Fenchel-Nielsen Coordinates
Trouser Decomposition of Riemann surfaces

Hyungryul Baik
Department of Mathematics
Cornell University

Olivetti Club, Nov. 2010
What is a surface?
Examples of surfaces

- **sphere**
- **real projective plane**
- **torus**
- **Klein bottle**
How many different surfaces are there?
How do we classify them?
Fact: Any compact connected 2-manifold can be obtained from a polygon in the plane by gluing corresponding sides of the boundary together.

For example, the g-holed torus $T^2 \# T^2 \# \ldots T^2$ can be represented by $4g$-gon by identifying edges using symbol $a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_g b_g a_g^{-1} b_g^{-1}$.
Classification of compact surfaces

Figure 1. Handle

Figure 2. Crosshandle
Classification of compact surfaces

Figure 3. Cap

Figure 4. Crosscap
They are all we need
Actually, more than enough

Lemma

A crosshandle is homeomorphic to two crosscaps.
Classification of compact surfaces

Harry Baik
Fenchel-Nielsen Coordinates
Classification of surfaces

Dyck’s Theorem

Handles and crosshandles are equivalent in the presence of a crosscap.
Classification of surfaces

Harry Baik
Fenchel-Nielsen Coordinates
Let a be the connected sum with a torus (or putting a handle) and let b be the connected sum with \mathbb{RP}^2 (or putting a cross-cap). Then this is a sort of semigroup generated by a and b with a relation $ba = b^3$.
Riemann surface

Definition #1 Riemann surface

A Riemann surface is a one-complex-dimensional connected complex manifold; that is, a two-real-dimensional connected manifold M with a maximal set of charts $\{U_\alpha, \phi_\alpha\}_{\alpha \in A}$ on M such that $\phi_\alpha : U_\alpha \to \mathbb{C}$ is a homeomorphism onto an open subset of the complex plane \mathbb{C} and the transition functions are holomorphic maps.
Theorem #1 Uniformization theorem for Riemann surfaces

A simply connected Riemann surface is isomorphic to either the Riemann sphere \mathbb{P}^1, then complex plane \mathbb{C}, or the open unit disc $\mathbb{D} \subset \mathbb{C}$.
Definition #2 Möbius transformation

A Möbius transformation is a mapping $\mathbb{P}^1 \to \mathbb{P}^1$ of the form

$$z \mapsto \frac{ax+b}{cz+d} \text{ with } ad - bc \neq 0.$$

Theorem #2 Automorphisms of simply connected Riemann surfaces

- $\text{Aut}(\mathbb{P}^1)$ is the group of all Möbius transformations.
- $\text{Aut}(\mathbb{C})$ is the group of Möbius transformations of the form $z \mapsto az + b$ with $a \neq 0$.
- $\text{Aut}(\mathbb{D})$ is the group of Möbius transformations of the form $z \mapsto \frac{az+b}{bz+a}$ with $|a|^2 > |b|^2$.
Möbius transformation

Definition #2 Möbius transformation

A Möbius transformation is a mapping \(\mathbb{P}^1 \rightarrow \mathbb{P}^1 \) of the form

\[
z \mapsto \frac{ax+b}{cz+d} \quad \text{with} \quad ad - bc \neq 0.
\]

Theorem #2 Automorphisms of simply connected Riemann surfaces

- \(\text{Aut}(\mathbb{P}^1) \) is the group of all Möbius transformations.
- \(\text{Aut}(\mathbb{C}) \) is the group of Möbius transformations of the form \(z \mapsto az + b \) with \(a \neq 0 \).
- \(\text{Aut}(\mathbb{D}) \) is the group of Möbius transformations of the form \(z \mapsto \frac{az+b}{bz+a} \) with \(|a|^2 > |b|^2 \).
Universal covering space of Riemann surfaces

Theorem #3 Universal covering space of Riemann surfaces

- The Riemann sphere \(\mathbb{P}^1 \) is the universal cover only of itself.
- The plane \(\mathbb{C} \) is the universal cover of itself, of the punctured plane \(\mathbb{C} - \{a\} \), and of all compact Riemann surfaces homeomorphic to a torus.
- All other Riemann surfaces have universal covering space analytically isomorphic to \(\mathbb{D} \).

Definition #3 Hyperbolic Riemann surface

A Riemann surface is hyperbolic if its universal covering space is isomorphic to \(\mathbb{D} \).
Universal covering space of Riemann surfaces

Theorem #3 Universal covering space of Riemann surfaces

- The Riemann sphere \mathbb{P}^1 is the universal cover only of itself.
- The plane \mathbb{C} is the universal cover of itself, of the punctured plane $\mathbb{C} - \{a\}$, and of all compact Riemann surfaces homeomorphic to a torus.
- All other Riemann surfaces have universal covering space analytically isomorphic to \mathbb{D}.

Definition #3 Hyperbolic Riemann surface

A Riemann surface is hyperbolic if its universal covering space is isomorphic to \mathbb{D}.
What do we know about hyperbolic Riemann surfaces?

- A Fuchsian group is a discrete subgroup of $\text{Aut}(\mathbb{H}^2)$, which is isomorphic $\text{PSL}_2(\mathbb{R})$.
- A hyperbolic Riemann surface X could be identified with \mathbb{H}^2/Γ for some Fuchsian group Γ which is isomorphic to $\pi_1(X)$.
- A Fuchsian group acts on \mathbb{H}^2 properly discontinuously. (Conversely, any subgroup of $\text{Isom}^+(\mathbb{H}^2)$ which acts on \mathbb{H}^2 properly discontinuously is discrete.)
What do we know about hyperbolic Riemann surfaces?

Theorem #4 Universal covering space of Riemann surfaces

If a Fuchsian group Γ is torsion-free, then $X := \mathbb{H}^2/\Gamma$ has a unique structure of a Riemann surface for which the projection is a local isomorphism.

So, the torsion-free Fuchsian groups and hyperbolic Riemann surfaces are essentially the same subject.
Let X be a surface and $\gamma : [a, b] \rightarrow X$ be a curve on X.

- γ is *simple* if it is injective.
- γ is *closed* if $\gamma(a) = \gamma(b)$.
- γ is *essential* if γ is not homotopic to a point or a boundary component, if there is any.
Proposition Geodesic representative

For an essential simple closed curve c, there exists a unique geodesic γ in the free homotopy class of c.

Why? Let’s lift c to the universal cover and look for the deck transformation which maps one end point to another. Is it elliptic? Parabolic? Hyperbolic? Wait, what are they?
Let f be an isometry of hyperbolic plane.

- f is *elliptic* if it fixes one point in the hyperbolic plane.
- f is *parabolic* if it fixes one point on the boundary of hyperbolic plane.
- f is *hyperbolic* if it fixes two points on the boundary of hyperbolic plane.
Cut your Riemann surface along a family of disjoint closed geodesics. Until when?

Definition #5 filling

A family \mathcal{F} of essential simple closed curves on the surface S is said to fill S if any other essential simple closed curve should intersect an element of \mathcal{F}.

When this family fills the surface, call it a loop system. And by the previous result, we may assume that each element in the loop systems is a closed geodesic.
What the complement of a loop system looks like?
Decomposition
Theorem #5 Pants-decomposition

A hyperbolic Riemann surface R of genus g without boundary always contains a loop system of $3g - 3$ disjoint simple closed geodesics. Regardless of which loop system we choose, cutting R along the geodesics in the system always decomposes R into $2g - 2$ pairs of pants.

Proof? First, let’s assume that each component of R after cutting is a pair of pants, and count the number of pairs of pants in the maximal decomposition.
Maximal Essential curves

- $N =$ the number of disjoint simple closed geodesics in any such system on R
- $M =$ the number of pairs of pants in a decomposition of R
- $L =$ an element of our loop system
- $n_1 =$ the number of connected components of $R - L$
- $g_1 =$ the sum of the genera of the connected components of $R - L$

Then $g_1 - n_1 = (g - 1) - 1$ and $R - L$ has two boundary components.
We proceed inductively, cutting R successively along loops in our set of disjoint simple closed geodesics. Whenever we cut along a new loop,

- the resulting set has two more boundary components,
- the sum of the genera less the number of connected components decreases by one.
Thus after we cut along N closed geodesics, we get

$$3M = 2N \text{ and } g_N - n_N = (g - 1) - N.$$ \[
\]
But $g_N = 0$ and $n_N = M$ so that $M = N - g + 1$. Then $2N = 3M = 3N - 3g + 3$ so that

$$N = 3g - 3 \text{ and } M = 2g - 2.$$ \[
\]
Definition #6 A pair of pants (or a trouser)

A pair of pants is a complete hyperbolic surface with geodesic boundary, whose interior is homeomorphic to the complement of three points in the 2-sphere.
A pair of pants!
Why do we care about trousers?

Proposition

Let X be a compact connected hyperbolic surface with geodesic boundary. If all simple closed geodesics of X are boundary components, then X is homeomorphic to a pair of pants.

This tells us why pairs of pants are natural building blocks for Riemann surfaces: they are the only compact hyperbolic surfaces with geodesic boundary that cannot be further simplified by cutting along simple geodesics.
Consider various number of boundary components of X. 0, 1, or 2..
In case, where X has at least two boundary components A, B, let C be a simple arc joining A and B.
Intersection number? why geodesics are in minimal position?
Proposition

Let X be a noncompact connected hyperbolic surface with compact geodesic boundary, perhaps empty; assume that every simple closed curve in X is either homotopic to a point, or bounds a punctured disc, or is homotopic to a boundary component. Then one of the following six possibilities holds:

- X is a trouser with one, two, or three cusps
- X is a half-annulus $\{z \in \mathbb{C} | 1 \geq |z| < R\}$ for some $1 < R < \infty$
- X is isomorphic to the punctured disc D^*
- X is isomorphic to D.

Proof is similar with the previous one.
First note that there is a unique common perpendicular to two geodesics which do not intersect (even on the boundary) in hyperbolic plane. Let’s lift two boundary components of a trouser. What can we know from this?
A pair of pants with three seams
Proposition

For any given positive numbers \(l_1, l_2, l_3 \), there exists a unique hyperbolic right-angled hexagon with alternating edge lengths \((l_1, l_2, l_3)\).
A pair of pants is decomposed into two right-angled hexagons.
A pair of pants is decomposed into two right-angled hexagons
What’s left?

What did we get? Let X be a hyperbolic Riemann surface with genus g having no boundary.

- We have a loop system with $3g - 3$ simple closed geodesics.
- Each connected component of the complement of the loop system is a trouser.
- The hyperbolic structure of a trouser is completely determined by the lengths of boundary components (or cuffs!).

How about the hyperbolic structure of the entire Riemann surface?
Dehn Twist

\[f : S \times I \rightarrow S \times I, \ (s, t) \mapsto (se^{2\pi it}, t). \]
Dehn Twist
Let S be a closed, oriented surface of genus $g \geq 2$. A *marked hyperbolic surface* is a pair (ϕ, X) consisting of an oriented compact hyperbolic surface $X \cong H/\Gamma$ and an orientation-preserving homeomorphism $\phi : S \to X$.

Two marked surfaces $(\phi_i, X_i), \ i = 1, 2$ are *equivalent* if there exists an isometry $\alpha : X_1 \to X_2$ such that $\phi_2^{-1} \circ \alpha \circ \phi_1 = \psi$ is isotopic to the identity.

Definition #6 Teichmüller Space

The space of such equivalence classes is the *Teichmüller space* $T_g = Teich(S)$.
Intuitively, what we have shown is that any point Teichmüller space of a hyperbolic Riemann surface of genus g may be specified by $3g - 3$ nonnegative real numbers (lengths of simple closed geodesics) and $3g - 3$ real numbers (degree of twisting between glued pairs of pants). Thus T_g is equivalent (as sets) to

$$\mathbb{R}^{3g-3} \times \mathbb{R}^{3g-3}.$$
But the pants-decomposition of a surface is not unique!
Coordinate Change

S-move

A-move
Coordinate Change

Harry Baik
Fenchel-Nielsen Coordinates
We let $Mod(S)$ denote the group of orientation-preserving homeomorphisms $\psi : S \to S$, modulo those isotopic (equivalently, homotopic) to the identity. It acts on $Teich(S)$ by $\psi \cdot (\phi, X) = (\phi \circ \psi^{-1}, X)$. The quotient space is the moduli space

$$\mathcal{M}_g = \mathcal{M}(S) = Teich(S)/Mod(S).$$

Let S be the space of complex structures on S.

- $\mathcal{M}(S) = S/\text{Homeo}^+(S)$
- $\mathcal{T}(S) = S/\text{Homeo}_0(S)$
(If time permits) Collar Theorem
Let l_i and t_i be denote the length coordinates and twisting coordinates, respectively. They are not well-defined on the Moduli space, but their derivatives are:

Define the 2-form on Teichmüller space $\omega = \sum_i dl_i \wedge dt_i$.

Wolpert showed that this 2-form does not depend on the choice of coordinates, so it descends to a 2-form on Moduli space.
Classification of Surfaces
Riemann Surfaces
Simple Closed Curves on Surfaces
Fenchel-Nielsen coordinates

Few words on Complex analytic theory

- Conformal vs. quasi-conformal maps
- Beltrami differential $\mu(z) \frac{dz}{dz}$
- $M(R)$ - space of Beltrami differentials with $||\mu||_\infty < 1$.
- $\{\text{conformal classes of quasi-conformal deformations of a given Riemann surface}\} \leftrightarrow \{\text{elements in } M(R)\}$.
- Two quasiconformal maps $f_0 : R \rightarrow R_0, f_1 : R \rightarrow R_1$ are Teichmüller equivalent if there exists a conformal map $c : R_0 \rightarrow R_1$ and $f_1^{-1} \circ c \circ f_0$ is homotopic to the identity on R such that boundary of R is fixed point-wise under homotopy.
- The space of equivalence classes in $M(R)$ with above relation is $\mathcal{T}(R)$.
References

- Teichmüller theory and application to Geometry, Topology, and Dynamics, John. H. Hubbard
- Three dimensional Geometry and Topology, William P. Thurston
- On groups generated by two positive multi-twists: Teichüller curves and Lehmer’s number, Christopher J Leininger
- The Fenchel-Nielsen Coordinates of Teichmüller Space, Kathy Paur