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Chapter 1

Preliminaries

1.1 Introduction

Lie algebras and quantum groups have been widely studied in the context of representation
theory, while invariants of knots and links are objects of significant importance in topology.
There exist connections between these objects that can be of interest for both of these fields.
One example of such a connection is Reshetikhin and Turaev’s construction of link invari-
ants generalising the Jones polynomial from representations of quantum groups [RT90]. The
Reshetikhin-Turaev invariants can be enriched by categorification: replacing representations of
the quantum group by categories equipped with a quantum group action and replacing polyno-
mial invariants by homological link invariants. Our objective in this thesis is to describe several
of the categorifications which are important in both representation theory and topology and to

study some of the new structure that appears in the categorified world.

On the topological side, one of the triumphs of categorification is Khovanov homology, a cate-
gorification of the Jones polynomial to a homological link invariant first introduced by Mikhail
Khovanov in the late 1990s [Kho00]. Khovanov homology is strictly stronger than its decategori-
fied counterpart [BN02] and can detect the unknot [KM11]. Khovanov has also made a signifi-
cant contribution to the categorification of representations of quantum groups [HK01] [HK06],

and moreover of quantum groups themselves [KL09].

The added algebraic structure of homological link invariants can furthermore can make these
invariants interesting objects from the perspective of representation theory in their own right.
Another aim of this thesis is to demonstrate this relationship in the case of a homological
invariant of annular links, which arises as representations of a particular Lie algebra, known as

a current algebra.

Chapter 1 introduces notation, definitions and basic theorems and properties that will be used
in later chapters. In particular, we give an overview of the representation theory of semisimple
Lie algebras and quantum groups, following [FH91], [Hum?72] and [Lus93]. This representation
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theory is used extensively in the remaining chapters. The main result is a classification of the
irreducible finite-dimensional representations of the Lie algebra sly, and a detailed proof of the

complete reducibility of its finite-dimensional representations.

In chapter 2, we study particular types of current algebras and their representations, such as
the polynomial current algebras examined in [CG07], and representation algebras g(V). We
give a description of the representations of particular examples of these algebras that arise in
our study of annular Khovanov homology using quiver representations. We first give a proof
of a theorem of Loupias [Lou72] on quiver representations of the Lie algebra slo(V7). We then
state and prove an analogous result for the current algebra sl; (V3), which reappears in chapter

4 in our discussion of annular Khovanov homology.

In chapter 3 we examine the work of Khovanov and Huerfano in [HK01] and [HK06], presenting
their work on categorifications of representations of quantum groups. This chapter is largely
independent of the preceding chapters, however some of the algebraic objects studied here are
encountered in earlier sections. For example, the zigzag algebra plays a significant role in
both the representation theory of current algebras in chapter 2 as well as the construction of a

categorification of the adjoint representation in this chapter.

The principal objective of chapter 4 is to relate knot homology to the representation theory
studied in previous chapters, giving a representation theoretic presentation of annular Khovanov
homology, a homology theory of knots and links in the solid torus defined by Asaeda, Przytycki
and Sikora in [APS04]. In particular, the main theorem 4.4.1 of this chapter defines an explicit
action of the current algebra sl; (Va) on annular Khovanov homology. We give a complete and
independent proof of this theorem, originally due to Grigsby-Licata-Wehrli [GLW]. Of partic-
ular interest here is the relationship between the current algebra action and Lee’s deformation
of Khovanov homology, as seen in [Lee05].

1.2 Notation

Calligraphic scripts denote categories (C, D) and functors (€, F, G).

Cursive scripts o/, 9 denote finite-dimensional k-algebras, for algebraically closed field k of

characteristic zero.

The letters V and W denote representations or vector spaces. Vector spaces are finite-dimensional

and over the field C unless otherwise specified.

Letters M and N denote modules over some algebra ..

g denotes a Lie algebra, and § a Cartan subalgebra.

Greek letters a, 8, A\, i denote weights of a representation of a Lie algebra.

Categories are written in bold. For example, Vect is the category of finite-dimensional vector
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spaces and linear maps, and .«7-Mod is the category of modules over an algebra 7.

A subscript 4 before a category indicates that the category has graded objects, for example

g Vect is the category of graded vector spaces and grading-preserving linear maps.

1.3 Representation theory

Let o7 be a finite-dimensional k-algebra, for algebraically closed field k of characteristic zero.
Let (p,V) denote a finite-dimensional representation of & where p : & — End(V) is an
algebra homomorphism, though we will generally omit the homomorphism p in our description
of representations. An algebra &7 is semisimple if all its representations split into a direct sum

of irreducible representations.

The following theorems are used without further comment throughout this thesis:

Lemma 1.3.1 (Schur). Let & be an algebra over some field k, that is not necessarily alge-
braically closed. Let V and W be representations of o and ¢ : 'V — W a non-zero map of
representations of </. Then

(i) If V is irreducible then ¢ is injective.

(i) If W is irreducible then ¢ is surjective.

Corollary 1.3.2 (Schur’s lemma for algebraically closed fields). Let o be a k-algebra for
algebraically closed k and let V' be a finite-dimensional irreducible representation <f , with ¢ €
Endy(V), then ¢ is a scalar operator: ¢ = X -idy for some \ € k.

Theorem 1.3.3 (Krull-Schmidt). Any finite-dimensional representation of a finite-dimensional
algebra o/ can be decomposed uniquely (up to isomorphism and reordering of summands) into

a direct sum of indecomposable representations.
Definition Let M be a finitely generated «7-module. Then a Jordan-Holder series (or com-
position series) for M is a chain
0O=MycMyCcMy,yCc..._CM,_ 1CM,=M
of submodules of M such that M;;/M; is a simple module for all i < n.

Theorem 1.3.4 (Jordan-Hélder). Let M be a finitely-generated </ -module with Jordan-Hdlder
series 0 = My Cc My € My € ... Mp,_1...M,, = M and 0 = Ng C N7 C Ny C ... C
Nix_1 C Ny = M. Then n = k and there exists some permutation o € S,_1 such that
Ni+1/Ni = Ma(i)+1/Ma(i) forall0 < i< n.
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1.4 Quivers and their representations

Quivers are particularly simple objects and their representations are very visual, making them

ideal for studying other categories of representations.

Definition A gquiver @ is a directed graph, consisting of a set of vertices V;, i € I and a set of
directed edges, denoted by arrows, between them a;, j € J, where I and J are (not necessarily

finite) index sets.

Given an arrow a; from V; to Vi, we call V; the source and Vj, the target of a;. A path in Q is
a finite word in the a;, w = aj, a4, , ...a;,, jn € J such that the target of a;, is the source of
aj, ., foreachn e {1,... .k —1}.

Remark. There is no restriction on the edges, namely we may have multiple edges between two
vertices, and loops from a vertex to itself are also allowed. We also do not require the graph to
be connected.

Example. An example of a quiver is

—— )

Definition A quiver representation of a quiver @ is a pair (M, ¢), where M = {M; | i € I} is
a set of finite-dimensional vector spaces, one for each vertex of ), and

op={¢; :M; > My |i,kel,jeJ}

is a set of linear maps between the M;, one for each edge in Q.

A quiver representation can be considered as a representation of an associative algebra:

Definition The path algebra Ag of a quiver () is an associative algebra with basis given by
the oriented paths of @, including trivial paths v;, i € I corresponding to the vertices of Q.
Multiplication is concatenation of paths, with the path ab consisting of the path b followed by
the path a. If the ending vertex of a path b is not the same as the starting vertex of a path a,

then we define the product ab to be zero.

Theorem 1.4.1. The category of representations of a quiver Q) is equivalent to the category of
representations of the path algebra Ag.
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1.5 Algebras

The following algebras will be studied in later chapters.

1.5.1 Hopf algebras

Many of the algebras of interest to us here, such as the universal enveloping algebra of a Lie
algebra, and quantum groups are examples of Hopf algebras. Hopf algebras are bialgebras.
This structure is of particular use when considering tensor products of representations: given
a Hopf algebra J# and two representations V and W of J#, one can regard the tensor product
V ® W as a representation of 7 itself, not just as a representation of 7 ® . This is due to
a comultiplication map A : 7 ® 5 ® . We introduce some of this structure here.

Let &/ and % be k-linear spaces for some field k.

Definition The triple (<7, u,¢), where the multiplication map u : & ® & — & and unit
Lk — o/ are k-module homomorphisms, is a k-algebra if the following diagrams commute:

AARA S o

#®iddl ll‘

dod — P

g Qo

k® o Iz o Rk

IR
IR

where the isomorphisms k ® &/ — & and & ® k — &/ are given by left scalar multiplication.
The first diagram shows that multiplication under p is associative, and the second diagram

illustrates the unit law.

We can also define the dual of a k-algebra:

Definition The triple (¢,A,¢) where A : € — € ® €, called the comultiplication map, and
€: % — k, called the counit, are k-module homomorphisms, is called a coalgebra if the following

diagrams commute:
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A Q idg
CRECREC———€CRC

id%®A1\ IA
A

CRQC ——F

IR
IR

where the first diagram shows that the comultiplication map A is coassociative and the second
demonstrates the counit law.

We may also consider an object that combines the structure of an algebra and a coalgebra:

Definition A bialgebra over k is a 5-tuple (%, u, 1, A, ) such that

1. (A, p,1) is an algebra
2. (B, A e) is a coalgebra

3. A and ¢ are k-algebra homomorphisms.

We are now able to define a Hopf algebra:

Definition A Hopf algebra is a 6-tuple (S, u, ¢, A, ,7) such that (52, u, ¢, A, €) is a bialgebra
and v : H — I is a k-module homomorphism called the antipode such that the following
diagram commutes:

idyy @y
HQH ——> HQRQRH

53 L

e
"
A
Y ® id

QA H

I
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1.5.2 Superalgebras

Definition A superalgebra over a field k (here, k will always be the field C of complex numbers)

is a Zo-graded algebra, namely an algebra A that has a decomposition
A=Ay A

together with a bilinear operation A x 4 — A that preserves the grading as follows: 4;4; C

A;1; where we consider 4, j and i + j as elements of Zs.

We will call an element a in A even if a € Ay or odd if a € A;. We further define the parity

p(a) of a homogeneous element a of A as

0 ifac A

pla) =
( 1 ifac A

In the case of Lie algebras:

Definition A Lie superalgebra is a Lie algebra g with a Zs-grading g = go @ g1 such that the

Lie bracket satisfies the following condition:

(9, 9;] € Gitj

where we again consider i, j and ¢ + j as elements of Z.

Any element x € g decomposes uniquely into homogeneous parts © = zg + x1 where xg is even

and x7 is odd.

The Lie bracket now satisfies some slightly modified relations:
[.I‘, y] = _(_1)p(x)-p(y) [ya I]

for homogeneous elements = and y, so that if either x or y is even, we have our usual Lie bracket

condition. The Jacobi identity for homogeneous elements x,y and z in g becomes:

[, 21 + (—1POEOO [y 2] g] 4 (—1) PO 0], 4] = 0,

The Zs-grading becomes apparent when considering the universal enveloping algebra of a Lie
superalgebra g: U(g) is the associative algebra generated by the elements of g, modulo the
relation [z,y] = zy — (—1)P@PWyz for all homogeneous elements z and y in g. Hence, if both

x and y are odd, then the Lie bracket of z and y in U(g) is given by [z,y] = zy + yz.

1.6 Homomorphism spaces in graded categories

Given a category C with Z-graded objects, for example the category of graded vector spaces,

morphisms are defined to be grading-preserving, so that any f: M — N satisfies f(M,,) C N,
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for all integers n. Hence, the homomorphism space Home (M, N) is a vector space consisting
of all grading-preserving morphisms. Another homomorphism space of interest is the graded
homomorphism space HOM¢(M, N) := @, Home(M{k}, N). This associates a graded vec-
tor space to pairs of objects in C, and will often introduce interesting ties between objects and

their categorifications.

1.7 The Grothendieck group of a category

In chapters 4 and 5 we will be discussing a process called decategorification: passing from an
object to one with less structure. In given contexts, decategorification has a specific meaning.
If the original object is a category then decategorification consists of taking the Grothendieck
group of the category. This is defined as follows:

Definition Let C be an abelian category. Then the Grothendieck group K(C) of the category
C is the abelian group generated by isomorphism classes [M] of objects M in C modulo the

relation [M] = [M;] + [Ma] if there exists an exact sequence

0 M, M M, 0
There is a similar definition for additive categories:

Definition Let C be an additive category. Then the split Grothendieck group Ko(C) is the
abelian group generated by isomorphism classes [M] of objects M in C modulo the relation
[My @ Ms] = [M;] + [My] for all objects My and My in C.

Suppose further that objects in the category C are Z-graded, so that M = @,czM,. Then
the shift functor {k} shifts the grading of objects in C up by some integer k: M,{k} = M, _.
This grading gives the Grothendieck group of C the structure of a Z[g, ¢~ !]-module by defining
[M{k}] = q*[M] for any object M in C and any integer k.

1.8 Semisimple Lie algebras and quantum groups

The language and classical results in Lie theory are used extensively in later chapters. For this
reason, we introduce the main results in the representation theory of semisimple Lie algebras
and quantum groups. Proofs of the following are well-known, and can in particular be found
in [FH91] and [Hum?72]. The exception to this general overview is the section on the Lie algebra
sl C, for which we give a complete description of irreducible finite-dimensional representations

and give a detailed proof of the complete reducibility of finite-dimensional representations.
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1.9 Introductory example: sly

The representation theory of the Lie algebra sls have a very simple description but is also an
archetype for the representation theory of a much larger class of Lie algebras. Our aim here is
to study the finite dimensional representations of the Lie algebra sly over the complex numbers.

In so doing, we give a complete proof of the following two theorems:

Theorem 1.9.1. Up to isomorphism, there exists a unique finite-dimensional irreducible rep-

resentation of sloC with highest weight n for every monnegative integer n.

Theorem 1.9.2. The finite dimensional representations of slo are completely reducible.

1.9.1 The Lie algebra sl,C

As a set, sl5C is the set of traceless matrices with complex entries:

5[2@{[a b] a,b,cec}
C —a

Considering sls as a Lie algebra, we use the fact that sls is an associative algebra with multi-

plication given by matrix multiplication, so that the Lie bracket is given by
[x,y] = zy — yx for all z,y € sly

As a complex vector space, sly is three-dimensional, with standard basis
0 1 0 0 1
e = f = h = 0
0 0 10 0 -1

[hae}ZQG [h,f]:72f [eaf]:h

and relations

Thus a representation of sly is a vector space V together with linear operators E, F and H

acting on V such that
HE - FH =2F HF — FH = -2F FF-FE=H
1.9.2 Irreducible representations

The operator H plays a critical role in the classification of irreducible representations of sls.

Action of sl; on generalised eigenspaces of H

Let V be a finite-dimensional representation of sly over C. Then H has at least one eigenvalue

on V since C is algebraically closed, and there is a basis for V' in which H is upper-triangular.
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Furthermore, H has finitely many eigenvalues since V is finite-dimensional. Consequently, let
A be the eigenvalue of H with largest real part, called the highest weight of the representation.
More generally a weight is an eigenvalue of H, and this terminology is extended to eigenspaces

and eigenvectors.

Let V(A) be the generalised weight space of H associated to the highest weight A, and let
v € V(A), so that there exists some k € N such that (H — M )*v = 0. T claim that the action
of E on this weight space is trivial. First, consider the action of E on any generalised weight
space. Let p be a weight on V, and w some generalised weight vector associated to . Then
there exists some n € N such that (H — uI)"w = 0. Consider (H — pI)"E. From the relation
HE — EH = 2F, we have H*E = E(H + 2)* for all k € N. This is seen by induction on k.

Then, from a binomial expansion
(H—p)"E=EH+2[ —p)"=EH — (n—2)1)"
From this, we see that
(H-—(p+2))'Ew=FEH+2I - (u+2))"w=EH — pul)"w=0

Thus, Fw is again a generalised eigenvector for H, with weight x4 + 2. Returning to v € V()),
Ev is a generalised eigenvector for H with weight A+ 2. But A was assumed to have the largest

real part, so the eigenspace associated to A + 2 must be trivial and E|V()\) =0.

Similarly, taking p as above and following the same process, the relation HF — FH = —2F
leads to

(H-—(p—2))"Fw=0
so that F'w is also a generalised eigenvector for H, with associated eigenvalue u — 2.
Consider the sequence of vectors in V' of the form Fiv for j € NU {0} and v € V(A). Each of
the FJv is a generalised eigenvector for H, with associated weight A\ — 25, which are clearly all
distinct. Thus the F7v form a linearly independent set in V, and by finite-dimensionality of V/

there must exist some M € N such that FMvy = 0. Let N be the smallest integer such that
FNy =0. Since FIV = FI=NFNy with j — N > 0 for all j > N, Fiv =0 for all j > N.

This process shows that that V' contains a submodule
wr =V,
I

where = A — 2k for k = {0,1,..., N — 1} and V,, the generalised eigenspace for H associated
to p. For any such weight p and any w € V,,, Ew € V40 C W, or Fw = 0 for p = A, and
FweV, o CW,or Fwu=0if g =X—2(N —1). Thus E and F shift generalised eigenvectors

up or down to successive eigenspaces in W.

Any finite-dimensional representation will contain a submodule of the form W?*, we shift our

focus to the highest weight A and show that A is not only real, but integral and equal to N — 1.

Claim 1.9.3. EF/ = FIE+ j(H + (j — 1)I)Fi~1
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Proof. The case 7 = 1 holds from the relations in sly. Applying the relation HF — FH = —2F
successively, F/H = (H + 2j)F7 for j > 1. Using this relation,

EFit! = EFIF
=(FME+jH+ (j —1))FF"YF
=F/(FE+H)+j(H+ (j — 1)I)F’
=Y E+ (H+2j+7H+j(— 1)I)F’
=T E+ (j+1)(H + jI)FI

By induction on j, the claim holds on N. O

Applying this to V, from the fact that £ acts trivially on the highest weight space V),
EFiv=j(H+ (j — 1))F' v

Letting j = N,
0=EFNo=N(H+(N-1)I)FN"1y

By assumption, FN "1y #£ 0 since N is the smallest integer such that FNv = 0 and N € N,
so (H+ (N —1)I)FN~1v =0, and FN~1v is an eigenvector for H, with eigenvalue —(N — 1).
However, FN =1y is a (generalised) eigenvector for H with eigenvalue A — 2(N — 1). Therefore
A—2(N—-1)=—(N—-1),s0 A =N —1 as claimed.

Thus the highest weight of V' is a nonnegative integer, and since V is arbitrary, this holds for all
finite-dimensional representations of sloC. We now show existence and uniqueness of irreducible
representations with highest weight N for all nonnegative integers N. This is equivalent to the
statement that there is exactly one irreducible representation of dimension N + 1 for every

nonnegative integer .

Existence

Let V be a vector space of dimension A 4 1 for A a nonnegative integer. Then I claim that we

can define an action of sloC on V such that V is irreducible, with highest weight ..

Let {vo,v1,...,vx} be a basis for V. Define the action of F' on V by setting v; = F(vg) and
F*(v;) = 0if i+k > X. Then we define H(v;) = (A—2i)v;. Then by definition the highest weight
of V is A. From the previous calculation of EF*, define E(v;) = i(A—i+1)v;_1, with E(v) = 0.
It remains to show that the commutation relations hold to prove that V' equipped with this
action of E, F and H is an slp(C) representation. First we check that HF — FH = —2F.

HF(v;)) — FH(v;) = HF™(vg) — (A —2i)F(v;)

= H(vit1) = (A = 20)(vig1)
(A =20+ 1) — A+ 20)vis
—2F (v;).
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For [H, F],
HE(’UZ) 7EH(’01) = ( 7Z+1)H(U¢ 1) — (A*QZ)E(UZ)
= ( —Z+1)(>\ 2(7,— 1))1)1',1 — ()\—QZ)Z(A—Z‘F].)’UZ,l
= 2iA—i+1)v;q
= 2E(1}i)
Finally, for [E, F],
EF(’Ul) - FE(UZ) = E(’UH_l) - ’L()\ — 1+ 1)F(U1‘_1)
= (Z + 1)()\ - i)’Ui - ’L()\ —i4 1)’Uz’
= ()\ — QZ)’Ul
H{(v;)

This construction turns V' into an sl (C) module, and it remains to show that it is irreducible.

Suppose there is some non-zero submodule W contained in V. Then W must contain some
non-zero vector w of the form w = Zj\:o a;v; where the a; are complex constants. Since W is
an sly(C) module, it must contain all possible images of w under the operators E, F and H. If
i is the smallest integer such that a; is non-zero, apply F' A — ¢ times, so that vy = aiiFA*i(w)
is an element of W. Successively applying F, all the basis vectors of F must be elements of W,

so that W = V. Hence V contains no proper submodules.

Therefore, for every positive integer N there exists an irreducible representation of sloC with

highest weight N — 1 and dimension N.

Uniqueness

Define Vy = Span{v, F(v), F%(v),..., F*(v)} to be the representation constructed in the pre-
vious section with highest weight )\, generated by a highest weight vector v. Let W be an
irreducible representation of sla(C) with highest weight k& € N. This is possible since we showed
in section 1.1 that all finite dimensional representations have highest weights in N. Thus there

exists some non-zero vector w in W such that H(w) = kw.

I claim that W is isomorphic to to Vj. Define the homomorphism ¢ : V- — W by ¢(v) = w. By
the requirement that ¢ commute with the action of sly, ¢(F*(v)) = F¥(w). Then ¢ is a non-zero

homomorphism of irreducible representations, so by Schur’s lemma, ¢ is an isomorphism.

In section 77, we show that this classification of irreducible representations in fact determines
all finite-dimensional representations of sloC, since all finite-dimensional representations de-

compose into a direct sum of irreducibles.
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1.9.3 Notation

In our classification of the irreducible representations of sloC we called highest weight the
largest eigenvalue of H. To make this concept more general for later use, we make the following

definition:

Definition Let V be a finite-dimensional representation of sloC. A highest weight vector v € V
is an eigenvector for H that is sent to zero under the action of . The eigenvalue of H associated

to v is called highest weight of the representation.

In the following section, we will see that such a highest weight always exists, and is unique for

an irreducible representation.

1.9.4 Complete reducibility of representations

A representation V' can in fact be decomposed into eigenspaces of H, not just generalised
eigenspaces. We first show that H is diagonalisable on its highest weight space. Recall some
notation from the previous section: V is a finite dimensional representation of sl,C, A is the
highest weight of V' (based on our original definition of highest weight) with associated gen-

eralised eigenspace V()) and V), is the unique irreducible representation with highest weight

L

Diagonalisability of H on V())

Claim 1.9.4. Let v be some vector in V(X). Then for each k € N, there exists a polynomial
Py of degree k, such that
EFF*y = Py(H)w

where

k—1
Pp(z) =k [] (@ - j)
j=0

Proof. From the sly relations and the fact that Ev = 0, the claim holds for £ = 1. A simple
induction argument shows that HFJ = FJ(H — 25I). Recall that

EF* = FFE 4+ k(H + (k — 1)I)F*!

EFLpk+tly — ER(EFF + 1)
= E¥(F* Ev + (k + 1)(H + kI)F*v)
= (k+ 1)E*F*(H + kI — 2kI)v

k—1
= (k+ Dk [[(H = 51)(H - kI)
j=0

By induction, the claim holds for all k£ € N. O
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Taking N large enough that FNv = 0 for all v € V(\) (this is possible by the previous section),

N—-1
0=ENFNy = Py(H)o=N![] (H - j)v

=0

This holds for any v € V()) so that Py(H) is identically zero on V()). Thus the minimal
polynomial of H must divide Py (H). Since Py (H) splits into a product of linear factors, the

minimal polynomial of H also splits on V()\) and consequently H is diagonalisable on V().

1.9.5 The Casimir operator

Definition The Casimir operator acting on a representation V' of slyC is given by C' = EFF +
FE + %H 2 where E, F and H are the standard operators in a representation of slyC.

Lemma 1.9.5. The Casimir operator has the following properties:
(i) C commutes with the operators E, Fand H.

(i) On Vy, C acts as %Id on Vj.

Proof. (i)
CE = EFE+FE®>+iH’E
E(EF —H)+ (EF — H)E+ 1H(EH + 2E)
= E(EF)-EH+E(FE)+ i(EH +2E)H
= EC
CH = EFH+FEH+ 3H3
= E(HF+2F)+F(HE —2E)+ H(3H?)
= (HE—-2E)F +2H + (HF +2F)E + H(3H?)
= HC

The calculation for C'F' is nearly identical to that of C'E.

ii) Let {v, F(v),...,F*(v)} be a basis for Vi, where v is a highest weight vector in V. Then

any element of V) is of the form w = Z;‘\:o a;Fi(v) for complex constants a;. Then

Clw) = Xi_oaFiC(v)
= YioaF (EF(v) + FE(u) + 3H(v)
= YloaF (FE@) + H(v)) +0+ 37\ v)
= Z?‘:OaiFiL)‘QH)U

3
_ )\(/\2+2)w

O
Note that since C' commutes with the action of s[;C, it is a homomorphism of representations

from V to itself. Since V is irreducible, C' must act as a scalar operator by Schur’s lemma for

algebraically closed fields.
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Proof of complete reducibility

To derive a contradiction, suppose that W is a reducible, indecomposable representation of
smallest dimension. The Casimir operator is an intertwining map on W so that the decompo-
sition of W into a direct sum of C-eigenspaces becomes a decomposition of W into subrepre-
sentations since each C-eigenspace is invariant under E, F' and H. Thus, C can have only one

eigenvalue on W denoted p.

The representation W is reducible and finite-dimensional, so W must contain a submodule of
the form V) where X is the highest weight of W. As seen in the previous lemma, the operator

C acts on V), as w.fd. Hence, p = w

Furthermore, W/V), is also a representation of slobC and C again must act on W/V) with only

AQ+2)
2

one eigenvalue, namely . There are two possibilities:

If W/V) is irreducible, then by uniqueness of the eigenvalue of C, we must have W/Vy = V).

If W/V, is reducible, we have that dim(W/V)) < dimW, and by our assumption on the mini-
mality of W, W/V, must be decomposable, and furthermore the summands must be irreducible.
Again by the fact that C has only one eigenvalue on the quotient space, all the summands must
just be copies of V). Therefore there exists some positive integer n such that W/Vy = nV,.

Thus the first case is simply a special case of the second, with n = 1.

Let W(A\) C W be the eigenspace associated to the highest weight A. For each Vj, the eigenspace
associated to A is one-dimensional by irreducibility of V), and H is diagonalisable on V()
for any finite-dimensional representation V. Hence H is diagonalisable on W (\) and on its
quotient by Vy. From the decomposition of W/Vy, (W/Vy)(\) is n-dimensional, and since H is
diagonalisable on W (), the eigenspace W (A) splits into n + 1 copies of V) (\), and is therefore

(n + 1)-dimensional.

Let {v1,v2,...,v,41} be a basis for W()). Then the set {F7(v;)}, such that 1 < i < n +
1, 0 < j < ) is linearly independent. We have shown that for fixed i, the F7(v;) are linearly
independent, so it remains to show that

Claim 1.9.6. For fived j the set {F7(v;)}, 1 <i <n+1 is a linearly independent set.

Proof. {vi,...,vn41} is a basis for W () so the claim holds for j = 0.
Now let j > 1. Suppose we have Z?Ill ¢;F7(v;) = 0. Then

0 B eiFi(v))
Z;:rll c; EFI(v;)

= Yrlei =i+ 1) FI T (v)

since E(v;) =0 for all 1 <i < n+ 1, given that the v; are in W(X).
For each j = 1,..., A, 5(A — j + 1) is non-zero, so Z?:ll c;F7=Y(v;) = 0, and by the inductive

step,c1 =ca=... =cp41 =0.
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O

Thus, for fixed i and fixed j respectively, the set {F7(v;)} is linearly independent, so for
1<i<n+1and0<j<\the Fi(v;) are linearly independent. Furthermore, they span W
since the highest weight vectors completely determine the space W. Therefore, { F7(v;)} forms
a basis of W.

Define W; = Span{v;, F(v;),...,F*(v;)} for each i = 1,...,n + 1. Then each W; forms an
irreducible representation of sl5C and is thus a subrepresentation of W. But then W = @Zfll Wi,
which contradicts the assumption that W is indecomposable. Therefore, all indecomposable

representations are irreducible and the representations of sl,C are completely reducible.

1.10 Semisimple Lie algebras

We use the example of sly to give a classification of the finite-dimensional irreducible represen-
tations of semisimple complex Lie algebras and introduce the terminology of Lie theory, as seen
in [FHI1), which will be used extensively in the following chapters.

Let g be a Lie algebra.

Definition 1. The derived series of g is a descending chain of subalgebras {Z%g]} of g
defined inductively by:

79 = [g. 9] PFg = (2% g, 7Fg) for k > 1

2. A Lie subalgebra h C g of g is an ideal if [X,Y] € for all X € h, and all Y € g.
3. g is semisimple if for all ideals b C g, 2*h = 0 for some k implies that b is the zero ideal
in g.
The most significant property of semisimple Lie algebras that will be used here is the complete

reducibility of their finite-dimensional representations:

Proposition 1.10.1. Let g be a semisimple Lie algebra and let V' be a finite-dimensional
representation with W C V' a g-submodule. Then there exists a submodule W' C V' such that
V=W & W' as representations of g.

Equivalently, any finite-dimensional representation of a semisimple Lie algebra g decomposes
into a direct sum of irreducible representations of g.

For the remainder of this section, let g be a semisimple Lie algebra. Consider the adjoint

representation, wherein g acts on itself under the following map:

ad(z)(y) = [=,y]
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for all z and y in g. From here, we hope to find an analogue of the action of the element H in
sly. It will no longer be possible to find a single such element, but the generalisation of H for

a semisimple Lie algebra is given by the following definition:

Definition A Cartan subalgebra b of a semisimple Lie algebra g is an abelian subalgebra of g

that acts diagonally under the adjoint representation.

More generally, a Cartan subalgebra acts diagonally on any representation of g.

Example. In the case of sl,, a choice of Cartan subalgebra is the subalgebra of diagonal ma-
trices. Letting H; = E;; be the elementary matriz with a 1 in the i-th position on the diagonal

and zeros elsewhere. This Cartan subalgebra for sl,, is given by:

b:{alHl—l—agHg—i—...—l—aan ‘ a; € C, al—l—...an:O}

It is necessary to generalise the notion of eigenvectors and eigenvalues to subalgebras b, rather
than just for single elements. An eigenvector for h acting on a vector space V' is an element v
of V that is an eigenvector for each H € h. Therefore an eigenvalue for b is a linear functional
a : h — C such that there exists a non-zero eigenvector v € V satisfying

H-v=a«aH) v

for every H € h. In the case of the adjoint representation, eigenvectors x € g satisfy ad(H)(z) =
a(H) - x.

Given a choice of Cartan subalgebra b, let h act on g via the adjoint representation. Since the
Cartan subalgebra acts diagonally, g can be decomposed into a direct sum of weight spaces g,

consisting of eigenvectors with respect to the eigenvalue o € h*.

Definition The set of roots R C h* of a Lie algebra g with Cartan subalgebra b is the set of
non-zero weights of the adjoint representation. The corresponding weight spaces g, are called

root spaces.

We have the following properties for roots and root spaces:

Proposition 1.10.2. 1. The adjoint action of g sends the root space gg to the root space
Yat8-

2. Each root space g, is one-dimensional.
8. R is symmetric in the sense that if « € R then —a € R.

4. R generates a lattice Ar C §*, of rank equal to the dimension of the Cartan subalgebra.

These properties extend to general finite dimensional representations V' of g, namely

Proposition 1.10.3. Let V be a representation of g. Then



18 CHAPTER 1. PRELIMINARIES

1. 'V decomposes as a direct sum V = @, Va, for finitely many elements o € h*. The
dimension of V,, is called the multiplicity of the weight o in V.

2. For any root B, gg : Voo = Vagg-

3. The weights of an irreducible representation are congruent modulo the root lattice Ag.

The roots of g allow us to distinguish copies of sly contained in g:

Proposition 1.10.4. For every root a € R there exists a subalgebra o = §a D g—ao P [0a, 9—al-
Each of the weight spaces g, and g, are one-dimensional and the commutator [ga, §—a] s a

one-dimensional subspace of §, so that s, = slo,C.

Thus to each pair (a,—«) of roots of opposite sign, there is a unique element H, in the
commutator [gq, §—] with eigenvalues 2 and —2 on the weight spaces g, and g_, respectively.

Eigenvalues of the H, are integral and symmetric about the origin in Z.

To express this symmetry in terms of the totality of the weights of g, we define a subgroup of

the group of isometries of the root system R.

Definition The Weyl group # of a Lie algebra g is the group generated by the involutions
We, a € R acting on h* by reflecting across the hyperplanes

Qo ={Beb*| (Hy,B) =0}

perpendicular to the line spanned by «, so that

Wa(ﬁ) = — B(Ha)

Proposition 1.10.5. The weights of a representation of g are invariant under the action of
the Weyl group.

Definition An ordering of the roots of a semisimple Lie algebra g is a choice of linear functional
I on the root lattice that decomposes the set of roots into two disjoint subsets of equal size
R=R"UR™ where Rt = {a € R| I(a) > 0} is called the set of positive roots and R~ = {« €
R | l(«) < 0} is called the set of negative roots.

Definition Let V be a finite dimensional representation of a semisimple Lie algebra g. A
highest weight vector for V' is a vector v € V such that v is an eigenvector for the Cartan sub
algebra b and in the kernel of the action of gg for all 5 € R*.

Theorem 1.10.6. Any finite dimensional representation of a complex semisimple Lie algebra
contains a highest weight vector, which generates an irreducible subrepresentation under succes-
sive applications of roots spaces gg for f € R™. For an irreducible representation, the highest

weight vector is unique up to scalars.
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Definition The eigenvalue « associated to a highest weight vector of a finite dimensional

representation is the highest weight of the representation.

A positive root is simple if it cannot be written as a sum of two positive roots. We similarly
define simple negative roots.

Definition The Weyl chamber W of a representation is the locus in the real span of the roots
satisfying the inequality a(Hpg) for all 5 € R*. This is the closure of a connected component
of h* contained in the complement of the union of the hyperplanes Qg.

We say that « is a dominant weight of g if « € WN Ay, where Ay is the weight lattice. Denote
by Af;, the subset of Ay, congruent to o modulo the root lattice Ar and by Convf}, the convex
hull of the points conjugate to o under the action of the Weyl group in Ay .

The following theorem classifies all irreducible representations of a semisimple Lie algebra g:

Theorem 1.10.7 (Existence and uniqueness theorem). The isomorphism classes of irreducible
representations of g are parametrised by the dominant weights « of g. The weights of the

representation consist of the elements € Ajy, N Convyy,, all occurring with multiplicity one.

Definition The fundamental weights of a representation are the elements w; € h* such that

wi(Haj) = 0;,; where o, ..., o, are the simple roots of the Lie algebra.

In the example of the Lie algebra sl,,, the Cartan subalgebra is the set of diagonal matrices
with zero trace:

h = {diaglay as ... ay] | Zai =0}
i=1

so that h* = C{Ly,La,...,Ly,}/(O_ L; = 0). In this case, the fundamental weights are w; =
Li+...+L;fori=1,...,n—1.

Proposition 1.10.8. Any highest weight of a representation can be uniquely expressed as a

nonnegative integral linear combination of fundamental weights.

Definition Let g be a Lie algebra. The Killing form on g is a symmetric bilinear form
K(, ):gxg— Cdefined by K(z,y) = tr(ad(z)ad(y)).

We will often want to consider the tensor product of representations of a Lie algebra as a
representation of the Lie algebra itself, particularly in the context of link homology. The ability
to consider such tensor products is due to the following property of the universal enveloping
algebra:

Proposition 1.10.9. Let g be a Lie algebra and U(g) its universal enveloping algebra. Then

U(g) is a cocommutative Hopf algebra.
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Proof. We begin by defining the comultiplication and counit onU(g): let A : U(g) — U(g)RU(g)
be defined by A(x) = 2 ®id+id®x for all x € U(g) and let € : U(g) — k be defined by e(z) =0
for all x € U(g) (we will generally take k = C here). The antipode v : U(g) — U(g) is defined
by v(x) = —z. These maps are algebra homomorphisms by the universal mapping property of
U(g) and clearly satisfy coassociativity, and the counit and antipode laws. By cocommutative,
we mean that co A = A, where o : U(g) @U(g) — U(g) @U(g) swaps the factors in U(g) @U(g):
o(z ®y) = (y ® ). Thus cocommutativity follows directly from the definition of A. O

1.10.1 Dynkin diagrams

Given a root system R, in particular the root system of a Lie algebra, one can construct a Dynkin
diagram by drawing nodes e for each simple root in R and joining two nodes by a number of
edges depending on the angle between them. Of particular interest in this thesis, specifically in
the categorification of the adjoint representation of quantum groups encountered in section ??
are the simply-laced Dynkin diagrams: those graphs with at most one edge connecting any pair
of nodes. In this case, all roots are of the same length. The simply-laced diagrams are all of

the following form:

E7._._I_._._.
RN

Figure 1.1: The simply-laced Dynkin diagrams

The simply-laced Dynkin diagrams play an important classification role in several areas of

mathematics, as demonstrated by a remarkable theorem of Pierre Gabriel [Gab72].

Definition A quiver is of finite type if it has finitely many isomorphism classes of indecom-

posable modules.

Theorem 1.10.10 (Gabriel). A connected quiver is of finite type if and only if its underlying

undirected graph is a simply-laced Dynkin diagram as seen in figure 1.10.1.
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1.11 Quantum groups

Quantum groups, for our purposes, are quantum deformations of semisimple Lie algebras and
have the structure of Hopf algebras. In particular, we can define a comultiplication map on a
quantum group, so that tensor products of representations are themselves representations of
the quantum group. These quantum groups have proven to be very useful in low-dimensional
topology and knot theory. For example, representations of quantum groups have been used to
determine Reshetikhin-Turaev invariants of tangles. In the case where the original Lie algebra
was slp, the Reshetikhin-Turaev invariant of a link is the Jones polynomial. Quantum groups
are also interesting in the field of categorification, where the existence of a quantum deformation

corresponds to the existence of a grading on the lifted structure.

We discuss here the definition of a quantum group and in particular the quantum group Uy (slz),
and some of the properties of these groups, as well as their representations. Proofs of the
theorems and properties here can be found in [Hum?72], [Jan96] and [Lus93].

1.11.1 Definitions

For the remainder of this chapter, let g be a complex semisimple Lie algebra, with a set of roots
R, a set of simple roots IT and Killing form denoted (, ). We use the following notation: let ¢

(o

be an element of Q\{—1,0,1} and for a € 11, let g, = q%). For a € Z, n € N, define

a] = Te—e

“ do —(JE1
[]a! = [1]a[2]a .- [n]a and [0]a! =1
“ = [a}a' or a n
M ~ flalla—nlal 2

Definition The gquantum group of g (also called the quantum enveloping algebra of g [Jan96]),
is the Q-algebra with generators E,, F,, K, and K;! for all o € II and relations

K K;'=1=K,K* (1.1)
KozKﬁ = KﬁKa (12)
KoEs = ¢“PEsK, (1.3)
KoFg = q_(a’B)FBKoz (1.4)

K,— K1
EaFﬁ _FﬁEa :504767:11 (1'5)
1—(a,B)
1 —
(-1)® l o ) Bl =spaps — (1.6)
s=0 $ a
1—(a,B)
1 —
o (= l ia’@ Fy P FgFy = 0 (1.7)
s=0 @
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for all o, 8 € II.

Definition We say that g is simply-laced if

1. (o, ) =2 for all a € II, and
2. (a,B) € {0, -1} for all « # B € 1L
In the case of a simply-laced Lie algebra g, (o, 5) = 0 or 1 for all o, € II. Hence in the

relation 1.5, g, = ¢ and the last two relations 1.6 and 1.7 simplify to the following for a
simply-laced Lie algebra:

ELEs = EgE, if (o, ) = 0 (1.8)
F,Fs = F3F, if (a,8) =0 (1.9)
E2Es — (q+q ' ELERE, + EsE? =0 if (o, B) = —1 (1.10)
F2Fs — (q+q YF,FsF, + FsF2 = 0if (o, ) = —1 (1.11)

The quantum group U,(g) has the following useful structure:

Theorem 1.11.1. There is a unique Hopf algebra structure (A,e,S) such that for all o € 11:

A(Ey) = Eqa @ 1+ Ko ® Eq £(Ey) =0 S(E.) = ~K:'E,
A(Ey) = Ko ® Ko 6(K):1 s(K):_K—

Uy,(g) is equipped with the following involutions:

There is a unique Q(g)-algebra automorphism w : Uy(g) — U,(g) defined by

There is a unique Q-algebra automorphism v : U, (g) — U,(g) defined by
'(/J(Ea) = E, "/)(Fa) = F, ’(/}(Ka) = K;ll/)(f(Q)l‘) = f(q_l)w@j)
for all « € IT and all f € Q(q).

There is an antiautomorphism 7 : U, (g) — Ug?(g) defined by
T(zy) = 7(y)7(z) for all x,y € Uy(g)
T(Ey) = qFo K ', 7(F,) = qEo K, 7(Ky) = KJ*
7(f(q)x) = f(g~")7(x) for all f € Q(q) and = € U,(g)
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For any «, 5 € IT and a,b € N, we can also consider the divided powers of elements Uy (g)
b
Fp
[b] !

Ea
[a]!

Products of these elements span a Z[q, ¢~ *]-submodule of U,(g).

(@) . o) ._
EW = Y =

We make a brief digression to the particular case Uy(slz), which is just as illustrative as the

original sly case was for general semisimple Lie algebras.

1.11.2 Example: U,(sls)

In the case g = sly, U := U,(g) is a Q(q)-algebra with generators F, F, K and K~', and

relations

KK '=1=K'K

KE = ¢°EK

FK =q %FK
K—-K!
q—q

When studying representations of U, we proceed in similar manner to the sl case, considering
instead eigenspaces of K. We restrict ourselves to finite-dimensional representations V' that
admit a weight space decomposition: V = &,,¢7V,, where each V,, is an eigenspace of K, and
take ¢ # +1. We have the following theorem for finite-dimensional irreducible representations

of U, which is very similar to the corresponding theorem for sls:

Theorem 1.11.2. For each nonnegative integer n there is an irreducible representation of U
L with basis vy, v1,...,v, and an irreducible representation L_ with basis wo, w1, .. ., W, such
that for all0 <i<n

Kv;, = q”_%vi Kw; = _qn—ini

V; ift<n w; ifi<n
F’Uz’ = 1 f Fwi = 1 f

0  ifi=0 0 fi=0

0 ifi =0 0 ifi =0
EU,’ = f Ewi = f

and every irreducible representation of U of dimension n + 1 is isomorphic to Ly or L_.

1.11.3 Representations of U,(g)

Let U := U,y(g) and let A be the weight lattice of g and ® be the root lattice of g. We restrict

ourselves to representations V that admit a weight decomposition, which means here that

V=W where Vi = {v € V | K, = ¢ for all u € @}
AEA
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As in the U, (sl2) case, the irreducible representations of U, (g) are very similar to the irreducible

representations of g (particularly when restricted to the representations above).

Lemma 1.11.3. Let V be a finite-dimensional representation of U with V' # 0 Then

1. There exist A € A and v € V), v # 0 such that E,v =0 for all o € 11 and

2. letting A and v be as in 1, X is a dominant weight and Fé’\’ﬂH_lv =0 for all g € 1I.

For A € A define the left ideal Jy = > g UEa+Y yery U(Ka—¢™)). Thenlet M(X) := U/ Jj.
This is a representation of U generated by vy := 1 + Jy such that

E.vy=0 and Kavy = ¢M oy for all o € II.

Call M(X) the Verma module (or universal highest weight module) of highest weight A. It is

universal in the following sense:

If V is any representation of U with v € V) such that E,v = 0 for all a € I, then there is a
unique U-module homomorphism ¢ : M(\) — V with vy = v. Then we can characterise all

finite-dimensional irreducible representations of U:

Theorem 1.11.4. 1. Let A € A. Then the Verma module M()\) has a unique irreducible

quotient representation L(X).

2. For each dominant weight A € A, the irreducible representation L(\) is finite-dimensional.
Furthermore, all finite-dimensional irreducible representations of U are isomorphic to
exzactly one L(X) with X € A dominant.



Chapter 2
Current algebras

Annular Khovanov homology has rich algebraic structure: its homology groups are modules of
a particular algebra, called sl; (V') here. This is a particular example of a truncated current
Lie algebra. We introduce some of these modified Lie algebras and study their representations

through the use of quivers.

2.1 Polynomial current algebras

The algebras introduced in this chapter are all built from finite-dimensional semisimple complex
Lie algebras, denoted g. These modified Lie algebras are no longer semisimple and hence have

more complex representations.

Definition A polynomial current algebra associated to a complex semisimple Lie algebra g is
a Lie algebra g[t] := g ® C[t] with Lie bracket

[r@t*,y® tl}g[t] = [z,ylg ® th

Current algebras have a natural Z>¢-grading given by the powers of the variable ¢. The pairing
[, ]gpy satisfies the Jacobi identity and the alternating property since [, ] is a Lie bracket.

For what follows, fix the finite-dimensional semisimple complex Lie algebra g and choose some
Cartan subalgebra b of g with n the rank of . Denote by R C h* the set of of roots with
respect to b, PT the set of positive integral weights (weights in the dominant Weyl chamber
with respect to a choice of ordering) and let 6 be the highest root. Let g-mod be the category
of finite-dimensional g-modules, with g-module homomorphisms as the morphisms in g-mod.
Then we have seen that the isomorphism classes of irreducible (simple) representations of g are
parametrised by the elements of PT. Given A € PT, let V()) be the irreducible representation
of highest weight A, generated by a highest weight vector vy. Given a representation V of g in

25
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g-mod, decompose V into a direct sum of weight spaces:

V=B

uep®

so that h-v = p(h)v for allv € V, and h € b.

Let U(g[t]) be the universal enveloping algebra of g[t] inheriting the grading from g[t]. This is

a unital associative algebra generated by the elements in g[t], modulo the relation
(Rt (yot) - (yot)(zot) -zt yxt] =0

for all z,y € g, and all 4,5 € N. The enveloping algebra U(g[t]) is generated by elements in g
and g ® t [CGOT7]. Then U(g[t]) is a Hopf algebra by proposition 1.10.9, with comultiplication
A:z—z®1+1®c for all z € g[t] and multiplication map m. Note that the comultiplication
map preserves the grading in U(g[t]). From now on, we write zt® in the place of x ® t* for
elements in g[t]. Let g[t]+ be the Lie ideal g®tC[t]. Then g[t]+ is also a graded Lie algebra, with
grading given by the powers of ¢, so that the homogeneous components of g[t]; of nonpositive

degree are zero.

Let G be the category of graded g[t]-modules with finite-dimensional homogeneous subspaces
and grading-preserving g[t]-module homomorphisms. Then any representation V of g[t] in ObG
can be decomposed as a direct sum over Zy of subspaces V[r]: V = @,ez, V[r| such that
(xt*)V[r] C V[r + k] for all z € g, and all r,k € Z,. Thus, each V[r] is a finite-dimensional
representation of g. For a morphism f € Homgp(V, W), denote by f[r] the restriction of f to
V(r]. In particular, f[r] € Homg(V[r], W[r]), since f is grading-preserving.

Let B be the covariant functor from g-mod to G defined by
B(V)[0] =V and B(V)[r] =0 for all » > 0 and any V € Obg-mod.

The g[t] action on B(V) is given by (2t*) - v = 60z -v for all @ € g,k € Zy,v € V. Similarly,
for any morphism f € g-mod, we define B(f)[0] = f and B(f)[r] = 0 for all r > 0, so that
Homg (B(V), B(W)) = Homg(V,W). In words, the functor B sends a representation of g to a

representation of g[t] concentrated in degree zero.
Define {j} : G — G to be the shift functor by j € Z:

MkH{j}=V]k+j] forall k e Z,

The irreducible representations of g[t] can be understood from the classification of irreducible

representations of g:

Proposition 2.1.1. Define V() j) := (B(V(A\)){j} for A € PT and j € Z,. Then for each
pair (N, j) € PT x Zy, V() 4) is up to isomorphism the unique irreducible representation of
g[t] in Ob(B) and

Homg(V()\,j)7V(u7k:)) =01 ()"]) # (:U’,k)
Homg(V(A,j),V (A, 7)) = C.
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Moreover, if V€ ObG is concentrated in degree n for some n € Z, that is, V.= V[n|, then V is

completely reducible.

Proof. By definition, V/(\,j) = (B(V(\))){j}, which is the irreducible representation V(\) of
¢ considered as a representation of g[t] with zt* acting trivially for all £ > 0 and all z € g.
Furthermore, V' (), j) is concentrated in degree j, so that V/(\,j) = V(A)[j]. Then V(A,j) is
an irreducible representation of g[t] since V(A) is an irreducible representation of g, and any
subrepresentation of V (), 7) would also have trivial action of zt* for k # 0. Since the V()) are
non-isomorphic as g-modules, V (), j) and V(u, k) cannot be isomorphic as representations of
g[t] if A # p. Furthermore, any morphism in G preserves the grading, so V(\,j) and V(A k)

cannot be isomorphic for j # k.

I claim that any irreducible representation of g[t] must be concentrated in a single degree.
Suppose that V is a representation of g[t] such that V[m] and V[m/] are non-zero for some
m < m' € Zy. The action of g[t] always preserves or raises the degree, so ®;>nV[j] is a

proper, non-trivial subrepresentation of V' so V is reducible.

Now suppose V' is an irreducible representation of g[t], so that there exists some m € Z with
V = V[m]. Then by definition of objects in G, V is finite-dimensional. Furthermore, xt* must
act by zero for all k > 0, since (xt*)V[m] C V[m + k] = 0. Then V is a representation of g and
must be irreducible as a g-module to be irreducible as a g[t]-module. Therefore V is isomorphic
to V(\) as a g-module for some A € P+, and hence is isomorphic to V(A, m) as a g[t]-module.

The statements about the morphism spaces follow from Schur’s lemma for algebraically-closed
fields and the restriction to grading-preserving g[t]-module homomorphisms in G (namely, the

only maps between elements concentrated in distinct degrees must be trivial).

Finally, suppose V = V[n] for some n € Z, . Then as before, zt* must act trivially for all & > 0
and V is a g-module, so by semisimplicity of g, V is completely reducible as a g-module, and

hence as a g[t]-module. O

Since U(g[t]) is a Hopf algebra, the tensor product V ® W of representations of g[t| also carries
the structure of a representation of g[t] via the comultiplication map. Let V, W be representa-
tions of g[t], k € Z and define

(VeW)k =@ Vile Wk - i

1€ZL4
with W{[j] =0 for j < 0.
Lemma 2.1.2. (i) VW =@y, (V@ W)[K]

(ii) For allj € Zy, xt? - (V@ W)[k]) C (V @ W)[k + j]
The lemma in particular shows that G is a tensor category.

Proof. (i) This follows from the distributivity of the tensor product over the direct sum.
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(ii) Using the comultiplication map,

(@) (Ve W)k) = P @))Vi] @ Wk —i]+ V] ® («t/)W[k — .
€Ly
Then (2t))V[i|@ W[k —i] C V[i+jl@Wk—i =V][i+j @W[k+j—(i+7) and V[i] ®
(xt) )Wk —i] C V[i] @ W[k + j — i], which are both clearly subsets of

VeW)k+j =P Vil Wk+r—i.

1€EZ 4

2.2 Takiff Lie algebras

Another class of Lie algebras consists of truncated polynomial current algebras, first studied by
Takiff [TakT71].

Definition Let g be a complex finite-dimensional semisimple Lie algebra. A Takiff Lie algebra
is the truncated current algebra g; := g @ C[t]/t%.

More generally, a generalised Takiff Lie algebra is the algebra g®@C[t]/t" for some integer n > 2.

This is a graded Lie algebra with grading given by powers of ¢ and Lie bracket given by
Lyl =91, 201yt =[z,yl @t =[z@t,y®@1] and [z @ t,y®t] =0
for all x,y, € g. We again omit the tensor product symbol. If the Lie algebra g has dimension
n as a vector space over C and basis {z1,x2,...,2,}, then g; has dimension 2n and basis

{z1,...,xn, 1, ..., Tt}

We classify the irreducible and projective indecomposable representations of g;. Let G; be the
category whose objects are finite-dimensional g;-modules and whose morphisms are g;-module

homomorphisms.

Let PT be the set of dominant weights of g and let V' (\) denote the irreducible representation
of g with highest weight A\. Then:

Proposition 2.2.1.

1. The isomorphism classes of finite-dimensional irreducible representations of g, in ObG,
are parametrised by A € Pt with g;-action given by xtF - v = Ok0x - v for all x € g and
all v € V).

2. Up to isomorphism, there is a unique finite-dimensional projective indecomposable g;-
representation Vi(\) := V(A\) @ C[t]/t? for each X € P*, and any finite-dimensional

projective representations are isomorphic to Vi(\) for some A.
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Proof. 1. Let V) be a finite-dimensional g;-module with g;-action as defined in the proposi-
tion statement, and such that Vy = V() as representations of g for some A € P*. Then V),
is irreducible as a representation of g;: 2t* would act trivially on any g;-subrepresentation
of V) for k > 0. Thus, a subrepresentation of V) as a g;-module is a g-submodule of V'(\),
and must therefore be trivial.

Suppose that V is an irreducible representation of g;. Then zt* must act trivially for
k > 0. If not, then consider the subspace W of V spanned by (xt) - v for all v € V.
Then by assumption W is a proper, non-trivial subspace of V. It is proper because if
every element of v could be expressed as xt - w for some x € g and some w € V, then
yt(v) = (yt)(xt)w = 0 for all v, contradicting the assumption. But then g(W) C W, and
zt- W = 0 for all x € g, and W is a proper subrepresentation of V', contradicting the
irreducibility of V. Thus V is an irreducible representation of g, and is isomorphic to
V()) for some A € PT.

2. We omit the proof of 2.

2.3 Representation algebras

We consider one final definition of a current algebra. The current algebra appearing in annular

Khovanov homology in chapter 4 is an example of this type of current algebra.

Definition Let g be a Lie algebra as above and let V' be some finite-dimensional representation
of g. Then the representation algebra associated to the pair g(V') is the vector space g(V) :=
g @ V with Lie bracket

[(z,0), (4, w)]g(v) = ([#,9]g; - v =y - w) (2.1)

for all x,y € g and all v,w € V.

A routine calculation shows that this bracket satisfies the Jacobi identity, and is alternating, so
this is well-defined Lie algebra. There is also a Zs-graded version of the representation algebra
(a definition of a Lie superalgebra is found in section 1.5.2):

Definition Let g and V be as above. Then the representation superalgebra is the Lie super-
algebra g~ (V) with underlying vector space g @ V and Lie bracket as in equation 2.1. The
Zo-grading is defined to be: g~ (V)[0] = g and g(V) [1] = V.

While from the definition it may seem as though g(V) and g~ (V) are indistinguishable, the
Zs structure becomes apparent when passing to the universal enveloping algebras of g(V')
and g~ (V), or when studying their representations. For example, in U(g(V)) the equality
[(0,v),(0,v)] = 0 is trivial, whilst in U(g~(V)) this equality is equivalent to v?> = 0 for all



30 CHAPTER 2. CURRENT ALGEBRAS

v € V, which is not necessarily true in U(g(V)). Thus, for any v € V, v is a nilpotent linear
operator acting on any representation W of g~ (V') is nilpotent, but this does not have to hold

on a representation of g(V).

2.3.1 Examples

The simplest example of a representation algebra is the Lie algebra sly(V7), where V; is the
standard representation of sly. This is a five-dimensional Lie algebra with basis {e, f, h,v1,v_1}

and (non-trivial) relations:

1. sl relations as above

2. [e,vn1] =[f,v-1] =0

3. [e,v_1] =1

4. [f,n] =v_1

5. [h,v1] = v1, [hyv_q] —v_

6. [v1,v-1] =0

We can also consider the dual of this representation algebra, the Lie superalgebra sl (V7), with
the same definition as above, but with a Z,-grading, so that we have the addition non-trivial

relations [v1,v1] = 0 and [v_1,v_1] = 0.

While these examples have a simple presentation and are in some sense the smallest non-trivial
extensions of sly by one of its representations, we show in section 2.4.2 that representations of
slo(V7) and sl; ' (V;) are already much more complex structure than the representations of sly
itself.

Main example: sl; (13)

A representation superalgebra that is of particular interest in the context of annular Khovanov
homology is the algebra sl; (V2), where we recall that V5 is the three-dimensional irreducible
representation of slbC with highest weight 2. The superalgebra sl; (V2) is a six-dimensional

complex vector space, with basis {e, f, h,v_a,v9,v2} and relations:

1. sly relations: [, €] = 2e, [h, f] = —2f and [e, f] = h
2. [e,v2] = [f,v_0] = [h,v0] = 0

3. [e,vo] = —2vs

4. [f,v0] = 2v_s

5. [e,v_2] =g
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6. [f,v2] = —vp
7. [h,i}g] = 2112, [h,v_g] = —2’U_2

8. [v,v;] =0 for ¢,j € {-2,0,2}

Note that the subscripts on basis elements v_s,vg and vs indicate the weight spaces that the
basis elements generate. The relations are directly computed from the definition of the Lie

bracket on sl; (V2), and constants arise from the choice of basis vectors v;.

2.4 Quiver representations

As noted previously, current algebras g(V') are not semisimple, so the relations between repre-
sentations are nontrivial. A way to visualise this added complexity and classify representations
is to consider quiver representations, as introduced in section 1.4. Here we demonstrate this
method in some simple examples of current algebras and contrast these to the semisimple Lie
algebra case.

2.4.1 Semisimple Lie algebras

Semisimple Lie algebras have the property that their finite dimensional representations are
completely reducible, from a theorem of Weyl [Wey68]. For this reason, it suffices to understand
the irreducible representations of a semisimple Lie algebra, and by Schur’s lemma [?], there can
be no non-trivial maps between non-isomorphic irreducible representations. In the case of sls,
where there is exactly one irreducible representation for each highest weight, or equivalently
one of each dimension, this means that there can be no non-trivial maps between different
Vi. Consequently, the quiver representing the category of finite-dimensional sl;-modules is
particularly simple, as demonstrated in the following result, which is a restatement in the
language of quivers of the classification of the irreducible finite-dimensional representations and

complete reducibility of finite-dimensional representations of sls, as seen in section 1.9.

Proposition 2.4.1. The category of finite-dimensional representations of sly is equivalent to

the category of representations of the following quiver Q:

Note that Rep-Q is equivalent to Vect, since there are no arrows between the vertices of @,
namely a finite-dimensional representation of ) consists of a terminating sequence of vector

spaces.

Proof. We begin by defining a functor F from Rep-sly to Rep-Q. Let M be a representation
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of sly. Then M decomposes into a direct sum of irreducible representations:

M=V

i>0

where n; is the number of copies of the irreducible representation V;. Let E; be the highest

weight space of V", namely
E,={e;€Vi|e-e;=0and h-e; =ie;}.

Since the weight spaces of an irreducible representations are one-dimensional, F; has dimension
n;. By Schur’s lemma, there are no non-trivial maps between the V;**, so in particular no
maps between the highest weight spaces. Then the functor F takes a representation M to the
representation of () associating the vector space F; to the ith vertex in Q).

Conversely, let W; be the vector spaces corresponding to vertices v; in the quiver Q. Then
define a representation V of sly by setting each W, to be a highest weight space of weight
i in V. Since V decomposes into a direct sum of irreducible representations, each generated
by a single highest weight vector, the definition of the highest weight spaces in V' completely
determines V' as a sl representation. The number of copies of a given irreducible representation
of highest weight 4 is determined by the dimension of W;. These constructions are clearly inverse
to each other. O

Proposition 2.4.2. More generally, the category of finite-dimensional representations of a
semisimple Lie algebra g is equivalent to the category of finite-dimensional representations of a
quiver Q with vertex index set I = Pt, where Pt is the set of dominant weights of g, and no

edges.

Proof. The proof clearly extends from the sl case. Any finite-dimensional representation V'
of g decomposes into a direct sum of irreducible representations, each isomorphic to V() for
some X\ € PT, where V(\) is an irreducible representation of highest weight A. The highest
weight spaces for each A determines the representation V' and define a representation of Q.

Conversely, a representation of ) consists of vector spaces Vy for each A € PT, and we define
a representation of g with highest weight spaces V). O

2.4.2 Loupias’ results

We prove the following theorem of Loupias [?, Lou72]emonstrating the complex structure of

sl5(V1)-rep through the use of quiver representations.

Theorem 2.4.3 (Loupias). The category of finite-dimensional representations of sla(V7) is

equivalent to the category of finite-dimensional representations of the quiver:

0 @ _ 1 o1 Q2 3 Q3 4
e e P
Bo B1 B2 B3

:
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with relations

Bo ap =0
,Bi+1 Qi1 = O ,Bi fO?” alli e N

Proof. We demonstrate how to construct a representation of the quiver from a representation of
slo(V1): let W be a representation of slo (V7). Then in particular W is a representation of sly and
we can decompose W into a direct sum of irreducible representations W = @@, o W@"l Let B;

be the highest weight space for each of the W;, so that B; = {b; € W; | e-b; = 0 and h-b; = ib;}.
The dimension of weight spaces in an irreducible representation is one, so each B; has dimension
n;. To begin constructing a representation of the quiver, assign the highest weight space B; to

each vertex i. The v; will determine the linear maps assigned to arrows in the quiver. Define

a;: By — By Bi: Biy1 — B;

b — v1 - b bit1 — (0 +2)v_1 - biy1 — fo1 - biga

for all i € N. The definition of j3; consists of applying v_; to a vector in B;y; then projecting
onto B;, since v_j - b;41 is not necessarily a highest weight vector in W;. Then the claim is
that these a; and (; satisfy the quiver relations. We first check that «; and §; are indeed maps
on the B;, using the relations defined in section 2.3.1 and noting that the Lie bracket on the
algebra becomes the commutator in End(W).

Let b; € B;. Then ev; - b; = vie - b; = 0 since [e,v1] = ev; —v1e = 0 and b; is a highest weight
vector, so e -b; = 0. Also, hvy - b; = v1h-b; + vy - b; = (i + 1)vy - b;. From these two equalities,
it can be seen that vy - b; € B;41. Similarly,

e Bi(big1) =e-[(i +2)v_1-biy1 — for - biy1]

= (i +2)v_r€-biy1 + (i +2)v1 - bip1 — fevy - bipr — hor - bigy
(Z + 2)’[)1 i+1 — (Z =+ 2)1)1 . bi+1

0

and

b Bi(biv1) =h - [(i +2)v_1 - biy1 — fvr - bij1]
= (’L + 2)(2 + 1)’[)_1 . bi+1 — (Z + 2)1}_1 i+1 — fh’Ul i+1 + 2fU1 . bi+1
=i[(i +2)v_1 - biy1 — for - big1]
50 B(bi+1) € B; for all bi+1 € Bi+1.

For the quiver relations, since v; and v_; commute, fv? = v?f + 2v_jv;:

Boao(bo) = Bo(v1 - bo)
= 21}_1’U1 . b1 — f’U% . bo
= 27],1’()1 . b1 — ’U%f . bo — 2’(),11}1

=0
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since by € By, where By is a direct sum of copies of the trivial representation.

Biv1it1(bit1) = Biv1(v1 - biy1)

= (i +3)v_qvy - bip1 — fvi-biny

= (i +3)v_1v1 - bip1 — VIf - biy1 — 20_101 - biyq

=i+ Dv_qvy - biy1 — vlf by

a;Bi(biv1) = a;[(i + 2)v_1 - bip1 — for - biga]

= (i 4+ 2)viv_1 - i1 —vifor - b

= (i +2)v1v_1 - bip1 — VIf - biy1 —viv_1 - biy

= Bir1it1(bit1).
This is a representation of the quiver constructed from the representation of sly(V;). The
inverse process consists of defining each vector space V; assigned to the vertices i in the quiver
to be the highest weight space of the direct sum of irreducible representations W; of highest
weight 7. This determines the sly-action on the representation V = ®ieN W;, with V; ¢ W;
is the highest weight space of W;. Then define the action of the v; by vy - b; = a;(b;) and
v_q-biy1 = H%(ﬁi(bi_i_]) + fa;11(biy1)) and extending this action to the whole representation
using the commutation relations. Then these constructions are inverse to each other, so any

map of sla(V7) representations induces a map of quiver representations and vice versa. O

A similar result holds for the Lie superalgebra sl; (V1) [HKO1]:

Proposition 2.4.4. The category of finite-dimensional representations of sy (V1) is equivalent

to the category of finite-dimensional representations of the quiver:

0 @ 1 @1 9 3 ¥ 4
e e e 20 e
Bo B1 B2 Bs

with relations

Qi1 O = 61' Bi—&-l =0 fO?” all i € N

Bi+1 41 = ; B; for alli € N.

The proof of this proposition is entirely similar to that of the previous theorem, though noting
that there is a further non-trivial relation in the superalgebra sl; (V7), namely [v;,v;] = 0 for

1 = *1, which leads to the first set of relations on the quiver.

Note that this quiver together with the relations above has path algebra Z which is an example

of a zigzag algebra, in particular the zigzag algebra of the chain

Zigzag algebras will play an essential role in the categorification of the adjoint representation

seen in section 3.2.
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2.4.3 The representation superalgebra sl; (13)

We now give an extension of Loupias’ results to describe the finite-dimensional representations of
the superalgebra sl; (V3). The quiver corresponding to s[5 (V3) is now disconnected, a property
that holds for all sI3(V},) for even n.

Theorem 2.4.5. The category of finite-dimensional representations of the algebra sl (Va) is

equivalent to the category of finite-dimensional representations of the quiver
Yo 72 Va Yo ¥s
[e75) a2 (e %'} (679
[ ] [ ] [} . [ ]
0 Bo 2 B2 4 Ba 6 Be 8
71 3 5 v Y9
a1 a3z as (0%
[ ] [ ] [} [ ) [ ]
1 B1 3 B3 5 Bs 7 B7 9

with relations:

Yit2 @ +a; v =0
Bi Vit +7i Bi =0
Qiy2 a; =0

Bi Bi+2 =0

Bit2 itz +a; Bi =0
v =40+ 2)8i

for all i € N.

Proof. The proof proceeds as for Loupias’ theorem. Let the highest weight spaces B; of the
copies of irreducible sl; representations be the vector spaces corresponding to each vertex in

the quiver. Define
;o B,L — Bi+2 ﬁl : Bi+2 — Bl Yi - Bz — BZ
bi = Vg -+ bz bi+2 = Y - bi+2 bl = X bz

where x; = (i + 2)vg — 2fvy and y; = v_g — mfxi+2 — mf%g. Thus, the maps
B; and ~y; are projections onto the spaces B; of v_5 and vy respectively.

Using the relations on the Lie algebra, we get the relations on the quiver. Note that we are
only interested in maps on the B;, so in all the following computations, we implicitly apply
the projection map onto B;, under which any term of the form fA is sent to zero, for A any

composition of elements in sl; (V2).

1. Immediately from v = 0, we must have a; 20; = 0 for all i.
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0= 'U%g ~bita
= v_2(¢(i + 2)yiv2 - biya + V(i +2) friga - biva — (i +2) f202 - bita)
= ¢(1)B(i + 2)Yiyir2 - biva + V(i + 2)v_ofita- biya +1(i + 2)v_of?v2 - bisa
= (1) (i + 2)i;Yit2bita since v_of = fv_o.

for all ¢ € N and all b;14 € B;44. Thus, 8;8;4+2 =0 for all i € N.

3. voU2 + vovy = 0:

2f2

- b;
+4

V2V b +4ZL'Z+2’U2 b =+ -

+4J)l+21}2 b
2
VU 02(i+2x +Z+2fv2 )

2
U2zi'bi+i

T 2’()2f’l]2 . bz

1+ 2

1 2
=i+2v2xl b; —|— 21)01)2 b;

Hence, 0 = (v2vg + vov2) - bi

by 2Hit?
= V2&i = Op T 57 A
i+2° (i +2)(i +4)

Tj4-2V2 * b;

for all 7 € N and all b; € B;. This implies the relation 7;y2a; = «;7y; for all ¢ € N.

4. v_ov9 + vov_o = 0:

1
V_oUg - bijo = U—z(mfm—s-z “bita + T 4fU2 “bito
1

= 7l_|_4yz$z—i-2 bz+2 + - +4U 2f’U2 i+2
1 b;
= i L i
H_41/ +2 " 0i42
1 2
VoU—2 - biya = vo(Yibita — (DD fxiyo-bipo — (EDED) g - bito)
1 b 1 f b 2 f2 b
= - TiYi V2 — 7o V0 Tit20i+2 — Vo V2 - 05
2 W2 T Y (¢ 4) O TR T g (4 4) O VP
L b +72 b
= 5l i - - V—2Zi+2 * U5
I e I ) e
L biyo+ ——— b
o TiYi - b - - i Li4+2 * 0
i+ 2 Y +2 (z+2)(z+4)y +2 * Vi42
1 1 2
H 0= 1L bz 7 z'bi . . [ 'bi
ence, Z+4y$+2 +2+ +2'Ty +2+(Z+2)(Z+4)yx+2 +2

1
=52 —— (Yi%it2 - bive + 2iYi - bit2)

for all 1 € N and b; 5 € B;1o. Thus, 5;viy2 + 7:8; = 0 for all 1 € N.
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2
—5%i - bi + - - b;
s AL R T

vo fva - by

2
= 2 b,
- x +i+2

= c . b — _ . b
(Z+2)2$Z A Z+2U 2V2 7
Hence, 27 - b; = 4(i + 2)v_ouvy - b;
for all b; € B;.

6. V_9Ug + VoVU_o = 0:

V_2V2 * bl'_;'_g = Yi4+20U2 * bi+2 after projecting onto Bi+2

Hence, a:?+2 . bi+2 = 4(1 + 4)yi+202 . bH_Q

for all bit2 € Bita, so /Bi’yiJrQ +viB; =0 for all i € N.

1 2
,'bi = zbz __— i bz S — bl
vaV_g - bit2 = va(yi - biy2 (i+2)(i+4)fx 42 bita (i+2)(i+4)f Vg - biya)
4

= voyi - biyo — (

- vy - by
i+ 2)(i +4) )20 v

i+2)(i+4

[
=~

= VoY biyo — ————— T 5 b Y - b;
vaYi b2 T oy 4 e e T gy 4y Y i
= v2¥; - biq2
Hence 0 = v_gvg - bjq2 + v2v_9 - bit2

= Yit202  bit2 + vay; - biyo
for all bi+2 € Biyo. Thus, Bi+2ai+2 + «;8; = 0 for all i € N.
For the inverse construction, define each vector space associated to the vertex i to be the highest
weight space as in the sly case. Then the action of sl; is determined on each B; by

’Ug'bi:OLibi
1
1+2

(Bi +2fa) - by

’l}()'bi

V_g-b;, = Yi + (fﬂz - QfQO‘i)

1
(i4+2)(i+4)
on the basis vectors of the highest weight spaces, and extend to the total representation by the

commutation relations. O
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Chapter 3
Categorification

In this chapter we categorify certain irreducible representations of quantum groups. In par-
ticular we construct a category C such that the Grothendieck group K(C) of the category is
isomorphic to a chosen representation of the quantum group of a semisimple Lie algebra. More
explicitly, given a semisimple Lie algebra g with quantum enveloping algebra (quantum group)
Uq(g), and a representation V) of Uy(g) with highest weight X\, we construct categories C,, for
each weight p appearing in the decomposition V\ = @, V(1) into weight spaces such that the
Grothendieck group of C,, is isomorphic to Vy(u). Furthermore, we lift the action of the gener-
ators of U,(g) to functors acting between the categories C,,. We also demonstrate how further

structure of the quantum group and its representation can be lifted to the categorical level.

In the first example, g = sl,, and the lifted representation has highest weight 2w;, where wy, is
a fundamental weight of sl,,. Since in this case the dimension of the weight spaces V) (u) are
Catalan numbers, this is an example of a “bicategorification”, that is, replace a number to a

vector space and then replace the vector space by a category:

categorification categorification
number &——————— vector space ———————— category
dimension Grothendieck group

1 2m

m—+1 m ?

More specifically, in this example the number is the mth catalan number ¢, =

the vector space is a weight space Vy of a particular representation V' of U,(sl,,), and there is

a category C, corresponding to each weight space V):

m+1 Va Cy

dimension Grothendieck group

1 2m categorification categorification
m

Furthermore, the quantum group Uy (sl,) acts on the representation V' = @, and this action
lifts to a categorical action on the category C := €, ViACx, with functors lifting the generators

of U,(sl,) mapping between the categories Cy, so that the picture becomes:

39
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O Uq(sln) O et
categorification categorification

2m(A
T R FN : N2
m()\) dimension Grothendieck group

Both examples of categorified representations considered here do not just lift the basic structure

of the original representation, but lift further structures on both the representation and the

quantum group, satisfying another of the main objectives of categorification.

3.1 Categorifying some level-2 representations of U, (sl,)

Definition A level two representation of a quantum group U,(g) is an irreducible representa-

tion of highest weight q(wj + wy), where w; and wy, are fundamental weights of g.

We give an exposition of the work of Khovanov and Huerfano in [HKO06]. Note that a cate-
gorification of the corresponding level-two representation of the Lie algebra sl,, is obtained by

forgetting the grading in the constructed category.

Let wy,...,wn—1 be the fundamental dominant weights of the Lie algebra sl,, and let V' be
the irreducible representation of the associated quantum group U,(sl,,) with highest weight
¢, for some 0 < k < n— 1. As seen in chapter 1, any highest weight can be represented
by a sequence of n integers, determined by coefficients of fundamental weights. In this case,
the highest weight is 2wy, = (0,...,0,2,0,...,0), where the 2 occurs in the kth position in the

sequence.

Decompose the representation V into a direct sum of weight spaces V). A weight A is called
admissible if Vy # 0. Then the admissible weights for this representation are represented by

sequences of n integers satisfying

A= (A1, A2,  Ay) such that » A =2k and 0 < \; <2

i=1

Let m(\) be half the number of 1s that appear in the sequence A. For example, if we are
considering sl5, and k = 3, then an admissible weight is A = (1,1,2,1,1), corresponding to the
weight (0,—1,1,0) and m(X) = 2.

The requirement that > \; = 2k, with \; < 2, ensures that 0 < m(A) < min{k,n — k}: there
can be at most 2k 1s in the sequence, so that > \; < 2k, and the requirement m(\) < n —k
ensures y_, > 2k. It is also clear from the requirement that the sum be even that m(\) is an

integer.
Lemma 3.1.1. The dimension of the weight space for admissible X is dependent only on m :=

2
m(A), and is equal to the m-th Catalan number ¢, = #H ( "
m
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Proof. By Schur-Weyl duality, the multiplicities of weight spaces V) are given by the Kostka
numbers, the number of semistandard Young tableaux of a given shape and content. More
specifically, given a weight space V), we have dim(V)) = K, where K, is the Kostka number
associated to the shape v, and content A. Here v is the partition v = (2,2,...,2,0,...,0)
consisting of k 2s and n — k 0s. This is the sequence corresponding to the highest weight 2wy

of the representation V.

It is known that the m-th Catalan number is the number of standard Young tableaux of shape
2 x m. The highest weight 2wy, given by the partition v = (2,...,2,0,...,0) as above, corre-
sponds to the Young tableau of shape 2 x k. Admissible weights u consist of ordered n-tuples of
integers 0,1, and 2, such that the sum is 2k. This defines a weight of the tableau by setting the
1th coefficient in the sequence to be the number of is in the weight of the tableau. Returning
to the previous example for n =5, k = 3, let A = (1,1,2,1,1). This defines the content of the
Young tableau to be one 1, one 2, two 3s, one 4 and one 5, so an example of a semistandard

Young tableau of shape v and weight A is:

—_
[\

w
[S23[9V]

To construct a semistandard tableau, any pair of integers corresponding to a 2 in the sequence
@ must occur in the same row. Deleting any row consisting of the same number, the Kostka
number K, is equal to the simplified Kostka number K, y» where v/ is a 2 X m rectangle and
m is half the number of 1s in the sequence A and )\’ is derived from X by taking \; mod 2 for all
elements \; in the sequence \. For example, with A as above, A’ = (1,1,0,1,1). Therefore there

are 2m non-zero elements in X', all equal to 1, so K,y is exactly the m-th Catalan number. [

As in chapter 1, denote the generators of U, (sl,,) by E;, F;, K; and K;l.

Let ¢; = (0,...,0,1,—1,0,...,0) be the sequence of n integers with ith entry equal to 1 and
i + 1th entry equal to —1. Then E; - V) C Vi.,, and E; - V) = 0 if A + ¢; is not admissible.
Similarly, F; - Vy C Va_g,, and F; acts trivially on V) if A —¢; is not admissible.

The aim is now to construct a categorification of the level two representation V' using a geometric
context in which the Catalan numbers arise. As a point of reference, we will construct an abelian
category C = €@ C(A) where A ranges over the admissible weights for V' and each of the C()\)
are categories of finitely-generated graded Hy modules, with the action of U,(sl,) on V lifting
to an action on C. Our first step is to construct the Hy. We will then describe the action of

U,(sl,,) on C and look into some of the structure of this category.
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The rings H)

Let A be an admissible weight and let s = (s1, s2, . . ., S2;m ) be the sequence of integers describing
the positions of the 1s in A in order (so that s1 < s2 < ... < Sg5,): for example, if A\ =
(1,2,1,1,2,2,1,1,1,0,2) then s(A) = (1,3,4,7,8,9). Place marked points on the horizontal

axis at each s;.

Define B® to be the set of matchings of the s; with no quadruple s; < s; < s, < s such
that ¢ is matched with k and j is matched with [. Then we can visualise B® as the set of
crossingless matchings of the 2m points s;, and the size of B® is precisely the m-th Catalan
number. For simplicity, all figures depict the case where the s; are the integers 1,2,...,2m,

with corresponding set of crossingless matchings denoted B™.

For example, the set B? is:

7

Let a and b be elements in B™ and denote by R(b) the reflection of b about the horizontal axis.
Then we can form a closed 1-manifold, denoted R(b)a, by gluing together R(b) and a at the

endpoints s; as shown below. Our convention is to read all diagrams from bottom to top.

Let a be and let b be
W N2
So that R(b) is Resulting in the closed 1-manifold R(b)a:

N

For any pairs (a,b) € B™ x B™, R(b)a is a closed one-manifold. To obtain the rings Hj,
we apply a functor Q, more specifically a two-dimensional topological quantum field theory
(TQFT) from the category ;Cob of closed 1-manifolds and oriented (1+1)-cobordisms to the
category of abelian groups Ab. This method of applying a TQFT will reappear in chapter
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5, when discussing the construction of Khovanov homology. The main building block for this

functor is the following Frobenius ring .A:

Let A be the cohomology ring H*(S52,Z) of the 2-sphere, so that A = Z[X]/(X?) (where X is
a generator for H?(S2%,7Z)). Then the nondegenerate trace form tr: A — Z on A is given by:

tr(1) =0 tr(X) =1

and the unit map € : Z — A is defined by £(1) = 0 and (X ) = 1. Define a grading on A by
setting deg(1) = —1 and deg(X) = +1. Then the multiplication map m : A® A — A and
comultiplication map A : A - A ® A are degree 1 maps defined as follows:

1®l—1

) 1eXeXx A'{lHl@X—’—X@l
X®l—=X X—=X®X
X®X—0

The TQFT Q is given by the following:
Given a disjoint union &; of i circles, Q(0;) = A®".
Viewing the three-holed sphere S%,Q as a cobordism from one circle to two circles,

Q(52)=A:A— A® A

Viewing the three-holed sphere Sil as a cobordism from two circles to one,

Q(Sf72):m:A®A—>A.

Viewing the disc D%,o as a cobordism from one circle to the empty manifold,

Q(D%’O) =tr: A= Z.

Viewing the disc D§ ; as a cobordism from the empty manifold to one circle,
Q(Dgﬁl) =c:7Z— A,
where ¢ is the unit of A and tr is the trace of A.

R(b)a is a disjoint union of cycles, hence an object of ;Cob, so we apply the functor Q to it,
obtaining Q(R(b)a) = A®® where i is the number of circles in R(b)a.

Define the ring

Hyi= @ (Hy), where W(H), == Q(R(B)a) {m(N)}

a,beB*
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Contraction Isotopy
_—

Figure 3.1: Contraction from R(c)bR(b)a to R(c)a

and {m(A)} denotes an upwards grading shift by m(X). To define multiplication in the ring
Hjy, note that for all a,b and ¢ in B*, there is a canonical cobordism form R(c)bR(b)a to R(c)a

given by contracting b with R(b) as shown below:

The contraction cobordism is in fact a surface in R x [0, 1] x [0, 1], see [Kho02]. This cobordism
induces a group homomorphism Q(R(c¢)b) ® Q(R(b)a) — F(R(c)a). Thus, multiplication in the
ring Hy 4(H»).®,(Hx), = 4(H)), is defined to be the homomorphism Q(R(d)c)® Q(R(b)a) —
Q(R(d)a) induced by the contraction of ¢ with R(b) if b = cand 0if b # ¢, over all a, b, ¢,d € B®.
This multiplication is associative and grading-preserving after applying the shift {m(\)}, where
associativity follows from the fact that the one-manifolds corresponding to products (zy)z and
z(yz) are isotopic for all z,y,z € Ob;Cob, and the TQFT Q is a functor from ;Cob, hence

isotopies in 1 Cob induce isomorphisms in Ab.

Furthermore, ,(H)), is a subring of H isomorphic to A®™X) | since each matching in a defines
a circle in R(a)a and each of these cycles is disjoint by definition of B*. Define 1, := 1™ ¢
A®m(N) " Then 1, is an idempotent in H, and ZaGBS 1, is the unit element in H), with
o(Hx), = 1pHx1,. The reason for studying the rings H) is in the categorification of weight
spaces Vy for admissible A: these will lift to categories of modules over the rings Hy. Thus,
functors between these categories will consist of tensoring with bimodules of the rings, more

specifically, (Hy, H,)-bimodules for admissible weights A and p.

Let A and p be admissible weights, with m(\) = m and m(u) = [, with associated position
vectors given by s(A) = (s1,S2,...,82m) and t(u) = (t1,t2,...,ts). Arrange the points s;
along the horizontal axis and the points ¢; along the horizontal line at height 1 in R x [0,1]. A
cobordism between the set of points s; and the set of points ¢; is a disjoint union of arcs and
circles (copies of the unit interval and S* embedded into R x [0, 1]) such that the endpoints of
the arcs have horizontal coordinates s; and ¢;, and all these points are the endpoint of an arc.
To ensure that concatenation is smooth, we require the arcs to meet horizontal lines vertically
at their endpoints. A cobordism of this form is called a flat tangle 7. A flat tangle with
2m bottom endpoints given by the position vector s for an admissible weight A and 2! top
endpoints given by the position vector t for admissible weight p is called a flat (I, m)-tangle, or

a flat (u, A)-tangle if we want to make explicit reference to the sl,, weights associated to T
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Figure 3.2: A flat (3,2)-tangle

From flat (v, 1) tangles one defines an (H,, H,)-bimodule given by

QT) = @ ARMTa){m(n)}
a€B?®
beB*
where R(b)Ta is the closed 1-manifold obtained by gluing R(b) and a to the flat tangle T' by
identifying endpoints.

Note that Q(T) is well-defined, since each summand consists of a disjoint union of cycles. A
(v, u) tangle T7 can be composed with an (7, v) tangle T by identifying the top endpoints of
Ty with the bottom endpoints of T5 to form an (7, ) tangle T175.

Proposition 3.1.2. [Kho02] There is a canonical isomorphism of (H,, H,)-bimodules F (ThT>) =
F(1h) ®n, F(Iz).

The functors between categorified weight spaces will lift the action of the elements E; and Fj,
which take weight spaces V), to weight spaces V,,4.(;) when these are admissible. The tangles in
figures 3.1 and 3.1 demonstrate the action of elementary bimodules on admissible weight spaces
that will be used to define the categorical action of F; and Fj:

i+1 i

i i+1

Figure 3.3: The flat tangles Id?'1 and Idﬁ+1

To simplify notation, define S to be an integer that is either 0 or 2. The tangles in figures 3.1
and 3.1 above are (v, u)-tangles, where p and v differ at only two positions, so that p; = v; for
all j # 4,7+ 1. In the case of Idﬁ"’l, wi =1, 41 = S,v; = 5 and v;41 = 1. Equivalently, 7 is
an element in the sequence s(u) and 7 + 1 is an element in the sequence t(v), so that a (v, 1)
tangle between s(u) and ¢(v) must contain an arc from ¢ as a bottom endpoint to i + 1 as a

top endpoint. There is no 1 at the ¢ 4+ 1-th position of y or equivalently s(u) does not contain
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i i41

/

)

ioitl
Figure 3.4: The flat tangles (1, ;,, and ot

i+ 1, hence the gap at i + 1 on the bottom line. The vertical lines in the tangles above signify

a1in p and v at the same position. The roles of y1; and v; are reversed for Id!, ;.

For ﬂi,iﬂ’ Wi = piy1 = 1, while v; = v;4.1 = S. Thus the points ¢ and i 4 1 are not included in
t(v) and do not form endpoints for any of the tangles considered here. We therefore require a
(m(w), m(p) — 1)-tangle, the simplest of which is [ Again, reverse the roles of u; and v;

to obtain J"".

AN

The category C

Having defined the rings H) for admissible weights A, we now construct categories C(\) and
functors between them that categorify the action of U on V. Recall that the decategorification
process here consists of taking the Grothendieck group of the constructed category, so we
must show that, up to tensoring with the field Q(g), the Grothendieck group of our category is
isomorphic to V', and that the action of functors & and F; between the categories C(u) descends

to the Uy(sl,,) action on the Grothendieck group.

For each admissible weight A, define C(\) := H)-mod, the category of graded, finitely-generated
H) modules. Note that if s()\) is empty then H) is simply the ground ring Z, so that C(\) =,
Ab, the category of graded finitely-generated abelian groups. Then the categorification of the
total vector space V is defined to be

c=Ecw
A

with A ranging over all admissible weights in V.

To obtain a categorical action of U on C, we must also define functors &;, F; : C — C that lift
the action of E; and F; on V. Let & be the sum over all admissible A in V' of the following
functors £} : C(A\) — C(\ + &;):

e If A\ +¢; is not admissible, & is the zero functor.

o If (Ai, A1) = (1,2), then (A +&i);, (A +€i);41) = (2,1) and £ = Q(Id[).

o If (Ai; A1) = (0,1) then (A +&:);, (A +€:),1) = (1,0) and & = Q(Idi, ).
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o If (A, Aip1) = (1,1) then (A +¢&:);, (A + gi)i—l—l) = (2,0) and 5{\ = Q(ﬂi,i+1)‘
o If (\i, A1) = (0,2) then (A +&;);, (A +:),,,) = (1,1) and & = Q(U"").

Similarly, let the functor F; be the sum over all admissible A of the functors F : C(\) —
C()\ — 62‘)1

e If A — ¢, is not admissible, 7" is the zero functor.
o If (Ai, A1) = (1,0), then (A — &;);, (A — £:);41) = (0,1) and F} = Q(Id*).
o If (Ai; A1) = (2,1) then (A —&;);, (A — &), 1) = (1,2) and F} = Q(Idy, ).
o If (A, Ait1) = (1,1) then (A —¢&;),, (A — 8%’)1‘4—1) = (0,2) and .7-'3‘ = Q(ﬂmﬂ).
o If (\i, A1) = (2,0) then (A —&;);, (A —&1);,,) = (1, 1) and F} = Q(U"™).
It remains to lift the generators K; of U to functors from C to itself. To this end, define the

functor K; : C — C to be the sum over admissible A of functors that shift the gradings of objects
in C(A) up by A\; — A\jy1:

This functor is clearly invertible, with inverse functor KC; ! shifting down by A; — A\iy1 (or
equivalently, shifting up by ;41 — A;.

Note that the functors map between categories in the same way that the generators of Ugy(sl,,)
map between weight spaces. The following propositions show that the functors &;, F; and
K; have the same relations up to natural isomorphism as the generators F;, F; and K; (see
section ?? for these relations), so that the action of U on V is indeed lifted to a categorical
action on C.

Proposition 3.1.3. There are natural isomorphisms between the following functors:

(i) K= 1d= KK,

(ii) KiK; = K;K;

(iil) K& = EKi{eij}

(iv) KiF; = &K{—ci;}

(V) EF; 2 F&iifi#j

(Vi) &&= & if li—jl > 1

(vil) FiF; & FFif |i—j] > 1

(vili) €280 EE2 2 EEE{1Y @ EEE{-1Yifj=i+1

(ix) F2F; @ FjF? 2 FFF{y o FREF{-1} ifj=i+1
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2 ifi=y
where ci; = ¢ =1 if|i—j| =1

0 ifli—j|>1

Proof. (i) and (ii) are in fact equalities, since the shift functor {1} is an automorphism of the

category C, with inverse functor {—1}, and with composition given by
M{iYj} = M{i + j} for all i, j € Z
and furthermore M{0} = M.

(iii) In the case i = j, let M € C()) for some admissible weight A\. Suppose A+ ¢; is admissible,
otherwise the equality is trivial. Then &(M) € C(N\), say &(M) = M’. Then K;(M') =
M{(A+ei); = (Atei)pqt = M+ 1= (i1 — 1)} = M — A 12} = EK(M){2}
The other cases and (iv) are similar.

When [i —j| > 1, (v), (vi) and (vii) follow from the fact that the functors & and F; correspond
to tangles involving disjoint strands if ¢ # £1. Thus the tangles associated to &F; and F;&;
are isotopic and induce naturally isomorphic functors.

(v) Suppose j =i+ 1. Then consider the three adjacent elements of some admissible A about
Air1: (Ai; Aix1, Aixe2). Under the action of F;11E;, we are sent to weight spaces with weights
that locally are given by

F;
(A, Ait1s Aig2) SECEN N4+ 1N — L dige) —5 (A 4+ 1, N0 — 2, 0 + 1)
and similarly,
(Nis Xig1, Aira) — (N + 1, A1 — 1, Aiga) SEZEN N+ A0 —2,A02+1)

so that the only weight A such that the final weight is admissible has \; < 2, A\ij2 < 2
and A;41 = 2. There are four possibilities: (A;, Aiy1, Air2) = (1,2,1),(1,2,0),(0,2,1) and
(0,2,0). The following figure 3.5 shows the flat tangles associated to F;1&; and &;F;41 for
(Nis i1y Aig2) = (1,2,1).

Fita

Figure 3.5: The flat tangles corresponding to F;1&; and £ F;11 for (A;, Ait1, Ait2) = (1,2,1)

The flat tangles are isotopic in the plane and thus induce a natural isomorphism of functors.
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The other admissible weights and the case j = ¢ — 1 are shown in the same way.

(viii) Let j =i+ 1. By a similar argument to part (v), the only admissible weights A such that
at least one of EiinH or Ei+1Ei2 sends A to an admissible weight have A\; = 0, A\j4+1, Aj12 > 0.
The only possibilities are (A\;, A1, Ai+2) = (0,1,2),(0,1,1),(0,2,2) and (0,2,1). We consider
the case (0,1,2). Under E?E;,1, (0,1,2) = (0,2,1) + (1,1,1) ~ (2,0,1). Under the action
of E;11E?, (0,1,2) gets sent to a weight that is not admissible, so we disregard this action, as
the associated functor is zero. Under the action of F;E; 11 F;, (0,1,2) — (1,0,2) — (1,1,1) —
(2,0,1). The tangles associated to these maps are:

2 0 1
Ei Ez
E; Eiq
Ei+1 El
0 1 2

Figure 3.6: The flat tangles associated to £2&;11 and &;E;11E;

The flat tangle T; associated to E2€; 11 is obtained from the flat tangle T associated to &;E;11&;
by planar isotopy and adding in a circle, so F(T}) = F(T») ® A. A is generated by an element
in degree —1 and an element in degree 1. Thus F(T}) = F(T3){1} & F(Tz){—1}, so in terms
of the given functors, we have a natural isomorphism

EPEin1 ®EME} 2 EE &L} ® EEip1E{—1}
as required. The other cases and (ix) are similar. O
Proposition 3.1.4. For any admissible weight X\, there are natural isomorphisms between
functors acting on the category C(\)
(i) &F =2 FE @ Id{1} @ Id{—1} if (A, Ait1) = (2,0)
(il) EF 2 FEBIdif Ni — XNig1 =0
(iii) &F = F& if i = Aiqa
(iv) EFi @ Id = F& if i — iy = —1

(V) EF; @ Id{l} D Id{—l} ~ F& Zf (A%)\i-‘rl) = (0,2)
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—1

This proposition in particular shows that the relation E; F; — F;E; = Ii;__;fil in U is lifted to

the same relation up to natural isomorphism at the categorical level.

Proof. (i) Let (A, Ai+1) = (2,0). Then under the action of E;F;, (A, N\i+1) — (1,1) — (2,0).
The tangle associated to &;F; is a single circle in the plane, while under the action of Fj,
(i, Ai) — (3, —1), which is not admissible so F;&; is associated to the empty tangle and is thus
isomorphic to the ground ring Z. Tensoring with the ground ring is equivalent to applying the
identity functor. The tangle associated to &;F; is obtained from the tangle associated to F;&;
by adding in a circle, so as before & F; 2 A®Id = Id{1}@®Id{—1}. The proof of (v) is identical
after swapping &; and F;.

(ii) Let (As, Ait1) = (1,0). E;F; : (1,0) — (1,0) and E;(1,0) is not admissible, so F;&; is
associated to the empty tangle. The tangle associated to &;F; is shown below in figure 3.7:

Figure 3.7: The tangle associated to £;F;, (i, A1) = (1,0)

This tangle is isotopic to the identity (a vertical line), so induces a natural isomorphism from
E;F; to the identity functor. The case (A;, A\j+1) = (2,1) and the proof of (iv) are shown in the

same manner. (iii) Let (A, Aiy1) = (1,1). Then (i, A1) —=— (2,0) —= (1,1) Similarly,

(Ais Ais1) — (0,2) 2y (1,1)

so that the tangles associated to &;F; and F;&; are identical (figure 3.8:

Figure 3.8: The tangle associated to &F; and F;&;

The cases (A, A\i+1) = (0,0) and (2,2) are trivial since neither is sent to an admissible weight
by either F; or F;. O
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We may also categorify the quantum divided powers

(@ _ B po _
t d! B U
for positive integers a and b where [a]! = [a][a—1]...[1] and [a] = q;:qq__ . These divided powers

are the generators of the integral form of U, the Z[q, ¢~ !]-submodule of U. Note that in the
representation V, all weights have coefficients less than or equal to 2, so all the £ and F}* are
trivial for a > 2, and E? is non-trivial if and only if (A\;, A\;+1) = (0,2) (otherwise A + 2¢; is not
an admissible weight). If this condition is satisfied, the rings Hy and H);o., are canonically
isomorphic, so we define the functors 51-(2) :C(\) > C(A+¢;) and ]-"Z@) :C(A+2¢;) = C()) to
be the mutually inverse equivalent functors induced by the isomorphism on rings. The functors
81-(2) and fi(Q) are defined to be trivial if the condition on A is not satisfied. The following
proposition shows that the relations between divided powers and regular powers such as the
relation E? = (¢ + q_l)Ei(Q) are preserved at the categorified level.

Proposition 3.1.5. There are natural isomorphisms

() =Py 0@ -1}

(i) 72 = FP {1}y e FP{-1)

(iii) &€& =2EPe 0P ifli—j =1
(iv) FFF=FOF o FRFY ifli-jl=1

Proof. We give a proof of (i). The remaining parts follow since the associated flat tangles are
isotopic, up to adding a circle. (i) The flat tangle associated to €2 when (A\;, A\iy+1) = (0,2) is:

2 0
E;
0 2

Figure 3.9: The flat tangle associated to &;&;, (i, Air1) = (0,2)

The functor 5;2) is an equivalence of categories, and £? is associated to a flat tangle T' that is
obtained from the empty tangle by adding a circle, so &; = .A®5i(2) = 51-(2){1} @552){71}. Note
that since we are not mapping from a category to itself as in previous proofs, the empty tangle is
no longer associated to the identity map, rather it is associated to the equivalence of categories
induced by the canonical isomorphism of the rings Hy and Hxtac,, when (A;, A\i11) = (0,2).

O

Thus, the generators and relations of U are lifted to functors and natural isomorphisms on the

category C. However, to show that this is indeed a correct categorification of the representation
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V', we must show that the decategorification of C, after tensoring with the ground field Q(g), is
isomorphic to V.

Decategorification

Proposition 3.1.6. The Grothendieck group K of the category C is isomorphic to the irre-
ducible representation V' of U with highest weight 2wy, :

@K(Ck) = K(C) ®z(q,q-1] Q(Q) =V = @VA
A A

where \ ranges over the admissible weights of the representation V.

Proof. Let {1} denote the shift functor from C to itself that shifts the grading of elements in
C up by 1. Then, since the functors & and F; do not depend on or modify the grading, they
commute with the shift functor. By the equality M {i}{j} = M{i+j}, the functor K; commutes
with the shift functor.

The functors &; and F; are defined by tensoring with a projective (and hence flat) module, and
are therefore exact functors. It is clear that C; is also exact. Therefore these functors induce
induce well-defined Z[q, ¢~ !]-linear maps [£;], [F;] and [K;] on the Grothendieck group of C. By
the functor isomorphisms in propositions 3.1.3 and 3.1.4, these maps satisfy the quantum group
relations. K (C) inherits a U-module structure after tensoring with the ground field Q(q) since
the action of &;, F; and K; lifted the action of the generators of the quantum group on the

representation V.

The weight spaces for K(C) are determined by the elements in ObC that are all shifted by
the same amount by each of the functors K;. Recall that these functors shift elements of C
by A; — Ait1, where A is an admissible weight. Thus the weight spaces of K(C) are exactly
the Grothendieck groups of the categories C(A) for admissible A\, and K(C) = @, K(C(\)).
The dimensions of these weight spaces are precisely the m(A) Catalan numbers, since these
enumerate the non-isotopic (m(XA), m(\))-tangles with no circles, and thus the isomorphism
classes of Hy-modules [Kho02]. Therefore the weight spaces of K(C) have the same dimension

as the weight spaces of V', and the representations are isomorphic. O

Structure of the category

Generally, one aims to categorify in a way that lifts as much structure from the original object.
This particular categorification lifts several structures from the original representation and

quantum group that we will discuss here.
Biadjoint functors

Recall from section 77?7, that the algebra U is equipped with an antilinear antiautomorphism
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7 :U — U°P defined by

7(E;) = qF K ', 7(F) = ¢E;K;, 7(K;) = K;
7(f(q)x) = f(g Y7 (x) for all f € Q(q) and z € U
T(xy) = 7(y)7(x) for all x,y € U

The following proposition shows that the categorification of V' lifts the antiautomorphism 7 to

an operation that sends a functor to its right adjoint functor, if this exists.

Proposition 3.1.7. The functor &; is left adjoint to F;K;{1}, F; is left adjoint to E;K;{1} and
IC; is left adjoint to ICi_l.

Proof. The proposition states that, up to grading shifts, the functors &£; and F; are biadjoint. To
show this, we find cobordisms between the tangles associated to & F; and F;&; and the identity
tangle. These cobordisms involve only two-stranded tangles. First exclude the admissible
weights A\ such that A + ¢; is not admissible. For an admissible weight A, A + &; is admissible
only when (A;, \i+1) = (1,1),(0,1),(0,2) or (1,2).

L. Let (Ai, Aiy1) = (0,1). Then ((A+¢i);, (A +¢i);4,) = (1,0) and the tangle associated
to F;&; is the mirror image (about the vertical axis) of the tangle in figure 3.7. There
is an obvious planar isotopy f : R x [0,1] x [0,1] — R x [0,1] from this tangle to the
identity tangle, which consists here of a single vertical line. This isotopy defines a surface
cobordism from the tangle to the identity tangle that induces a natural isomorphism from
Fi&; to the identity functor on C(A). There is a similar cobordism from the identity
functor on C(\ + ¢;) to £F;. These cobordisms do not introduce any circles into the

diagrams so there is no grading shift.

2. Let (A;, \i+1) = (1,1). Then the tangle associated to F;&; is the tangle given in figure 3.8.
There is a cobordism from this tangle to the identity tangle, which consists here of two
vertical lines. This cobordism induces the multiplication map on H), which increases the

degree by one. This shift corresponds to the total shift given by K;{1}.

3. Let (A, A1) = (0,2). Then the tangle associated to F;&; is a single circle, as in figure 3.9.
The empty tangle, associated to the identity on C(\ + €;) is obtained from this circle by
taking the trace map, which has degree —1, agreeing with the total degree shift of IC;{1}.

The final case is similar. The cobordisms showing the inverse adjunction are the same as in the

first case, taken in reverse. O

Semilinear form

Given a Q(g)-vector space V, a form (, ) : VxV — Q(q) is called semilinear, if it is g-antilinear
in the first variable and g-linear in the second: if f is a rational function in ¢ with coefficients
in Q, then (f(q)v,w) = f(g~1)(v,w) = (v, f(g~1)w) for all v,w € V.
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Let 7 be a highest weight vector in the representation V' (recall that the weight of 7 is therefore

2wy). Then there exists a unique semilinear form on V such that

(mm) =1 (3.1)
(xzv,w) = (z,7(x)w) for all v,w € Vix € U (3.2)

Now consider the form (, ): Kp(C) x K(C) — Z|q,q™ "], where Kp(C), called the projective
Grothendieck group, is the subgroup of K(C) generated by all isomorphism classes [P] of pro-
jective objects in C. The form ( , ,) is defined by taking the graded dimension of the Hom

space from a projective module P to a general module M:

([P], [M]) := qdimHOMc(P, M) = _ ¢*dimHomc (P{k}, M).
keZ

This is a semilinear form on Z[q,¢~!]: applying the shift functor to P a positive number n
times induces a multiplication by ¢~" in gdimHome (P, M), while shifting M up by n induces
a multiplication by ¢". Tensoring with Q(g), ( , ) becomes a semilinear form on Q(g). The
isomorphism K(C) ®z(4,4-1] Q(g) = V can be chosen such that the object P(2wy) in C(2wy)
isomorphic to Z concentrated in to degree zero is sent to 7. Then P(2wy) is projective, and
([P, [P]) = 1.

Furthermore, lifting the antiautomorphism 7 to the operation taking the right adjoint functor,

the second relation for the semilinear form in equation 3.1 also holds for ( , ). For example:

Homc(]:iP, M) = Homc(P, EZ’CZ{l}M)
Home(KC;P, M) = Home(P,K; ' M)

Under the isomorphism between K(C) ®z(4,4-1] Q(¢g) and V, these relations descend to the
semilinear form (, ) on V x V.

This categorification also lifts other structures on the representation V', such as a unique sym-
metric bilinear form associated to the same highest weight vector 1 and the Lusztig canonical
basis of V. For further details, see [HKO06].

3.2 Categorifying the adjoint representation

Just as we could categorify certain representations of sl,,, we can also categorify the adjoint
representation of any simple, simply-laced Lie algebra g of finite type. This again follows the

work of Khovanov and Huerfano, as seen in [HKO1].

Let g be a simple Lie algebra and let U, (g) be the quantum group deformation of g. Let V be the
quantum deformation of the adjoint representation of g. Then V is an irreducible representation
that decomposes as a direct sum of the Cartan subalgebra h and one-dimensional vector spaces
corresponding to the roots of g. Decategorification here consists of taking the Grothendieck

group of a category to return a vector space isomorphic as a Ugy(g) representation to the adjoint
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representation V. Our aim is therefore to lift the weight spaces of V' to abelian categories, with
the quantum group generators lifting to functors between the categories in a way that preserves
the structure on the quantum group, thus satisfying the decategorification condition. As in the
case of level-two representations, one of the categories will be the category of modules over a

particular algebra, in this case an algebra constructed from the Dynkin diagram of g.

Let R be the root system of g, IT a set of simple roots, # the Weyl group of g and ( , ) the
unique # -invariant bilinear form on the real vector space spanned by the roots in R such that
(o, ) = 2) for all roots o € R determined by the Killing form.

3.2.1 The adjoint representation

As noted above, the adjoint representation V' is an irreducible representation of U,(g) with
highest weight the root of g lying in the dominant Weyl chamber. It has a canonical basis
{zu, ha} with p € R and o € II, with corresponding one-dimensional weight space R,, for all
roots p € R and with weight space Ry of dimension the rank of g (the dimension of the Cartan
subalgebra), spanned by the h,. The action of the quantum group on V' is given by

Koz, = ¢z, Kohg = hg forall a,f eIl ue R
E,z, =0 Foz, =0 if (p, ) =0
Eoxy =0 Foty = p—a if () =1
Eoxy =Tyia Fox, =0 if (g, ) =—1
FEox, =0 Foxo = ha

Eox_o = hq Fox, =0

for all @ € Il and u € R.

(¢+q Nz ifa=p

Eahp = 14 if (8,0) = —1
0 otherwise

(g+q Nz_a fa=4
Fohg=q2_, if (B,a) =—1

otherwise

for all a, 8 € II. Note that this action is analogous to the action of the Lie algebra g on itself
under the adjoint representation: adx (Y) = [X, Y] for all X, Y € g. As in the previous example,

the adjoint representation has certain structures that will be lifted by the categorification of V:
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Semilinear form

Recall that the quantum group has an antilinear antiautomorphism 7 : Uy(g) — Uy(g)°P. There
is a g-semilinear form on the adjoint representation: (, ) : V x V — Q(q) that is T-invariant

in the following sense:
(xv,w) = (v, 7(z)w) for all z € Uy(g), v,w € V.

In the canonical basis of V', this semilinear form is defined by:

(T, mp) =1 peER

(Tp, ) =0 p#veER

(Tpsha) =0 weR aecll
(harha) =1+ ¢* acll

(hashg) =q (o, B) ==£1, a,f eIl
(hayhg) =0 (,3) =0, o, €11

Thus all weight spaces are orthogonal under this semilinear form.

Involutions on V

There are Q-linear involutions ¥y and wy on V:

wv(xu) =Ty Yy (ha) = ha Yy (f(qv) = f(q_1)1/JV(U)
wy (z,) =2y wy (ha) = ha wy (f(g)v) = f(@wv (v)

forallp e R, a €1l, f € Q(q), veV.

Claim 3.2.1. 1. The involutions ¢y and wy reverse and preserve the semilinear form on
V' respectively: (v, w) = (Yy(w), Yy (v)) and (v, w) = (wy (v),wy (w)) for all v,w € V.

2. Yy (2v) = Y(x)y (v) and wy (zv) = w(z)wy (v) for all x € Uy(g) and v € V', where ¢ is
a Q-linear involution on Uy(g) and w is a Q(q)-linear involution on U,(g) defined by:

¢(Ea) = E, w(Fa) = F, w(Ka) = K¢;1 Ql}(f(q)l') = f(q_l)w(x)
w(Ea) =Fy W(Fa) = E, w(Ka) = K;1 W(f(q)x) = f(Q)W(x)

forallz € Uy(g), a € R, fe€Q(q).

Proof. 1. The involution ¢y preserves the canonical basis of V', and since the semilinear form
is symmetric in the basis vectors (swapping basis vectors does not affect the semilinear
form), the only requirement for such an involution to reverse the semilinear form is that
it is g-anitlinear, which is satisfied by )y .

Similarly, wy simply swaps the basis vectors z, and x_,, which does not affect the
semilinear form since the basis vectors are orthogonal with respect to (, ). Furthermore,

wy is g-linear, so it preserves the semilinear form.
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2. This is clear from the action of the generators of U,(g) on the basis vectors of V.

Dual canonical basis

From the previously defined semilinear form, one can construct the dual canonical basis, which is
dual to the canonical basis with respect to the semilinear form (, ): define ¢, € R by (hq, {g) =
8a,5. Then the dual canonical basis is {z,,¢,}. Define I to be the Z[g, ¢ *]-submodule of V'
generated by the canonical basis vectors and I’ the Z[q, ¢~ !]-submodule generated by the dual

canonical basis vectors.
Claim 3.2.2. 1. I is a Z[q,q ']-submodule of I'.

2. The involutions 1y and wy preserve the Z[q,q~']-submodule I'.

Proof. 1. From the semilinear form, and in particular the definition (hq,€3) = dqa 3, We can
determine show that each h,, is a linear combination of the £z with coefficients in Z[q, ¢~ 1].
Explicitly:

ho = (1+¢*)ly +q Z lg.
Bell
(a,8)==%1

Thus, I is a Z[q, ¢~ ']-submodule of I’.

2. This follows from the previous claims.

3.2.2 Building a categorical representation: zigzag algebras

As in the case of level two representations of sl,,, the categorification of the adjoint repre-
sentation arises as a direct sum of categories of modules over a particular algebra. Rather
than the closed 1-manifolds used to construct the rings H), the object used here to construct
the categorification of weight spaces of the adjoint representation is the Dynkin diagram of g.
Specifically, the category associated to the Cartan subalgebra will be the category of modules
over the zigzag algebra of the Dynkin diagram. The remaining root spaces will be lifted to
copies of the category of graded vector spaces and grading-preserving linear maps. We define
the zigzag algebra of a general connected, simply laced graph I" with no loops and study some
of its properties. Note that an example of a zigzag algebra already arose in section 77 as the

path algebra of the quiver with relations associated to the Lie algebra sl5 (V7).

Definition A graph I' is simply-laced if it has no multiple edges.

Let T" be a finite simply-laced (undirected) tree.
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Definition The double of the graph I' is the directed graph DI' with the same vertex set I as
I' and with each edge e, of I" replaced by two directed edges with opposite source and target.

Example. Ezamples of a graph T' and its double DT are found in figures 3.10 and 3.11.

Figure 3.10: Graph I'

L] S @

Figure 3.11: Double DTI"

Let P(DT') be the path algebra of DT so that the generators of P(DT") are paths in DT, with
multiplication in P(DT') given by concatenation of paths, read from left to right. If the target
of a path p; is not equal to the source of the path ps, then the product pyps is zero. For each
7 in the vertex set I of I, let e; be the length zero path that starts and ends at the vertex
v;. It is clear that in P(DT) the e; form a complete set of minimal orthogonal idempotents:

e;e; = 0; je; for all ¢,j € I, and minimality is due to the minimal length of the paths e;.

Between any two vertices of DI' there are at most two edges, and these edges have opposite
orientation. Thus, any edge is completely determined by its source and target, and any path
can be uniquely labelled by the vertices through which it passes in order (and for a vertex v;,

we simply write ). For example, the length two loop at v; passing only through v; is written

(@ljli)-

Definition The zigzag algebra A(T') of a finite, simply-laced tree T" is a C-algebra defined as

follows:

1. If T consists of a single vertex, A(I') = C[X]/X?2.

2. IfT' =%, then A(T') = P(DTI')/J where J is the two-sided ideal generated by all
paths of length greater than two.

3. If ' has more than two vertices, then A(I') = P(DI')/J where J is the two-sided ideal
generated by paths
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e (i|j|k) if ¢ and j are connected by an edge, j and k are connected by an edge and
1 # k, and

o (i|7]7) — (i|k|i) if ¢ is connected by an edge to both j and k in T.

i j k

o—>0—>e

Thus, if I' has more than two vertices, then paths of the form are zero and any

vertex has a single equivalence class of length two loops starting and ending at that vertex.

We can define a grading on A(T") from the length & of paths in P(DT') if " has more than one
vertex, and by defining X to be in degree two if I has only one vertex. Let I be the vertex set
of I' and J the edge set of I

Claim 3.2.3. A(T') = A(T")o @ A(T')1 & A(T")2 and

dim(A(T)o) = |1]
dim(A(T)1) = 2]J]
dim(A(T)s) = |1|

Proof. Any path of length three in DT is in the form of one of the following:

i J k 1
1, ®e——>e—e—e
;J ;k
2 ; .< [ ]
s )
3 ;%.

Case 1 is zero in A(T') since it contains a length two path with distinct start and endpoints.
Case 2 is zero for the same reason. If T' consists of only two vertices, then case 3 is zero by
definition of A(T"). If T has more than two vertices, then the path in case 3 is equivalent to a
path of the same form as case 2 (by equivalence of loops at the same vertex) and is thus also

zero. Any longer path must contain a path of length 3 and is hence zero.

The length zero paths in A(T") are precisely the e; for ¢ € I and there are no relations between
them, showing a correspondence between I and the generators of A(T")g. The length one paths
correspond to edges in DI', which has two edges for each edge in I', and there are no relations
on single edges. The length two paths consist exclusively of length two loops at vertices. Since
all such loops at a given vertex are equivalent, there is exactly one equivalence class of loops in

A(T) for each vertex in I since I' is connected. O
Definition A symmetric C-algebra is an algebra A that possesses a symmetric non-degenerate
trace map, namely a map tr : A — C satisfying the following:

tr(zy) = tr(yz) for all z,y € A

and for all z € A\{0} there exists some y € A such that tr(zy) # 0
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Proposition 3.2.4. A(T') is a graded symmetric algebra.

Proof. Define the map tr : A(I') — C by sending a path of length two to 1 in C and all other

paths to zero. The only paths not sent to zero under the trace map consist of length 2 loops at

i T
.<y>.

some vertex v; of I':

The path xy is a loop at ¢ and yx is a length two loop at j, so that tr(ay) = tr(yz) = 1. The
only non-trivial product of xy with other paths in A(T) is with the length zero path at 7. Since
xy is a loop, it is clear that ixy = xyi = xy. All other paths are sent to zero, so the relation
tr(zy) = tr(yx) holds trivially for these paths and the trace map is symmetric.

Given a length two path (i|j|¢), then tr((:|j|¢)¢) = tr((¢|j|¢)) = 1. For a length one path (i|j),
tr((i]g)(7]9)) = tr(é|j]i) = 1. For a length zero path ¢, if I" has more than one vertex, then there
is a length two loop p at ¢ that is sent to 1 under the trace map. Then tr(ip) = tr(p) = 1.

These are all the non-zero paths in A(T'), so the trace map is non-degenerate. O

Let A(T')-mod denote the abelian category of finite-dimensional graded left A(T')-modules and
grading-preserving module homomorphisms. Let ;Vect denote the category of graded finite-
dimensional C-vector spaces and grading-preserving linear maps. Recall that {k} denotes the
shift functor on a category of graded algebra modules that shifts the grading of a module up
by k: for M = @,, My, M{k}, = M, _.

Let v; be a vertex in I and e; the minimal idempotent consisting of the length zero path at v;.
Then define the A(T")-modules P; := A(T')i and ;P := i A(T).

Lemma 3.2.5. P; is a left projective indecomposable A(T)-module spanned by paths ending at
v;. Furthermore, any indecomposable graded projective left A(T')-module is isomorphic, up to a

grading shift, to P; for some i € I.

An analogous statement holds for right A(T")-modules and ;P.

Proof. All non-zero paths in P; must end at v;, since the product of any other path with i is
zero, and for paths p ending at v;, pi = p. Since I is finite, the identity element in A(T') is
given by 14y = >_,c; ¢ and hence A(T") = @,.; P; so the P; are projective.

By minimality of the idempotents i, the P; are indecomposable. The uniqueness statement
follows from the Krull-Schmidt theorem and the decomposition A(I") = @, P;. O

Lemma 3.2.6.

CaC{2) ifi=j
P oar Py = C{1} if v; and v; are connected by an edge

0 otherwise
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Proof. ;P ® 5y Pj is spanned by paths starting at v; and ending at v;. If ¢ = j there are two
independent paths starting and ending at v;: the length zero path e; and the equivalence class

of length two loops at v;, which accounts for the grading shift in the second summand.

If v; and v; are connected by an edge then there is a path starting at v; and ending at v;
(multiplication by the length zero paths e; and e; gives an equivalent path in the path algebra
P(DT)), namely (i]j), and the length of the path is one, accounting for the grading shift.

If v; and v; are not connected by an edge, there is no path from v; to v; in A(T). O

Let 7 be an element of the vertex index set I of I and define functors

T; : A(T')-mod — ,Vect
M P @ary M
S; : 4Vect — A(I')-mod
Vi PecV

Lemma 3.2.7. T; is right adjoint to S; and left-adjoint to S;{—2}.

Proof. We define natural transformations n : S;T; = IdA(I‘)—MOd and € : Id vect = T35;. The
functor S;T; : A(T')-Mod — A(I')-Mod is defined by M + P; ®c; P ® 4y M and we can write
the identity map on A(T")-Mod as tensoring with A(I") over itself: Id ) (M) = A(T') ® o) M.
Thus the natural transformation 7 consists of defining a map of A(T')-bimodules, that will
abusively also denote 1 : P; ®c; P — A(I'). Define n(ze; ® o) e;y) = xy, namely 7 is the
multiplication map in A(T") that concatenates suitable paths in DI" for any paths x ending at

v; (hence xe; is nonzero) and all paths y starting at v;.

Similarly, T;.9;(W) = ; P @ oy P; ®c W for all objects W in ,Vect and Idc(W) = C ®@c W.
Thus we define the map € : C — ; P ® oy P; of ;Vect-bimodules by £(1) = e; ® o) €;. Then

m®lp)o(lp, ®e): P — Pi®ar); P ®ar) P — b
xe; > xe; @A) € QAT € > Teie; QAT € = xe;
(lip ®1]) o (5® lip) u P = P®A(F) P; ®A(F)iP —>iP

€T > €; @A) € QAT) €T — € AT T = €T

The bimodule homomorphisms 7 and ¢ induce natural transformations of functors and hence
T; is right adjoint to .S;.

To show that T; is left adjoint to S;{—2}, we proceed in a similar manner: define natu-
ral transformations 7’ : T;S;{—2} = Id vect and &’ : IdA(F)—MOd = S;{—2}T;. We have
T;Si(W) =i P ®a(r) P; @ W for all objects W in ,Vect so we define ' :; P ® 4y P; — C to
be the trace map of A(I'): n'(e;x ® ye;) = tr(yx). We also have S;T;(M) = P; @c; P @ 4y M
for all objects M € A(I')-Mod, so we define ¢’ : A(T') — P; Qc; P by setting

(1) =1;Qcei+e ®cl+ E (412) @c (il4)
jel
Jevi
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where I; denotes the equivalence class of length two loops at the vertex v; and j < 4 signifies “v;
is connected to v; by an edge”. Thus, for right A(T')-modules, £'(e;) = I; ®ce;, €'(l;) = e; ¢ (1;)
and €'((i|k)) = (k|i) ®c (i|k) for any vy connected to v; by an edge. Then

(' ®c1,p)o (1, pRacr)) : ;P = ;P @ary Pi @c; P —; P
e+ e; @) li ®c e; = tr(l;) ®c e; = 1 ®c e
(ilk) = (ilk) @ aqry (Kli) @c (ilk) = tr((kli)(ilk)) @c (ilk) = 1 ®c (ilk)
li = 1; @ ary €; ®c I = tr(l;) ®c l; = 1 ®c¢ I;
(1p, ®amyn') o (€' ®clp,): Pi— Py ®&c; P @aq) P — P
e+ €; ¢ li @A) i+ €; ¢ tr(l;) = e; ®c 1
(kli) = (kli) @c (ilk) @y (kli) — (k|2) @c tr((k|0)(i]k)) = (k|7) @c 1
li—=1; ®c e @ary li = 1; @¢ 1

3.2.3 Constructing the category C

To categorify the adjoint representation, we proceed in a similar manner to the case of level
two representations, namely to each weight 1 of the adjoint representation we assign an abelian
category C, and define functors between the categories C,, that lift the action of the quantum
group Uy, (g) on the adjoint representation V. Let g be a simple, simply-laced Lie algebra, with
simply-laced Dynkin diagram as found in figure 1.10.1, R a root system of g, and II a set of
simple roots of g. Let I' be the Dynkin diagram of g. Then I is simply-laced and of finite type
and the Killing form on roots takes values in {—1,0, 1} for distinct roots and (u, ) = 2 for all
p € R. For every root pn € R, let C, := ,Vect and let C, € C, be a one-dimensional vector
space concentrated in degree 0. Define Cp := A(T')-mod and define the category C to be the

direct sum over the weights of the adjoint representation:

c= P o

AeR {0}

The vertices of the Dynkin diagram I' of g correspond to the simple roots of g, so from our
previous analysis of A(T"), there is a single projective indecomposable left A(I")-module P, for
each simple root « of g. A(T') is a finite-dimensional C-vector space and hence an artinian ring,

so P, has a unique simple quotient, denoted L.

Define the functors &, and F, for all a € II by:

Ea(M) = (P ®ar) M) ®c Cq
Fo(M) = (aP @41y M) ®@c C_,
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for all M € Cy. For what follows, M € C, for ;1 # 0 and tensor products are taken over C.

Ea(M) =0 Fa(M) =0 if (p,a) =0
Ea(M) =0 FoM)=M®C,_, if (p,a) =1
Ea(M)=M®C,ta Fo(M)=0 if (p,a) =—1
Ea(M)=0 Fo(M) =P, @ M{-1} if p=a
Ea(M) =P, @ M{-1} Fo(M)=10 it p=—-o

Define the invertible functor K, : C — C to be the shift functor
Ko(M)=M{(p,)} for M €C,

with inverse functor K1 (M) = M{—(u,«)} for M € C,. These functors lift the relations
between the generators of the quantum group U,(g), as seen in section ??, in the sense of the

following:

Proposition 3.2.8. There are natural isomorphisms for o, 8 € 11:

1. KKt =2 1d= KK,

2. KoKg = KpKa

3. Ku€s =2 EsK{(B,)}

4. KaFs = FoKa{~(8,a)}

5. EaFp =2 Fpla tf a# [

6. Eap =EpEq if (0, f) =0

7. FoFp = FaFo if (a, 8) =0

8. E2E5 @ EE2 = (1d{1} @ Id{—1})EnEsEn if (B, o) = —1

9. F2Fs @ FaF2 = (1d{1} @ Id{—1}) FoFsFa if (B,) = —1
Proof. We give only the proof of 5, 8 and 9. The remaining isomorphisms follow from the
definition of the functors &,, F, and K, and are similar to the previous section on level two

representations. Note first that £,(C,) C Cuya when g+ a € RU{0} otherwise &, is the zero
functor. Similarly F,(C,) C Cy—o if p —a € RU{0}, otherwise F, is the zero functor.

In the case where the source and target categories C,, and C, are associated to non-zero weights
and the case where the source category is Co, 5 follows from the identification of categories C,,
and C, for all roots p and v and the canonical isomorphism (A® B)®@ C 2 A® (B ® C) for
any objects in ;Vect. When the target category is Cy, the source category is C_o4. Neither
&, and F, can act non-trivially on this category as this would imply (—a + 8,a) = —1, and

hence (o, 8) = 1, which contradicts the fact that « and 8 are simple roots.
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The only case in which the functors in 8 can act non-trivially when the source category is C_.
In this case, £2&5 is the zero functor and for M € Ob(C_,),
EREE(M) = E5En(Py @c M—1)
= Ep(aP ®ar) Po ®c M{-1} ®c Cy)
= oP ®ar) Po ®c M{~1} &c Co ®c Cayp
= (CoC{2}) ®c M{-1}
=~ M{-1} & M{1}

Furthermore, («, 5) = —1, hence the vertices corresponding to o and 8 in the Dynkin diagram of
g are connected by an edge and by lemma 3.2.6, 5 P ® 41y Po = C{1}. Thus, for M € Ob(C_,,),

Ealpla(M) = Ea&p(Po ®c M{-1})
= Ea(pP @A) Po ®@c M{-1} ®c Cp)
= sP ®ar) Po ®c M{-1} ®c Cg ® Caqtp
=~ C{1} @c M{-1}
=M

This shows 8 in the only non-trivial case. The proof for 9 is similar, with the only non-trivial

case having source category Cy. O

There is a further relation on the quantum group: for any «a € II
K,—K;!
q—q!
The only structure that can be lifted to the category C is positive and integral, so we consider

—1
the action of K“_If‘% on individual weight spaces V,,: K, acts on V}, by multiplication by gl

EaFa_FaEa:

. C e _K! e (o) _g=(ep)
and K_ ! is multiplication by g~ (@ Thus, Ka—Ko  acts by multiplication by %

a—q
Let k = (a, ) € Z. Then, for k > 0, we have

¢ —qF 1 k 2 4 k=1 , k-3 1—k
and for k < 0, ¢* —q7% = —(¢* —¢*"), where k' = —k > 0, so qk_q:lk = —[—k]. Thus, we can

a—q
rewrite the sly relation in an integral positive form:

If (, p) >0, EqFo = FoEqo + [(p, )] on V.
If (o, ) <0, EoFy + [— (o, )] = FoEq on V.

Define the functor Id" = Id{k — 1} @ 1d{k — 3} @ ... ® I1d{1 — k} for any nonnegative integer
k from C, to itself. Then we can lift the sl; relation as follows:
Proposition 3.2.9. For A € RU{0} there are natural isomorphisms in the category C,

ga]:a = ]:aga 3] ]d[(#’a)] Zf (/,L, Oé) Z 0

EuFo® Id~ N = F £, if () <0
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Proof. Let M be an object in Cy. Then

EaFal(M) = Ea(oP @y M) ®c C_y

= P, ®c (aP @41y M) ®c C_o{-1}
Fola(M) = FolaP @ary M) ® Cq

= Po ®c (P @4y M) &c Co{—1}

These objects are isomorphic as A(I')-modules, identifying the categories C, and C_, with
g Vect. We also have [(0,a)] = [0] = 0 for all simple roots c.

Let M be an object in C,. Then

EaFa(M) =Ey(Py @c M{-1})
=a P @) Po ®c M{-1} ®c C,
= (Ce C{2}) ®c M{-1} ®c C,
~ M{-1} & M{1}
Fola(M)=0

where some of the isomorphisms follow from claim 3.2.6. For p = a, [(u, )] = [2], so 1d? =

Id{—1} & Id{1}.

Let M be an object in C,, with (u,a) = —1. Then

EaFa(M)=0
‘Foéga(M) = fa(M Qc (C/H-a)
=M ®c (C/H-a ®c (Cu—a
=M
and [(1,0)] = [1] = 1.
The remaining cases are similar. O

3.2.4 Decategorification

Proposition 3.2.10. The Grothendieck group K (C) of C is isomorphic to the Z[q, ¢~ ]-submodule
I' of V' generated by the dual canonical basis {x,,lo}. This isomorphism restricts to an iso-
morphism between the projective Grothendieck group Kp(C) of C and the Z[q,q~']-submodule I

of V' generated by the canonical basis {x,,ha}.

Proof. Define: K(C) — I' by «([C,]) = z,, and ¢([La]) = ¢fo. This map identifies isomorphism
classes of simple objects in C with the elements of the dual canonical basis. The subcatetogory
Cx0 = @B ,cp Cu is a semisimple category (as a direct sum of copies of ;Vect), hence any object
in Co decomposes into a sum of copies of the C,,, up to shifts. The following lemma shows that

the simple objects L, are sufficient to generate the Grothendieck group of the category C. Note
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that the lemma holds more generally for a finite-dimensional k-algebra o/ with complete set
of orthogonal idempotents {ey,...,e,} and corresponding set of simple modules {Ly,...,L,}
such that e; o/ # e; o for i # j.

Lemma 3.2.11. The Grothendieck group K(Co) is a free Z[q,q~']=module with basis the set

of isomorphism classes of simple modules {[L]| o € I1}.

Proof. Let M be an object in Cy. Then M is a finite-dimensional graded A(T')-module, and
A(T) is in particular an Artinian ring, so M has a finite Jordan Holder series

O=MyCM,C...C M, =M.

Then we have short exact sequences

0 —— M1 —— My —— My/Mp_1 —— 0
for 1 < k < n. In particular, for k = n,

00— M,y — M —— M/M_1 —— 0

Thus, in the Grothendieck group,

n—1
[M] = [M/Mnfl] + [Mnfl] = [M/Mnfl] + [Mnfl/Mnfﬂ + [Mnf2] = Z[Mnfk/Mnfkfl]-
k=0
Each of the summands are isomorphism classes of simple A(T")-modules up to some shift, hence
equal to ¢"=[L,] for some o € II and some m, € Z. Therefore [M] = > _p;naf(q)[Lal,

where the n, € N are the multiplicities of the simple modules [L,] in the Jordan Hoélder series
and f(q) € Z[g,q"']. O

The simple modules generate the Grothendieck group of C as a Z[q, ¢~ !]-module, hence under

the map ¢, K(C) is isomorphic to I'.

The map ¢ sends isomorphism classes of projectives [P,] to ghg, so that restricting the identifi-
cation between K (C) and I’ to the projective Grothendieck group Kp(C) gives an isomorphism
between Kp(C) and the submodule I. O

C is a categorification of the adjoint representation in the sense of the following:

Corollary 3.2.12. After tensoring with the ground field Q(q), the Grothendieck group of C is
isomorphic to the adjoint representation V. of Uy(g):

K(Co) ® (D K(C) = K(C) @z9.-1 Qa) 2V = Vo & (P V)
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Proof. The functors &, and F, consist of tensoring with projective modules, and are hence
exact. The shift functor is also clearly exact, so K, is exact. Furthermore the functors &, F,
and K, all commute with the shift functor {1}, and thus induce well-defined Z[q, ¢~ !]-linear
maps on the Grothendieck group of C. The source and target categories of each of the functors
&, F; and KC; ensure that the functors descend to maps acting as the generators of the quantum
group on the Grothendieck group. The natural isomorphisms in propositions 3.2.8 and 3.2.9
therefore descend to the Uy (g) relations between the induced maps. The identification of images
of simple objects in C with elements of the dual canonical basis of V' shows that the induced
maps act as the generators for Uy (g) on the adjoint representation.

For example: given M an object in C,, KCo(M) = M{(1t, @)}, which descends to [[Co]([M]) =
[M{(p1,a)}] = ¢ [M] in the Grothendieck group.

If M =C_,, then £,(M) = P, ®c C_,{—1}, which descends to

[€al([C-a]) = [Pa @c C_a{-1}]
= ¢ [Pa]
=q 'qha
after identifying [P,] with h, under the isomorphism ¢.

Finally, by the previous proposition, the Grothendieck group of C, after tensoring with the
ground field, and V are isomorphic as vector spaces, and hence isomorphic as U,(g) represen-

tations. O

3.2.5 Further lifted structure

The structure on the adjoint representation described in section 3.2.1 is lifted to the category
C.

Semilinear form

The semilinear form ( , ) on V can be considered as the shadow of higher structure on the

category C, namely the graded dimension of homomorphism spaces in C:

([P],[M]) = gdimHOM¢(P, M) =Y _ g'dimHome (P{i}, M)

i€z
for any projective object in C and any module M in C, where Home(—, —) is the space of
grading-preserving morphisms between pairs of objects, and HOM¢(—, —) is the graded vector

space of all morphisms between objects in C.

Adjointness

The antiautomorphism 7 on U,y (g) lifts to an operation on functors acting on the categories C,,:
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Proposition 3.2.13. The functor &, is left adjoint to F, K, {1}, the functor F, is left adjoint
to EaKo{1} and K, is left adjoint to K 1.

Proof. In the cases where p and p + « are non-zero, the statement is clear, since &, and F,
consist of tensoring with a simple module. In the case where either pu or p 4 « is zero, the
functors consist of tensoring with projective A(T")-modules, and this reduces to the statement
of lemma 3.2.7. O

Thus, the action of 7 at the level of U, (g) lifts to an operation at the categorical level of sending
a functor to its right adjoint functor. Let T be a product of the functors &, Fa, Ko, K, ! and the
shift functors, and 7%¢ the adjoint functor of 7" if it exists and let P and M be any objects in C.
Then there is an isomorphism of graded vector spaces HOM¢(T(P), M) = HOM¢ (P, T*(M)),
where T'(P) is projective because the functors generating 7' are exact and P is projective. In
particular this holds if T = &, F,, or KX!, so that this isomorphism descends to the T-invariance

of the semilinear form on V.

The antilinear involution vy

Let x : A(I') = A(T") be the antiinvolution sending a path (ii2] ... |i;) in A(T") to the path in
the opposite direction (i;] ... |éi2]é1). Then we can define the following functors:

*: gVect = ;Vect
W — W* = Hom(W, C)
v:C—=C
M — M*if M € Ob(C,) with p € R
M — x(M*) if M € Ob(Cy)

where by x(M*), we mean consider the right A(T")-module M* as a left A(T')-module by ap-
plying the antiinvolution to A(T") acting on M*. Thus, M* can be considered as an object in

Co. Note that the functors * and ¥ are contravariant.

Proposition 3.2.14. 1. There are natural isomorphisms

VE, =&, VF, = F,U UK, =K' U{i} = {—i}¥

2. The functor ¥ induces a well-defined involution on the Grothendieck group K(C), acting
as the map Yy on V.

3. There is a natural isomorphism V2 = Id, namely ¥ is an involution.

Proof. 1. This follows from the isomorphism between W and W* for any finite-dimensional
(graded) vector space W. Note that (C{k})* = C{—k} since Hom(C{k}, C must consist
of homomorphisms that have degree {—k}. This fact ensures the existence of natural
isomorphisms WK, = K 1 and W{k} = {1} 0.
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2. ¥ sends objects to isomorphic objects, so it is an exact functor, and induces a well-
defined map on the Grothendieck group. From the relation U{k} = {—k}T, this map
is g-antilinear. For p # 0, ¥(C,) = C,* = C,, which descends to [¥][C,] = [C,], or
under the isomorphism ¢, [¥](z,) = z,. Similarly, ¥(P,) = x(oP) = P, where P
denotes P, with inverse grading. After applying the isomorphism ¢, this descends to
[V](¢ha) = ¢ he and simplifies to [¥](hy) = ho. Therefore ¥ induces a map acting on
the Grothendieck group of C as the involution vy, with the isomorphisms in 1 descending
to relations at the decategorified level ensuring [¥](ax) = ¥(a)[¥](x) for all a € Uy(g)
and all x € K(C).

3. This is clear from the definition of W.

Furthermore, 3 implies that ¥ is an autoequivalence of C, and we have
HOMe (¥(M), W(N)) = HOMc(W2(N), M) & HOM (N, M)

for all objects M and N in C. This descends to the equation (¢ [M], ¥y [N]) = ([N], [M]) on
the Grothendieck group.

The linear involution wy

Define the following autoequivalence €2 : C — C by setting 2 to be the identity functor on Cy
and for any u € R, setting ) to be the equivalence of categories from C,, to C_, obtained by
identifying each of the categories with ,Vect.

Proposition 3.2.15. 1. There are natural isomorphisms

QE, = F,Q OF, =2 E,0 QK. =2 K10

2. The functor Q0 induces a well-defined involution of the Grothendieck group of C, acting as

the involution wy does on V.

3. There is a natural isomorphism 2 = Id.

Proof. 1. This proof is similar to the previous proposition 3.2.14

2. Qis clearly an exact functor and since it commutes with the shift functor, it descends to a
well-defined g-linear map on the Grothendieck group. €2 preserves the projective objects
in Cy and sends the simple objects C,, to simple objects C_,,, so under the isomorphism

t, [Q] acts as the involution wy on the Grothendieck group.

3. This is clear from the definition of €.
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As for the functor W, the functor 2 is an equivalence, so that by 3, there is an isomorphism
HOM¢ (QM, QN) = HOMc¢ (M, Q*N) = HOM¢(M, N)

which descends to the equation {(wy [M],wy[N]) = ([M],[N]) on the Grothendieck group of C
for all objects M, N € C.

Therefore this is a categorification of the adjoint representation of U,(g) that lifts the structure

of V to the category C.

The categorical action of quantum groups U, (g) suggests that the quantum group itself can be
categorified. Further evidence of the existence of categorifications of quantum groups is given
by the structures on Ugy(g) itself, such as the semilinear form ( , ), or the Beilinson-Lusztig-
Macpherson idempotented modifications of quantum groups [BLM90]. Indeed, categorified
quantum groups have since been constructed, most notably by Rouquier-Chuang for sl [CR08],
Khovanov-Lauda for sl,, [KL09] and Rouquier for symmetrisable Kac-Moody algebras [Rou08].



Chapter 4
Annular Khovanov homology

We construct a modification of Khovanov homology for links contained in the solid torus from
the perspective of representation theory. This is a particular example of a homology of links in I-
bundles over surfaces defined by Asaeda, PRzytycki and Sikora [APS04]. We then demonstrate
some of the rich structure underlying this annular homology. The main result of this chapter
is theorem 4.4.1, which states that the current algebra sl; (V2) acts on the annular Khovanov

homology of a link.

To discuss link homologies, we use the following definitions and theorem.

Definition A knot is a smooth embedding of the circle S* into R3 (or alternatively into S3).

A link is a disjoint union of knots.

Knots and links are distinguished up to isotopy, where

Definition Let K; and K> be links given by the respective embeddings f and g from S! to
R3. K; and K, are said to be isotopic if there exists a homotopy H : S x [0,1] — R? from f
to g such that H(z,t) is an embedding for all fixed ¢ € [0, 1].

A simpler method of studying links or knots is to consider link diagrams, wherein we project
a link onto the plane, taking note of the bottom and top strands at any double points in this
projection. This projection is not canonical, and a single link has many different diagrams, so it
would seem that the question of whether two link diagrams are obtained from the same link is
a very complex one. However, the following theorem of Reidemeister [Rei27] shows that there
are in fact only three ways in which two link diagrams of a given link can differ, up to planar

isotopies:

Theorem 4.0.16 (Reidemeister). Two link diagrams Dy and Dy correspond to the same link
up to isotopy if Do can be obtained from Dy be a sequence of moves of the following types (called

Reidemeister moves) and planar isotopies:

71
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(R1)
- _
(R2)
) 4
\ 4
(R3)

One aim in knot theory is to define properties of links using link diagrams that are intrinsic to
the link, namely this property does not depend on the choice of projection. Such a property is
called an invariant of links, and by the Reidemeister theorem, to check that an object is a link

invariant, it is sufficient to prove that it is invariant under Reidemeister moves.

4.1 Khovanov’s categorification of the Jones polynomial

which will be later modified

to suit the annular case. The main objective is to construct a cochain complex C(L) of graded

First, we provide a construction of Khovanov’s link invariant 77,
vector spaces from an oriented link L such that the cohomology groups of C(L) are link in-
variants, and the graded Euler characteristic of C(L) is the unnormalised Jones polynomial.
This is another example of categorification, where the decategorified object, a polynomial, is
somewhat more complex to the example encountered in chapter 3, where a number was lifted
to a vector space. The additional complexity of a polynomial lifts to additional structure at

the categorified level, namely a sequence of vector spaces.

Let L be an oriented knot or link in R? and choose a projection of L onto the plane, noting the
relative heights of strands at double points. We call such a projection a link diagram, denoted
D, or D(L) if there is some ambiguity. The choice of projection is restricted so that D has only
a finite number n of double points, no triple intersection points, no tangencies and no cusps. We
generally follow the notation used by Bar-Natan in his exposition of Khovanov’s work [BN02],

in particular in our presentation of the Jones polynomial.
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4.1.1 The Jones polynomial

The definition of the Jones polynomial here uses the skein relations of the Kauffman brace,
a Laurent polynomial with coefficients in Z, permitting a simple construction of the Jones

polynomial from a given link diagram D.

The Kauffman bracket is defined axiomatically:

1. The bracket of the constant polynomial 1: () =1

1

2. The bracket of a closed loop with no crossings is the polynomial ¢ + ¢~*, and disjoint

diagrams multiply:for any link diagram D, (OD) = (q + ¢~ 1)(D)

3. The bracket for a double point is given by a linear combination of its two resolutions:

(XO=(=)-d)0)

~is called a O-resolution and )( is called a 1-resolution.

where =
The Jones polynomial is a renormalisation of the Kauffman bracket: for a link L with some
projection D, the Jones polynomial is obtained from the Kauffman bracket of D by the following

relation
(_1)71, qn+72n,

q+q!

Note that while the Jones polynomial is defined for oriented knots and links, the Kauffman

J(D) = (D)

bracket does not see this orientation. The relation above reintroduces the orientation to the
Jones polynomial. The following theorem shows that the Jones polynomial is an invariant of
oriented knots and links [Jon85].

Theorem 4.1.1. The Jones polynomial is invariant under Reidemeister moves.

Consequently, for a link or knot L and any choice of projection D of L, we may define the Jones

polynomial unambiguously for an isotopy class of links L, denoted J(L), where J(L) = J(D).

4.1.2 Resolution of a knot or link diagram

Given an oriented knot or link L and a choice of link diagram D, assign an ordering to the
set X of crossings. The orientation of L is carried over to D and determines the parity of a

crossing:

X is a positive crossing

T i ;
j\ 1S a negative crossing

Let n4 and n_ be the number of positive and negative crossings respectively. As in the cate-
gorification of level two representations of sl,,, the construction of Khovanov homology consists

of applying a functor from ; Cob to 4Vect. To apply this functor, each double point of D must
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be resolved as either a 0-resolution or a l-resolution. A complete resolution is a diagram with
all double points resolved. There are 2™ different possible complete resolutions of a diagram D
with n double points, and these complete resolutions bijectively correspond to the elements of
the set of ordered sequences {0,1}¥. Fix an ordering of X and label each complete resolution
by the element o € {0,1}* corresponding to the choice of resolution at each crossing in this
order. Each complete resolution consists of a disjoint union of copies of S' embedded in R?,
and we can apply a TQFT as in section 3.1. The height h(«) of a complete resolution is the
number of 1-resolutions in a: h(a) = Zgll a; where a; denotes the ith element of the sequence
a, with respect to the choice of ordering on X.

To organise the set of complete resolutions of a diagram D, define the n-dimensional cube of
resolutions of D as follows: the 2" vertices of the cube consist of distinct resolution o € {0, 1},
arranged into columns such that each column consists of resolutions of the same height h, and
arrange the columns in ascending order of height, namely, there will be n + 1 columns, from
height 0 to height n. Two vertices are connected by an edge if their resolutions a and § differ

at a single position i € {1,...,n}:

1 ifj =i
la; — Bj] =

0 otherwise

Edges in the cube of resolution are drawn as arrows from « to § for h(a) = h(8) — 1. This edge
is labelled by d¢ where £ € {0, 1,x}¥X is a sequence with a single x such that sending x — 0
takes £ to a and sending x — 1 takes £ to 8. A thorough discussion of edges can be found in

section ?77.

4.1.3 Chain groups

The aim is to obtain a homology theory for links from link diagrams, so the main step in the
construction of Khovanov homology is to define a chain complex from a given link diagram D.
To construct a cochain complex we must now associate a chain group to the resolutions. This
is achieved through the use of a topological quantum field theory (TQFT), a functor Q from
the cobordism category  Cob of closed 1-manifolds to the category ,Vect of finite-dimensional
graded vector spaces over C. A more complete description of a similar TQFT is given in

section 3.1.

This TQFT sends a disjoint union of cycles (copies of S!) to a tensor power of a graded vector
space W. More concretely, let « be a complete resolution of a diagram D and let k, be the
number of cycles in a. To a single cycle, the functor Q associates a g-graded vector space W,
with basis {w,w_}, where deg(w, ) = q and deg(w_) = ¢!, so that gdimW = ¢+ ¢~ '. To a
union of k disjoint cycles, Q associates W®*. Hence, to a resolution o, Q associates the vector
space W®ka

Let [D] be a chain complex with chain groups consisting of direct sums over a of equal height
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of Q(a), where « is a complete resolution of D shifted by the common height:

D) = @ Wk,

a:h(a)=r

for r € {0,1,...n}, otherwise [D]" = 0. This is obtained by taking the direct sum over all
resolutions in a column of the cube of resolutions after applying the TQFT and shifting up
by the height of resolutions in a given column. To ensure [D] is an honest to goodness chain

complex, it remains to define boundary maps between the chain groups [D]".

4.1.4 Boundary maps

The TQFT Q is a functor from ; Cob to 4Vect, so grading-preserving linear maps between the

chain groups arise from cobordisms between one-manifolds.

Recall that the edges of the cube of resolutions are labelled by d¢ for & € {0,1,x}*. Each edge
of the cube of resolutions corresponds to a change of a single resolution, from a zero-resolution
to a one-resolution. This change of a single resolution consists either of two cycles fusing into a
single cycle, or a cycle splitting into exactly two distinct cycles, while all other cycles remain the
same. In either case, the cobordism consists of a three-holed sphere and a copy of a cylinder for
each unchanged cycle. Under the TQFT Q, the three-holed sphere corresponds to one of two
types of linear maps at the chain level: a multiplication map m : W @ W — W corresponding
to a fusing of two cycles and a comultiplication map A : W — W ® W corresponding to a
splitting of a single cycle. There is no canonical ordering of the cycles in each resolution, so m
and A must be commutative and cocommutative respectively. Furthermore, the maps must be

associative and coassociative respectively and satisfy the following identity:
Aom=(m®id)o (id® A).
Thus we define m: W @ W — W by

Wy Q Wy > W4
Wy QW—_ — W—
W_ ® W4 H— w_
w_ Qw_ —0

and A: W - W W by

A Wy = Wy QUW_ +w_ @ wq
' W_ = W_ Qw_

The maps m and A shift the g-grading down by one, so in fact we have m : W@ W — W{-1}
and A : W — W@ W{-1}. For example, in the mapping m(wy @w_) = w_, deg(wy Qw_) =
1+ (—1) = 0 while deg(w—_) = —1. In the category ;Vect, morphisms are grading-preserving,

so this shift must be counteracted in the definition of chain groups of [D].
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The edges d¢ of the cube are defined in terms of m and A. If the edge £ corresponds to a
cobordism from two cycles to one, let d¢ := m®Id’¢, where Jje is the number of unchanged cycles.

Similarly, if the edge £ corresponds to a cobordism from one cycle to two, then d¢ := A® Id’.

Each boundary map of the chain complex is defined to be the sum over edge maps between
two fixed columns of the cube of resolutions. However, the definition of the maps m and A
ensures that each square of the cube of resolutions commutes, so that the map defined above
will not be a boundary map for chain complexes. It is therefore necessary to add in signs to
the edge maps so that each square of the cube of resolutions anticommutes. This is achieved
by flipping signs of odd numbers of edge maps on each square. A systematic way of doing this
is by multiplying each d¢ by the factor (—1)¢ := (—1)Xi<i & where j is the position of the % in
& and §&; is the ith element in the sequence £. More concretely, we add up the number of 1s in

the sequence that occur before the x.

Define the boundary maps on [D] by
A=Y (~1)%de.
h(&)=r

Thus, to preserve the g-grading over each boundary map, we must shift up by one degree at
each successive chain group [D]” to counteract the shift down by one occurring once in each

d¢ and consequently in each d”, as seen in the definition of the chain groups.

4.1.5 Final adjustments

The last step is to apply shifts to the homological and ¢-gradings to obtain a homological link
invariant. The resulting chain complex C(D) is defined by

C(D) = [D[-n_l{ny — 2n_}.

Note that these shifts are reflected in the normalisation factors in the Jones polynomial.

4.1.6 Khovanov homology

Khovanov homology of a link diagram D is defined by
Kn(D) = @ H"(C(D)),
i,jEZ
where i denotes the homological grading (the grading inherited from the degree of the chain

group), and j denotes the degree of the g-grading, and @;czH"?(C(D)) = kerd'/im d'~.

Theorem 4.1.2 ( [Kho00]). Khovanov homology Kh(D) is a link invariant. That is, if D and
D’ are diagrams of inks that are isotopic in S*, then Kh(D) = Kh(D').

We express this theorem by writing Kh(L) in the place of Kh(D) whenever D is a link diagram
for a link L, and call Kh(L) the Khovanov invariant.
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The proof that Khovanov cohomology is a link invariant consists of showing that it is invariant

under Reidemeister moves. A clear proof of this invariance can be found in [BN02].

4.1.7 Recovering the Jones polynomial

In the case of a chain complex of graded vector spaces, decategorification consists of taking the

graded Euler characteristic of that chain complex.
Bar-Natan [BN02| defines the Khovanov polynomial in variables ¢ and ¢ as follows:

Kh(L)(t,q) = Y t'g’dimH"7 (C(L)).

1,JEL

The graded Euler characteristic x4 of the chain complex C(L) is obtained by setting ¢t = —1:

Xq(C(L)) = Kh(L)(=1,9)

It is clear from the construction of C(L) that the graded Euler characteristic of the Khovanov

invariant of a link L is the unnormalised Jones polynomial of L:

Kh(L)(-1,q) = (¢ +q~")J(L)

Hence, Khovanov homology categorifies the Jones polynomial. The construction of annular
Khovanov is very similar to the construction of Kh(L), and is illustrated by the example in

section 4.3.

4.2 Lee’s variant of Khovanov homology

Eun Soo Lee defined a deformation of Khovanov homology for links by introducing a new
differential, denoted dj here. This variant of Khovanov homology plays an important role
in defining the current algebra action on annular Khovanov homology in section ??. This
differential induces a degree (1,4) map on Khovanov cohomology, pairing off certain terms in
Kh(L). The original purpose of defining d;, was to prove the following theorem:

Theorem 4.2.1 ( [Lee05]). For an alternating knot L, its Khovanov invariants H%(C(L))
of degree difference (1,4) are paired except in the Oth cohomology group. More precisely, the
equality

Kh(L)(t,q) =q (g +q¢ ") + (¢ +t¢* - ) P(t,q)

holds for some integer s and some polynomial P.

where an alternating link is a link that admits a diagram whose crossings are alternatively

positive and negative when traveling along any component of the link.
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4.2.1 Defining a new differential

Lee homology retains the chain groups from Khovanov homology, so that boundary maps are
again defined in terms of multiplication and comultiplication, corresponding to splits and merges
of cycles in resolutions of links. The Lee boundary map has multiplication mpe. : W @ W —
W{1} and comultiplication Ay : W — (W ® W){1} given by:

’U}+®’U}+|—>0
wy @uw_ —0

mrp, -
w_ Qw4 — 0
W_ Q@ W_ +— W4
wy — 0

AL: +
W = Wy @ Wy

From this definition, m; and A are (co)associative and (co)commutative, and satisfy the

relation

A omy = (mL ®Zd) o (Zd® AL)
These identities follow from the fact the my and Ay act trivially on most basis elements.

From this new definition of multiplication and comultiplication in Lee cohomology define the
boundary maps dy, for the resulting chain complex exactly as for Khovanov cohomology, taking
dy, to be the sum down a column of my, and Aj.., up to tensoring with the identity as necessary,
for merge and splits respectively when each 0 resolution is changed to a 1-resolution. Signs are
added following the same rule as previously to ensure that d?2 = 0. Lee homology is hence
defined to be the cohomology of the chain complex (C*), (dr + d)*), where d is the Khovanov
differential and the C" are the chain groups from Khovanov homology. This is a well-defined

chain complex, since d, and d anti commute, and d3 = d? = 0, so (d + dr,)* = 0.

Furthermore, d and dj, are compatible in the sense of the following:

1. mo(my ®id)+mpo(m®id) =mo (id®@myg)+my o (id @ m)
2. (A®id)o AL + (AL ®id)A = (idR@A)o AL + (id® AL) ® A

3. Aomp+Arom=(m®id)o (id® AL)+ (mf ®id) o (id ® A)

4.2.2 Properties of Lee’s modified cohomology

Lee’s cohomology is particularly simple to compute: its total dimension is dependent only on
the number of components of the link in question and the homological degree of the non-zero
cohomology groups are given by linking numbers of components of the link, where the linking

number of two components of a link.
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We consider the chain complex (C*®, (d+dr)®), where the C” are again unchanged. To facilitate
the computation of homology, Lee forms a new basis (that does not preserve the ¢-grading),

consisting of
a=x+1 b=x—-1

The multiplication and comultiplication maps for d + d;, become:

a®a—2a

a®b—0 a—~a®a
Mt =Y 9 a0 Advd 1 4o

b®b— —2b

This chain complex also gives a new cohomology theory that is a link invariant, called the Lee

invariant.

The following theorem of Lee follows from a useful result from Hodge theory. We can define
an inner product on the chain complex produced when constructing the Lee invariant such
that monomials ¢ and b form an orthonormal basis, so that there exists a well-defined adjoint
(d+dp)* of the sum of the Khovanov and Lee differentials d 4+ dr,. The adjoint is defined by:

aR@ar—a
) a®b—0 _{an—>2a®a
Mard)* Y pg a0 (@+d)* Y\ ps 2h @b
b@b—b

This adjoint differential facilitates the description of Lee homology:

Theorem 4.2.2. Let (d+ dr)* be the adjoint of d+ dr,. Then

Hi(D) = ker(d + dg, : C'(D) — Cy1(D)) Nker(d + dr, *: C*(D) — Ci_1(D)).

Proof. We have by definition

iy ker((d+dp) : CY(D) — C"1(D))
H'(D) = im((d —|—LdL) : 01— (D))

We use the inner product, denoted ( , ), on the chain complex C*(D) to decompose C' into
CY(D) = im(d +dr) ® (im(d 4 dr))*.

(im(d+dp))* = ker(d+dr)* since (d+dp)*(a) =0 <= 0= ((d+dp)*(a), B) = (o, (d+d1)(B))
for all B € C%, so a L im(d +dy).

Let K = ker((d+dy) : C*(D) — Cip1(D))Nker((d+dp)* : CY(D) — C;—1(D)) and K’ = H*(D).
Since K C ker(d 4+ d) we can define the map ® : K — K’ by ®(a) = a+ im(d + dp).

Then ® is injective: let ¢ € K Nim(d + dp) C ker(d + dr)* Nim(d + dr). Then we have seen
that c=01in K.

® is surjective: let 8 = a+im(d+dy) € K'. If o € ker(d + dr)* then 8 = ®(a) and we are
done. If not, then o € (ker(d + dp)*)* = im(d + dz) (since C? is finite-dimensional), so a = 0,
and 8 = ©(0). O



80 CHAPTER 4. ANNULAR KHOVANOV HOMOLOGY

The linking number ¢15 of two knots S7 and Ss is an invariant of links given by the following

formula:
nye —n—

2
where ny and n_ are the total numbers of positive and negative crossings between S; and So

€12 =

respectively, defined in section 4.1.2

Theorem 4.2.3 (Lee). The Lee homology ring H(L) = ®;czH'(L) for an oriented link L with

n components Si,..., Sy, has dimension 2". If the linking number of S; and Sy is {1, then
dimH'(L) =2-{E C{2,...,n}: (Y 2;;) =i}
JEE.KZE

Lee’s proof [Lee05] consists of distinguishing the 2"~ orientation-preserving resolutions of all
choices of relative orientation on the diagram D, showing that these contribute exactly two
basis vectors to Lee homology and showing that these are the only contributiona using the long

exact sequence on homology:
.= H7YD(x0)) = H™Y(D(x1)) = HY(D) — H(D % 0)) — H(D(x1)) — ...

where D(%0) is a link diagram D of L with the last crossing resolved to a O-resolution and

D(%1) is D with the last crossing resolved to a 1-resolution.

4.3 The annular case

Asaeda, Przytycki and Sikora defined a variant of Khovanov homology, wherein knots and links
are contained within I-bundles M over surfaces F' # RP? [APS04]. A specific case of this
variant considers annular knots and links: knots and links restricted to the thickened annulus
A x I, where A is a closed, oriented annulus and I is the closed interval [0,1]. In particular,
we consider annular braid closures. Annular links are isotopic if and only if their link diagrams
differ by a sequence of annular Reidemeister moves and isotopies, namely isotopies that do not
pass through the boundaries of the thickened annulus. The thickened annulus is parametrised

by the following;:
AxI={(r0,z2):re(l,2],0€[0,2r],2€[0,1]} c S* =R3Uco

and annular links admit link diagrams D(L) by projecting any representative of the isotopy
class of L onto A x {%} From such a projection one constructs a triply-graded chain complex

CKh in a similar way to regular Khovanov homology.

Regard the link diagrams D(L) as being contained within S?\{zg, z~} where zg and z., are
considered to be basepoints corresponding to the inner and outer bounding circles of the annulus
A respectively. In general the second basepoint x4, will be excluded or implicit in what follows.
An example of an annular link diagram with a choice of ordering on crossings is given below
in figure 4.1. Crossings are labeled by (n,e,), where n € N is the number of the crossing in
the order chosen, and e, € {+,—} is the parity of that crossing. The basepoint xg is denoted
by a * in each link diagram. To return to regular Khovanov homology, we simply forget the

basepoint.
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(1,+)
(2,-) sk

(3,+)
(4,-)

Figure 4.1: The annular link diagram of the figure-eight knot

4.3.1 Chain groups

Let D be a link diagram for an annular link L. The cube of resolutions of D as in regular
Khovanov homology, noting the location of the basepoint in each of the resolutions. Thus there
are three types of cycles in the resolutions of D: those that do not enclose the basepoint, called
trivial cycles, and positive and negative cycles that do enclose the basepoint, called non-trivial

cycles. The sign of non-trivial cycles is determined by the following process:

1. Construct a line ¢ between the basepoints zy and .
2. Starting from xg enumerate the crossings between ¢ and the cycles of the resolution.

3. A non-trivial cycle is positive if its crossing number is even and negative if its crossing
number is odd. Note that a non-trivial cycle can only have an odd number of crossings
with £. If the number of crossings between a non-trivial cycle and ¢ is greater than one,

the parity of the crossing number is the parity of the first crossing number.

This sign allocation clearly involves making several choices (the basepoints zp and x., the
direction of ¢, and associating positive cycles to even crossing numbers), and is thus non-
canonical - isotopic diagrams can have different choices of positive and negative non-trivial

cycles. However this choice does not carry down to the level of homology.

As in regular Khovanov homology, chain groups are obtained from resolutions by applying a
TQFT from Cob; to gVectc. Here the vector spaces are two-dimensional and bigraded, where
the first grading is the usual g¢-grading that returns the Jones polynomial, and the second

s-grading relates to a Lie algebra-module structure defined shortly.

e To trivial cycles associate the vector space W with basis {w4,w_}, such that deg(wy) =
(1,0) and deg(w_) = (—1,0). This vector space is precisely the one defined in regular

annular Khovanov homology.

e To positive non-trivial cycles associate the vector space V' with basis {vy,v_1} such that
deg(v1) = (1,1) and deg(v_1) = (~1,—1).
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e To negative non-trivial cycles associate the dual V* of V| with basis {7, 7_1} such that
deg(ﬁ) = <1a 1) and deg(m) = (_17 _1)

Note that for this grading to be consistent on V*, the natural pairing ( , ) on V x V* determines
the basis of V* by

(v1,71) =0 (v1,7-1)
=1

=1
<v*1aa> <v*17v7—1> =0

Let « be a complete resolution of the link diagram D. Define k, to be the number of trivial
cycles in «, [, to be the number of positive non-trivial cycles and m, to be the number of
negative non-trivial cycles. Then we define the chain groups in the chain complex (CKh®,d*®)
to be
CKh'(D)= @ W @V V*m{(i,0)}
azh(a)=1

and it remains to define the boundary map d.

For example, consider the annular knot in figure 4.2.

1,+)

(2, +)% k

(3,+)

Figure 4.2: The annular link diagram for the positive trefoil

Then the cube of resolutions for the trefoil is shown in figure 7?7, with the corresponding chain

groups underneath.

The only modification here from the regular case is in homological degree zero. To pass from
the annular case to the regular case, we replace each of the representations V' and V* by the

trivial representation W.

4.3.2 Boundary maps

To define the boundary maps on CKh, one first distinguishes the multiplication and comulti-
plication maps found on individual edges of the cube of resolutions. We first note that the only

types of splits and merges that are possible between two resolutions are:

1. Two trivial cycles merging into a single trivial cycle and a trivial cycle splitting into two
trivial cycles: W @ W < W,
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\
e

OO

L X X
.

O
OiO

VeVt ————— @ W ———— @ WeW ——— WaWeW

Figure 4.3: Cube of resolutions for the trefoil

2. A trivial and a non-trivial cycle merging to form a non-trivial cycle of the same sign and
vice versa: V QW <V or VW « V*,

3. Two non-trivial cycles of opposite sign merging to form a trivial cycle and vice versa:
VeV W.

The first case corresponds to regular Khovanov homology: when there is no interaction with
the basepoint, annular Khovanov homology reduces to the usual form. The second case reflects
the fact that (up to isotopy, so that no cycle lies tangent to the line ¢) a trivial cycle will always
have an even number of crossings with £ or no crossings with ¢, so the non-trivial cycles formed
must always be of the same type as the original cycles. Note that there cannot be a merging
of two non-trivial cycles of the same type: by the definition of sign on cycles two adjacent

non-trivial cycles will always have opposing signs.

The relevant multiplication and comultiplication maps are defined from regular Khovanov edge
maps, with terms deleted if they do not preserve the second s-grading. We will take note of
these deleted terms for later use. Case 1 is trivially the same as the regular case, since the

s-grading is always zero.
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VoWV V¥QW « V* VeV W
V] Q Wy > V1 7] Qw4 — U1 11 Qv — 0

vl®w_r—>0

T ®w_—0

V1 QU_1 — w_

V11— V-1 Rw_

V_1—0_1RQw_

m
Vo1 QW4 V1 | V1 QW4 =V V1 RV — w_
V1 Q@w_ —0 V1 Qw_—0 v_1®v_1+—0

A V1= U1 QW V= U QW Wy = V1 QU1 +v-1 U1

w_ — 0

The deleted terms are

Mger (V1 @ V1) = wy

Age(w_) =v_1 QU7

Maet(V1 @ wW_) = v_1 Maet(T1 @ W_) =0_1

Ager(v1) =v-1 @ wy Age(T7) =77 @ wy

Each edge of the cube of resolutions will be assigned one of the multiplication or comultiplication
maps tensored with copies of the identity map for each unchanged cycle and with signs flipped
following the same process as in the regular case. Then the differential for (CKh®,d®) is the

sum of each edge map down columns between vertices o with the same height h(a).

Returning to the example of the trefoil, the cube of resolutions with relevant edge maps is given

in figure 4.4.

0L

LA

l- ">
N

OO

d° dt , d2
VoV ——— @) W —— @ WeaW —WeaWeW

Figure 4.4: Boundary maps for the trefoil

The annular Khovanov homology of the trefoil can be found in section 4.5.
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We finally add in the grading shifts, following the convention of Bar-Natan, so that the final
chain complex is given by:

CKh(D) = CKh(D)[-n_]{(ny —2n_,0)}

with differential d defined above. Let AKh*(D) = ker(d’)/im(d*~!) be the ith cohomology
group of CICh. Then Akh’ is in fact independent of the link diagram D chosen:

Theorem 4.3.1 ( [Rob13]). The tri-graded annular Khovanov cohomology AKh(L) = @;cz AKh (L)
of an oriented knot or link L with the differential defined above is an invariant of annular knots

and links.

4.3.3 An sl, action on CKh

One aspect of interest in studying annular Khovanov homology comes from a representation
theoretic perspective. There is a rich and beautiful structure on this homology that is partially

described by the following preliminary result:

Theorem 4.3.2. There is an sloC action on CICh and thus on annular Khovanov homology.

This means that there is a natural way of viewing the chain groups CXh® as representations
of 5l,C and the differentials d* as sl,C-module homomorphisms, so that by definition of co-
homology groups (using the fact that the kernel and image of a module homomorphism are

sub-modules), these can also be naturally viewed as sl;C representations.

Proof. We first define each of the two-dimensional bi-graded vector spaces W,V and V* as
sly representations. Define W to be the direct sum of two copies of the trivial representation
Vo & C so that W = Vp{(1,0)} & Vo{(—1,0)} =2 C{(1,0)} ® C{(—1,0)}. Let V be the standard
representation, with v; a highest weight vector, and v_; a weight vector associated to the
weight —1. Finally, let V* be the dual representation of V. While V' and V* are isomorphic as
representations of sly, the isomorphism is non-trivial, and introduces signs that will be used in
further results. The action of sly on V* is therefore:

e- 1 =0 f-o7=-11 h-T7 =T

e-U_1=—711 f-v1=0 h-1_1=-7_3

Using this definition, it is possible to interpret the s-grading as the weight-space grading of
representations of sly: all elements in W have s-grading 0, reflecting the fact that W is the
trivial representation, so z - W = 0 for all x € sl,. Furthermore, the s-grading of 1 for both
vy and v7 is consistent with the fact that these are both highest weight vectors for the two-
dimensional representation. Finally, the s-grading of —1 for v_; and T_7 is also consistent with
their associated weights. Note that as a particular case of annular Khovanov homology, regular
Khovanov homology also has a natural sls action, but since all cycles are trivial in this case, it
consists exclusively of the trivial representation. Chain groups consist of direct sums of tensor
products of the sly representations V, V* and W, and since U (slz) is a Hopf algebra, the chain

groups are themselves sl, representations.
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The boundary maps d* consist of sums of tensor products of m and A with the identity map.
Hence to show that the d’ are slo-intertwining maps, it suffices to show that m and A commute

with the sls action on chain groups.

We consider the multiplication and comultiplication maps between W and V ® V*. For A :
W — V®V*, it is clear that the Aox = 0 for all x € sly, since W is the trivial representation.
We must therefore check that z o A = 0 for all x. This verification is taken on the basis vectors
of W and generators of sly. Note that A is trivial on w_, so commutativity automatically holds

on Span{w_}.

eoAlwy) =e(v1 V-1 +v_1 Q1)
=e- 1RV +1v1 Qe V_1+e-v_1QV] +v_1Qe- -V
=0-11®v1+v1 Q11 +0
=0
foA(wy) = f(v1 ®V—1+v_1®71)
=011 +04+0—-v_; ®v7
=0
hoA(wy) =h(vi @1 +v_1 ®7)
=RV — V1 QU_1—V_1Q0] +V_1 QU1

=0

Thus A commutes with the sly action. One similarly checks that the multiplication commutes
with the sly action. Since m(v; ® 1) = m(v_1 ® v_1) = 0, the composition z o m is zero for
any x© € sls. Furthermore, by definition of the weights associated to each of the v; and vy,
e(v1 ®07) = f(v_1 ®v-7) =0.

mo f(vy ®@01) =m(v_1 ®07) —m(vy ®0_7) moe(v_1 ®V_1) =m(v; ®V_71) —m(v_1 @ V1)
=w_ —w_-=0 =w_—w-=0

moh(v; ®v7) =2m(vy ®v7) =0 moh(v_1 ®v_7)=—2m(v_1 ®v_7) =0

Hence mo z(vy ® 1) =z om(vy ®07) =0 and moxz(v_1 ®_1) =xom(v_1 ®0_7) = 0 and
m commutes with the sly action on Span{v; ® 1,v_; ® _1}. For the remaining basis vectors,
it is also clear that x o m will always be the zero map, since m : V@ V*—~ W and W is the

trivial representation.

moe(vy ®V_7) = —m(vy ®77) =0 moe(v_; ®01) =m(vy ®v7) =0

mo f(v1 @v-7) = m(v_1 ®v-1) =0 mo f(v_1 ®1) = —m(v_1 ®V_7) =0

Furthermore, h(v; ® 7_7) = h(v_1 ® 1) = 0, so m oz is the zero map on V ® V* and hence m

commutes with the sly action on V @ V'*.
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For the edge maps between V @ W and V, we note that since the action of sly is trivial on
W, and that m|V®Span(w+) is an isomorphism of sl representations, commutativity of the
multiplication map and the sly action holds on this subspace. On the subspace V ® Span(w_),
m oz is also trivial for all z € sla, since z - (V ® Span(w_) C V ® Span(w_), which is in
the kernel of m. Therefore m commutes with the sly action on V ® W. Similarly, A is an
isomorphism between V' and V ® Span(w_), and by the trivial action of sly on W, A is also a

map of representations.

The proof that the sls action commutes with the edge maps m and A on V¥*@ W <« V* follows
by the same reasoning.

Therefore there is a natural way of viewing the chain groups as representations of the Lie algebra
sls and the boundary maps as intertwining maps. This carries naturally down to an action on
cohomology AKh, since both ker(d?) and im(d*~!) are subrepresentations of CXCh® for all i € Z,

so their quotient inherits an action of sl as well. O

Remark. The sly-action on homology is an annular link invariant: any annular isotopy or

Reidemeister move will induce an isomorphism of sly-modules on homology.

The sl action on annular Khovanov homology is not however the only underlying structure.
In the following section, we demonstrate a much richer structure, given by the current algebra
S [5 (VQ)

4.4 A current algebra action on annular Khovanov homol-

ogy

The aim of this section is to give a proof of the following theorem:

Theorem 4.4.1 (Grigsby-Licata-Wehrli). There is an sl5 (Va) action on annular Khovanov
homology.

We begin by defining a current algebra action on individual cohomology groups then demon-

strate that this definition is compatible with the previous structure.

We have seen that the chain complex C/ICh is a triply-graded vector space, consisting of the
homological grading, the usual Khovanov ¢-grading and the sl weight space s-grading. We fix
the following notation: an element v in C/Ch has degree (a,b,c), where a is the homological

degree, b is the ¢-grading and c is the s-grading.

4.4.1 Decomposing the annular Khovanov and Lee differentials

Just as the Khovanov differential was modified in the annular case to preserve the s-grading

at the chain level, one can also define an annular variant of Lee homology that preserves
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the s-grading using individual edge maps. We denote the s-grading preserving annular Lee
multiplication and comultiplication edge maps by mpc. and Ap.. respectively. The s-grading
preserving annular Lee differential is denoted dpe.. As before, the case where trivial cycles split
or merge to form other trivial cycles corresponds exactly to the regular Lee homology case.
Note that in the non-trivial case, none of the multiplication and comultiplication maps for Lee

homology preserve the slo-weight grading, so all terms are deleted. These deleted terms are:

MLee,del(V—1 @ W_) = v; AfLee,del(V1) = v1 ® Wy
MLee del(V—1 ® V1) = wy Apeeder(V1) = 11 @ wy
ALee,del (H) =171 ® w4 ALee,del (w,) =01 QU1

The s-grading is shifted up by 2 in all the non-trivial cases. We can therefore decompose the

annular Lee differential into two parts:
8Lee =dree + eree

where O denotes the total annular differential, and df__ is the s-grading-lowering component

consisting of those terms that were initially deleted from dy-

Similarly, we recall the deleted terms from the annular Khovanov differential:

Mager (V4 @ W) = v Maer(Vy @ w-) = V= Magel (V4 @ V) = wy

Ager(vy) = v- @ wy Agel(Ty) == @ wy Ager(w_) =v_ ®@v=

All of the deleted terms have s-grading shifts that lower the degree by 2, so we may also

decompose the annular Khovanov differential as:
0=d+d”

where 0 is the total annular Khovanov differential, d is the grading-preserving component and

d~ is the s-grading-lowering component.

As seen previously, the Lee differential Or.. anticommutes with the Khovanov differential,

though each pair of the components may not strictly commute at the chain level.

The aim is to determine the current algebra action on homology using the components d~ and
dzee. To this end we define the action at the chain level, and show that up to homotopy, this
definition is compatible with the s-grading-preserving Khovanov differential, which is simply
the annular differential. We have seen that d~ is a degree (1,0,-2) map, and that dj, is a
degree (1,4,2) map. Thus, these maps behave on the s-grading as one would expect the e and f
elements of sl would on the weight spaces of a representation. Similarly, from our analysis of
the current algebra s[5 (V3), the vectors v and v_s have a similar property of shifting between
weight spaces. For this reason we make the following definition of the action of the vectors v;
from sl (v2), noting also that they shift the homological degree by 1. The vectors v; act by

zero on all basis vectors not shown in the following table.
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sly (V2)

VoWV

V¥*QW « V*

VoV W

V2
V_2
Vo

Vo

V_1 QW_ — 1

V1 Q@W_ — V_q

V1 QW_ — V1
Vo1 QW_ — —vU_1

V1 Q@W_ — —U1

V1 RQW_ — —vV_71

V1 RQwW_ — —v_1
V1 QW_ — U1

Vo1 ®UV_1 — W4
v1 ® U1 — w4
V1 ®U_q — wy

V-1 QU1 = —w4

V2
V_2
Vo

Vo

V_1 V1 ® w4
V1 U1 @ Wy
V1 U1 @ Wy
Vo1 —U_1 @ w4

Vo1 = U Quwy

U U QW

Vo1 = U1 Qwy
V1 = U1 @ Wy

w_ — v1 X U1
W_ —V_1 QU
W_ — V] @UV_q

—V_1 QU1

4.4.2 Proof of theorem 4.4.1
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Proof. To show that there is a current algebra action, we must show that the maps we have just

defined satisfy the current algebra relations and square to zero, at least up to some chain ho-

motopy. Furthermore, we must show that the differential map d anticommutes with the current

algebra action on individual chain groups so that this action carries down to the cohomology

level. This proof also shows that the s-grading preserving components of the Khovanov and

Lee differentials are themselves differentials on C/Ch, namely they square to zero.

We can decompose the chain groups CKh® into a direct sum of sly weight spaces:

CKh' = EPCKi(s)

where s is the sly weight.

SEZ

Denoting the s-degree, the shift in s-grading, of a map by sdeg, we have seen that both 9 and

OLee split into two homogeneous components, where sdeg(d) = sdeg(dree) = 0, sdeg(d™) = —2,

and sdeg(d} ) = 2.

We now use the fact that the total Lee and Khovanov maps are differentials, to obtain:

and

0=0*=(d+d ) =d*+dd” +d d+ (d)?

0= a%ee = d%ee + dLeedzee + dJLreedLee + (dzee)Q

Each of these maps can be decomposed into homogeneous s-degree components:

sdeg(d?®) =0

sdeg(dd™ +d d) = -2
sdeg((d™)?) = —4

Sdeg(dLeedzee + dzeedLee)
sdeg((df..)?)

sdeg(di..)

0
2
4

From the weight space decomposition of the chain groups, the maps 8% and dLee® are both

zero if and only if their homogeneous s-degree components are all zero:
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d? =0 (4.1a)
=0 { di+dd =0 (4.1b)
(d)? =0 (4.1c)
Similarly,
d3 .. =0 (4.2a)
8%66 =0 <= dLeed—Li_ee + dzeedLee =0 (42b)
(dzee)Q =0 (42C)

We have also seen that the Lee and Khovanov differentials anticommute, so that

0= 00Lce + Oreed
(ddZee + dLeed) + (didLee + dLeed ) (ddLee + dLeed + d- dLeedzeedi)

where each component in brackets is homogeneous in s-degree, of s-degrees 2, —2 and 0 respec-

tively. As before, we have:

ddf,, +df,.d =0 (4.3a)
aaLee + 8Leea =0 < d- dLee + dLeed_ =0 (43b)
ddLee + dLeed +d- dLeedzeed_ =0 (43C)

From (la) and (2a), we conclude that the s-grading preserving components of the Khovanov
and Lee differentials are themselves differentials. From (1b) and (3a), the annular differential
d anticommutes with the current algebra maps d~ and d; Tees S0 the current algebra has a well-
defined action on cohomology. (1c¢) and (2c) consist of current algebra relations: v3 = v2, = 0.

Equation (3c) shows that vov_s + v_ovs ~ 0, where dp. is considered as a chain homotopy.

It therefore remains to show the final current algebra relation

le,v_2] = —[f,vo]

and that this matches our definition for vy.

For the V@ W < V case:

[e,v_s](v1 @w_) =e(v_1) = v1 —[f,v2](v1 @w_) =va(v_1 @w_) = v1
[e,v_2](vo1 @w_) = —v_2(v1 @w_) = —v_1 —[f,v](vo1 @w_)=—f(v1) = —v_1
e, v—2](v_1) = —v_2(v1) = —v_1 ® w4 =[five](v—1) = = flu1 @ w+) =—v_1 ®Wy
le,0al(01) = e(vor ®wy = vy ®ws (£ 02)(01) = v2(01) = 01 D
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For the V @ V* «+ W case:

[e,v_o](v_1 ® V) = —v_2(v1 ®V_7 —v_1 ®7T7) =0
—[fiv2(v1 ®@177) = f(wy) =0

[e,v_2](v_1 ®7T1) = —v_2(v1 ®T1) = —wy
—[fiv2](v—1 ®T71) = va(v_1 ® (—V27)) = —w4
le,v_2](v1 ® D7) = —v_2(v1 ® (—77)) = w4
—[f,va](v1 ®T1) = v2(v_1 ®T_T) = wy
le;v_2](v1 ® 1) = e(wy) =0
—[f,v2](v1 ®@71) = va(v-1 ®TT —v1 ®T-1) =0
e, v_2](w-) = e(v_1 ® V1) = v1 ®T7 — V-1 @ TT
—[five](w-) = = f(11 ®7V1) = —v_1 @V +v1 ®V_1

4.5 Computing annular Khovanov homology

4.5.1 Stabilised unknots

We compute the annular homology of positively stabilised unknots: we perform a Reidemeister
1 move that interacts with the basepoint x(, such that the resulting crossing is positive. In
the regular Khovanov homology case, the resulting link would be isotopic to the unknot, and
hence would have isomorphic homology. In the annular case, a positive stabilisation introduces
a non-trivial modification of the homology groups. Knowledge of the resulting representations
could lead to determining whether a link diagram is minimally presented, since representations
of positive stabilisations may be characterisable. This question is still open.

We compute annular Khovanov homology for the twice-stabilised unknot:

Figure 4.5: Twice-stabilised unknot
The corresponding cube of resolutions is:

We determine the kernel and image of each boundary map d'.
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VoV *eV->WeaV)e (VW) —— VvV

For d° : VaV*eV — (VeW)d(VeW), we choose a basis for each vector space: for VoV*@V,
choose the basis {v1 ®T1®v1, V1 QTTRV_1, V1 RV_1RU], V1 RTV_1RV_1, UV_1RTIRV], V_1 QU1 &
Vo1, V1RT_1QV1, v_1QT_1®v_1}. For (VW)®(VeW), choose the basis {(v1 ®@wy,0), (v1®
w_,0), (v_1®w4,0), (v_1@w_,0),(0,v; w4 ), (0,v1 @w_), (0,v_1 w4 ), (0,v_1 ®w_)}. Then
the first component of d° corresponds to the multiplication map on the inner two circles tensored
with the identity on the outer circle and the second component is the identity on the inner circle
and the multiplication map on the outer two circles: d° = (m®1d,Id®@m). In our chosen basis,
d" is described by the following matrix:

(000 00 0 0 0] 0 1.0 0 =1 0 0 0]
00101000 0010 1 0 0 0
000 00O 0T OO0 0001 0 0 —1 0
p_ (00010100 0000 O 1 1 0
o000 0O0O0O0 0000 O 0 0 0
01 10000 0 0000 O 0 0 0
000 00O 0T OO0 0000 O 0 0 O
000001 1 0 0000 0 0 0 Of
Hence,
ker d° = Span{v; ® 1 ® vy,
V1 ®UTQU — 11 QU1 Qv —v_1 QU1 ® vy,
VRV RV — V1 RV RV — v ®V_] @V_1,
V1 ®T ] ®uo1}
and

im do = Span{(vl & w*70)a (’Ufl ®U}7,0), (Ovvl ® w*)a (07071 ® w*)}
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Ford': (Ve@W)® (Ve W)—V, we have

(01 @ wy, —v1
(v @w_,0
(v-1 @ wy, —v-

(v_1 ®@w_,0

(0,v1 @ w—
(0,v_1 @ wy
(0,v_1 @ w_

).—>
) —
)n—>
) =

(0, v1®w+)l—>vl
) =
)'—)’U 1
) =

So that
kerd' = Span{(vi ® wy,v; @ wy ), (Vo1 @ wi,v_1 @ wy),
(v @w_,0), (v_1 ®w_,0),(0,v1 ®w_), (0,v_1 w_)}
and im d' = V.
Therefore,

AKRY = kerd® = V;
AKh' = kerd' /im d° = Span{(v; @ wi,v; @ wi), (v_1 @wy,v_1 @wy)} = Vi{(1,0)}
AKh? = kerd?/im d' = V/V =0

where the isomorphisms AKAY 2 V3 and AKh =2 V1{(1,0)} are determined by the sly-weight
gradings on basis elements. Since each weight space is one-dimensional, each of the homology
groups is an irreducible representation of sly, given by the highest sly-weight that appears in

the grading.

The full current algebra action can be described, up to multiplication by scalars, by the following

diagram 4.6:

The nodes of the diagram denote the sly-weight spaces of the homology groups, and the arrows
demonstrate how the elements v; of sl; (V2) act on these weight spaces: all the v; raise the
homological degree by one. vy raises the sls-grading by two, vg maintains the sly-grading and

v_g lowers the grading by two.

This result for annular homology can be simply contrasted with Khovanov homology: forgetting
the basepoint, the chain complex becomes W®3 — (W @ W) @ (W @ W) — W, and since the
stabilised unknot is isotopic to the unknot, its Khovanov homology is given by a copy of the
trivial representation W concentrated in homological degree zero, and this holds for any number

of stabilisations, since they consist of Reidemeister 1 moves.

Note that up to homological and g-gradings, the annular homology of the twice stabilised unknot

is isomorphic as a representation of sl to V3 ® V4. In fact, a similar statement holds for an
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3e

vo

—3e
Vs Vi{(1,0)}
AKR AKhY

Figure 4.6: The current algebra action on AKh of the twice-stabilised unknot

n-times stabilised unknot: given an unknot positively stabilised around the basepoint n times,
the resulting annular Khovanov homology is isomorphic, up to shifts in homological degree and
g-grading to V,, @ V1 2 V,,_1 & V,11.

4.5.2 The positive trefoil

To compute the annular homology of the trefoil, we determine the homology groups as in the
previous examples by choosing a basis for each of the vector spaces and computing the boundary

maps in each of these bases, to find:

AKKY = V,{3}
AKKY = Vi {5}
AKR? =2 Vo {5}
AKh? =2 V,{9}

From the cube of resolutions of the trefoil, it is clear that annular homology reduces to regular
Khovanov homology for homological degrees 2 and 3, since the cycles in each resolution are all
trivial, except in the height zero resolution. Indeed, the Khovanov homology polynomial for
the positive trefoil knot is K h(trefoil) = ¢+ ¢ + ¢°t? + ¢°t3 [BN02], which agrees with annular

Khovanov homology in homological degrees 2 and 3.
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