object in CB by including B in (X/B)×B as the

subspace (B/B)×B and taking the projection (X/B)×B→B as the retraction. Then



10 Chapter 3 Eilenberg-Moore Spectral Sequences

H∗(K0;k) ≈ H∗(X/B;k)⊗kH∗(B;k) and hence H∗(K0, B) ≈ H∗(X, B)⊗kH∗(B;k) .
This is a free right H∗(B;k) module since the module structure is given by (a⊗b)c =
a⊗bc , the retraction K0→B being projection onto the second factor. There is a

natural map f :X→K0 , f(x) = (x, r(x)) , which is a morphism in CB . This induces a

surjection f∗ :H∗(K0, B;k)→H∗(X, B;k) since the composition X/B→K0/B→X/B
of the maps induced by f and the projection onto the first factor is the identity

map. (Note that these quotient maps are not maps in CB .) Another way to see that

f∗ is a surjection is to identify H∗(K, B;k) with H∗(X, B)⊗kH∗(B;k) , and then f∗
can be viewed as the map H∗(X, B)⊗kH∗(B;k)→H∗(X, B;k) defining the module

structure on H∗(X, B;k) . This map is obviously onto since there is an identity element

in H∗(B;k) .
Let X1 be the mapping cone of f in the category CB . We will eventually need the

following statement about vanishing of cohomology:

(∗) If Hi(X, B;k) = 0 for i < n , then this is true also for (K0, B) , and Hi(X1, B;k) = 0

for i < n+ 1 if B is path-connected.

The first half of this assertion is an immediate consequence of the isomorphism

H∗(K0, B;k) ≈ H∗(X, B)⊗kH∗(B;k) while the second half is evident from the exact

sequence

0 -→Hn(X1, B;k) -→Hn(K0, B;k) f
∗
-----→Hn(X, B;k) -→0

since f∗ is an isomorphism in this dimension if H0(B;k) ≈ k .

Iteration of the construction of K0 and X1 from X now produces the diagram

displayed at the beginning of the proof. The long exact sequences of cohomology

H∗(−, B;k) break up into short exact sequences that splice together to give a free

resolution

−−→
−−→ −−→

−−→−−→
−−→ −−→

−−→−−−→−−−→ −−−→ −−−→ −−−→. . .

. . .

. . .

1KH (∗2K BH ( )∗
0KH (∗

2X BH ( )∗
1XH ( )∗

X 0

0 00

H (∗

,

, B), B), B),

B,

After applying ∧BY we obtain long exact sequences of cohomology H∗(−, B;k)
that may no longer split into short exact sequences, but do form a staircase diagram

-p 1

−−−→
−−→

−−−→

−−−→
−−→

−−−→−−−→−−→
Y

p −−−→ −→−−−→n n nXH (( )

−−→−−→ p 1+ −−−→ −→−−−→X B BH ( )∧ YpK( )∧

BY BpK )∧ YB∧ K( )YB∧

Y Bp 1+
n 1+ n 1+ n 1+ n 1+K BH ( )∧

nH H

H BYpX( )∧H

-p 1X( )YB∧H,

,

B

B

,

,

B

B

,

,

B

B

,

,

hence we get a spectral sequence.

To recognize the E2 terms as Tor groups we argue as follows. The pullback X×BY
will be a product Z×B if X is a product Z×B , with projection onto the second factor
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as the retraction. Thus in this case we have isomorphisms

H∗(X×BY ;k) ≈ H∗(Z ;k)⊗kH∗(Y)
≈ H∗(Z ;k)⊗k

[
H∗(B;k)⊗H∗(B;k)H

∗(Y ;k)
]

≈ [H∗(Z ;k)⊗kH∗(B;k)
]⊗H∗(B;k)H

∗(Y ;k) ≈ H∗(X;k)⊗H∗(B;k)H
∗(Y ;k)

≈ [H∗(X, B;k)⊕H∗(B;k)
]⊗H∗(B;k)

[
H∗(Y , B;k)⊕H∗(B;k)

]
This last tensor product can be expanded out as the sum of four terms, and after

cancelling three of these we obtain

H∗(X ∧BY , B;k) ≈ H∗(X, B;k)⊗H∗(B;k)H
∗(Y , B;k)

In particular this applies to the products Kp = (Xp/B)×B , so the groups in the E1 page

are obtained from the groups in the free resolutions by tensoring over H∗(B;k) with

H∗(Y , B;k) . The differentials d1 are obviously obtained by tensoring the boundary

maps in the resolutions with the identity map on the H∗(Y , B;k) factor, so the E2

page consists of TorH
∗(B;k)
∗,∗

(
H∗(X, B;k),H∗(Y , B;k)

)
groups.

To make the indexing precise, we set Ep,q1 = Hp+q(Kp ∧BY , B;k) . The nonzero

terms in the E1 page then all lie in the first quadrant. In the staircase diagram we

replace n by p + q , so q is constant on each column of the diagram. In the E1

page the differential d1 maps Ep,q1 to Ep−1,q+1
1 , diagonally upward to the left, so the

diagonals with p + q constant form chain complexes with homology groups Ep,q2 =
TorH

∗(B;k)
p,q

(
H∗(X, B;k),H∗(Y , B;k)

)
. Fixing p and letting q vary, the direct sum of

the terms in the pth column of the E2 page is TorH
∗(B;k)

p
(
H∗(X, B;k),H∗(Y , B;k)

)
.

The differential dr in the Er page maps Ep,qr to Ep−r ,q+1
r , going r units to the left

but only one unit upward. This means that it is no longer automatically true that the

sequence of groups Ep,qr for fixed p and q and increasing r stabilizes at some finite

stage, as the differentials mapping to Ep,qr could perhaps be nonzero for infinitely

many values of r . However, this does not actually happen since all the terms Ep,q1

are finite-dimensional vector spaces over k , hence this is also true for Ep,qr , and each

nonzero differential starting or ending at a given term Ep,qr reduces its dimension by

at least one so this cannot happen infinitely often.

At the top of the qth A column of the staircase diagram we have the group

Hq(X ∧BY , B;k) . This is filtered by the kernels of the compositions of the vertical

maps downward from this group, with successive quotients the entries in the qth row

of the E∞ page. For the general convergence results at the beginning of Chapter 1 to be

applicable we need the terms in the qth A column of the staircase diagram to be zero

sufficiently far down this column. We claim that this will happen in the situation of the

theorem where we assume that B is simply-connected. As a preliminary step to seeing

why this is true, recall that H∗(Kp, B;k) ≈ H∗(Xp, B;k)⊗H∗(B) and H∗(Xp+1, B;k)
is the kernel of the module structure map H∗(Xp, B;k)⊗H∗(B)→H∗(Xp, B;k) , so if

H̃∗(B;k) vanishes below dimension 2 we see that H∗(Xp+1, B;k) will vanish in two
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more dimensions than H∗(Xp, B;k) . By induction it follows that both Hi(Xp, B;k)
and Hi(Kp, B;k) are zero for i < 2p . (In particular, in the E1 page this means that

Ep,q1 = 0 for p > q , which gives a stronger reason for the terms Ep,qr to stabilize as r
goes to infinity.)

Now we can prove the claim about the A columns. In the situation of the theo-

rem we take Y to be of the form YB = Y q B for a fibration Y→B with B simply-

connected. Then Xp ∧BYB is Xp×BY with the subspace B×BY collapsed to B , so

H∗(Xp ∧BYB, B;k) is H∗(Xp×BY , B×BY ;k) . Thus we are looking at the cohomology

of the pullback of the fibration Y→B over Xp and B . With B simply-connected we

have seen that Hi(Xp, B;k) = 0 for i < 2p so by the Serre spectral sequence the

relative cohomology of the pair (Xp×BY , B×BY) vanishes in the same dimensions.

The simple-connectivity assumption guarantees that the action of π1 of the base on

the cohomology of the fiber is trivial for the fibration Y→B and hence also for the

pullback. Thus we have Hi(Xp×BY , B×BY ;k) = 0 for i < 2p , which implies that each

A column of the staircase diagram consists of zeroes from some point downward, as

we claimed.

There is also a more elementary argument for this that does not use the Serre

spectral sequence. One proves inductively that the pairs (Xp, B) and (Kp, B) are (2p−
1) connected if B is simply-connected. Since the cohomology vanishes in this range

with coefficients in any field it suffices to show that Xp and Kp are simply-connected

when p > 0, and this can be done by a van Kampen argument after modifying the

construction by attaching cones to subspaces rather than collapsing them to a point.

Once one knows that (Xp, B) is (2p − 1) connected, the homotopy lifting property

then implies that (Xp×BY , B×BY) is also (2p − 1) connected. tu
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